Vol 5. Issue 3 . 2017

ISSN - 2321-4406

Research Article

RISK FACTORS OF ACUTE LOWER RESPIRATORY TRACT INFECTION:A STUDY IN HOSPITALLIZED CENTRAL INDIAN CHILDREN UNDER 5 YEAR AGE

PANDEY DEEPTI¹, PANDIT ABHA²

1Department of Otorhinolaryngology, Institute of Medical Sciences. Banaras Hindu University.Varanasi.Uttar Pradesh.2Department of Medicine, Index Medical College,Indore.Madhya Pradesh. Email : drabhaindore@gmail.com

Received:20 March 2017, Revised and Accepted:28 April 2017

ABSTRACT

Objective:Preventive measures of regional relevance can be conceived based on understanding of predominant risk factors.Present observational study endeavoured collection of evidence on hierarchy of risk factors for acute lower respiratory infection(ALRI), in under 5 year age children hospitalized in a city in central India.

Method. A prospective transactional case control observational study was carried out in 100 hospitallized under 5 year age children of ALRI and 100 healthy babies of similar age and sex composition selected as controls concurrently from immunization and well baby clinic. Hierarchial order of risk factors was elucidated.

Result.Low birth weight,incomplete immunization,faulty breast feeding and weaning practices,poor living condition and malnutrition,prematurity and cesarian birth were prominent risk factors for ALRI.First year of life reveals as most vulnerable period in the regard.

Conclusion.Risk factors defined by the study are consistent with other reports but,with a variant hierarchial pattern.Good antenatal and immunization care,good breast feeding and nutrition care,restriction of overcrowding and infection ferom family contacts emerged as key prevention perspects.Effective health education and access to basic mother child health services,specially to prematures and those under 1 year age appeared as pertinent preventive interventions against ALRI in preschool babies in specific regional context.

Keywords: Acute lower respiratory infection;Bronchiolitis;Pneumonia;Risk factors

INTRODUCTION

Acute lower respiratory tract infection(ALRI) is leading cause of hospitalization and mortality among children under 5 year age in developing societies[1]. The incidence of ALRI is high in developed world as well but more severe forms of disease and mortality is disproportionately high among developing countries[2].Variety of factors as, low birth weight, time of initiation of breast feeding, weaning with complementary food, immunization status etc are shown to impact the ALRI risk in children under 5 year age. Knowledge of risk factors would help prevention through proper health education efforts and other interventional community development initiatives. Generation of local evidence base should guide steps to keep check on risk determinants to empower management by avoiding severe form of disease and improve outcome in victims. Present case control observational study is based in central Indian hospitalized ALRI patients under 5 year age and healthy controls. It endeavourers to identify significance and hierarchy of various known determinants that influence ALRI incidence in the specific regional context and contemplate evidence based preventive interventions.

Patients and method

Children under age of 5 years, diagnosed of ALRI and admitted between January 2013 to March 2014 were enrolled as study cases. Healthy children attending immunization and well baby clinic of similar age were selected as controls. Parents were explained that information on health condition of their ward would be used for research without revealation of identity and their verbal consent was obtained prior to induction in this pure observational cross sectional case control study. The study protocol was approved by departmental research committee.

ALRI was defined as presence of cough with fast breathing of more than 60/min in babies under 2 month age; more than 50/min in those between 2-12 months of age and more than 40/min in the 1to

5 year aged[3] .The controls were healthy babies without any respiratory or other complaints.

Both in the cases and controls, detailed health history and relevant epidemiological informations were elicited from mother. Physical examination was carried out. Both history and physical examination were oriented at eliciting potential risk factors. History of respiratory infection in a family member over past 2 weeks; information of any smokers in family; number of individuals sharing the room with baby etc were collected. Children older than 2 years were weighed on bathroom spring weighing scale in standing straight position. Children under 2 years were weighed in lying on cradle spring scale..Malnutrition was graded utilizing Gomez classification with reference to WHO international standards of weight for age. Thus malnutrition was graded as nil for weight for age >90%;I if wfa 89-76%;IIif wfa 75-60% and II when wfa <60%[4-5].Routine hematological, urine and stool exams were requisitioned for cases and controls both. Other specific investigations in cases were as per needs and were part of management not under preview of the study.

A total of 100 cases of ALRI and 100 healthy concurrent controls of roughly similar age and gender composition were enrolled for study. The prevalence of probable risk factors among the two compared groups were contrasted and analyzed by chi square statistic. Depending on level of statistical significance and magnitudes of differences depicted by odds ratios, working hierarchy of the risk factors was drawn.

Observations and results

Relative prevalence of epidemiological determinents among cases and controls are the focus of study..Table1,depicts familial and maternal factors. There was no significant difference among age and education profile of mothers in two groups. Significantly more mothers of case group were working outdoors and incidence of smokers in family was also higher than the control group. Even more significant was the higher prevalence of family members with respiratory infection in preceding fortnight of the case group. The case group also had significantly higher prevalence of more than two members sharing childs room in home. Maternal factors further indicated significantly high proportion of case group patients being 3^{rd} or later in birth order. There was no difference in two group in respect of interval of preceding birth. Preterm labour and cesarian deliveries were significantly high for the cases than controls.

Table.1Familial and maternal epidemiological determinents in ALRI cases and controls

Familial factors									
		ALRI Cases(n.100) Controls(n.100)							
Mothers current ag	ge <25 years	55	42						
>25 years		45	58						
Mothers education. Up to middle school		48	36						
Higher beyond middle school		52	64						
Mothers outdoor employment: Yes		16	07	*					
No		84	93						
Smoker/s in family Yes		31	19	*					
No		69	81						
Respiratory Infection	Respiratory Infection in Family Yes		27	**					
No		57	73						
Members sharing b	abys room <2	39	57	**					
>2		61	43						
Maternal factor									
Order of pregnancy	v <2	75	87	*					
	>2	25	13						
Birth interval	<24 months	59	48						
	>24 months	41	52						
Term at labour	<37 week	17	07	*					
	>37 weeks	83	93						
Type of labour	Vaginal	73	91	*					
	Cesarian	27	09						

Indicate statistically significant differences P *=<0.05;**=<0.01

Table 2, presents the distribution of child related determinents likely to impact ALRI.Very significant about 3 fold higher proportion of case group were born underweight, i.e. 2500g or less. The males outnumbered females by 64 to 36 numbers in case group. This did not appear significant in comparison to control which were selected for sex match.Vast proportion among the cases (81 of 100) were under one year age. Again, due to age matched selection of controls, this does show difference with controls.

feeding .Very significantly,higher proportion among the cases also had inadequate(less than 4 month) duration of exclusive breast feeding..There was also significantly more frequent delay in introduction of complementary foods in cases as opposed to the control group.Significantly hogher proportion of cases were moderately to markedly underweight for age.Very significantly higher prevalence of hemoglobin under 11g% was also observed among the cases..Cases had also very significantly greater prevalence of incomplete immunization for the age.

Significantly higher proportion of cases had delayed start of breast

Table 2.Child specific epidemiological dete	erminents in ALRI cases and controls
---	--------------------------------------

Child Specific Factors

		a . 1	(100)	_
	ALRI cases (n.100)	Controls	· /	
Birth weight <2500 g	31	11	****	
>2500g	69	89		
Gender Male	64	56		
Female	36	44		
Age in months <12	81	74		
>12	19	26		
Initiation of breast feeding in <72 hours	78	91	**	
>72 hours	22	09		
Duration of exclusive breast feeding <4 mont	hs 36	16	***	
>4months	64	84		
Start age of complementary foods <6mon	th 52	69	**	
>6month	48	31		
Current weight as % wt.for age >75%	77	89	*	
<75%	23	11		
Haemoglobine g/dl <11	57	34	***	
>11	43	66		
Immunization status for age Complete	81	96	***	
Incomplete	19	04		

• Indicate statistically significant difference P: *=<0.05;**=<0.01;***=<0.001;****=<0.0001

DISCUSSION

The endeavourer was to generate clinical evidence base at the regional level on determinants of ALRI risk among under 5 year age children. For this, hundred hospitalized ALRI cases of children and even number of age and sex matched healthy control group of children selected from immunization and well baby clinic, were compared. data on demographic, environmental and biological factors were elicited through interviewing mothers and direct examination.

Higher age and education of mothers is expected to result in better care and hence, health in young children under 5 years.Proportion of mothers younger than 25 years and under educated were roughly 10% higher among the cases compared to controls, although the difference is not statistically significant. Outdoor job of mother is expected to compromise quality of baby care. Proportion of working mothers was twice as high significantly, in case group as in the controls and is consistent to finding this as risk factor for ALRI in other studies[6,7].Significantly, higher proportion of cases had smoker/s in the family and passive inhalation of smoke is ALRI risk factor in studied age group[8-13].

Among the cases, there was significantly high prevelance of respiratory infection in family members in preeciding fortnight, that could possibly serve as source of infection, and hence a recognized risk factor[14].Significant majority among the cases had their rooms shared by more than 2 family members in contrast to controls, and overcrowding is known risk factor for ALRI[6,7,15-19].

Preceeding pregnancies take toll of mothers health and would negatively impact care and health of babies. ALRI cases had significantly high proportion with late birth order, an accredited risk factor [7,20].Shorter birth interval was more often observed among the cases but difference with control was not statistically significant. Shorter birth interval carries similar risk for ALRI as late birth order[6-8,20].Rate of premature births under 37 weeks of gestation was higher among the cases and is known to increase vulnerability to infection on many accords[9,11,15].Significantly high cesarian delivery rate seen in cases should cause instances of impaired establishment of healthy gut and other microbiome, serving immune function protective against infection[8,21,22].

Very significantly high prevalence of low birth weight among the cases contributed to ALRI risk, as per inferences drawn by many studies[6,9,13,15].Low birth weight in term infants is surrogate marker of intrauterine growth restriction. It imparts high ALRI risk due to structural deformations compromising lung health and

impaired immune competence [23-26]. The selection of controls was deliberate for matched age and sex composition. This precluded significant differences in regard to the same. Among the cases however, male babies outnumbered females by 64 to 36. Several other reports also state male dominance in ALRI[6,10,27,28]. 81 of the studied 100 cases were under One year age, making evident such as as most vulnerable to ALRI causing viruses[29].

Very significantly higher proportion of cases had history of delayed initiation of breast feeding, suggesting deprivation of colostrums feed. Colostrum serves to transfer sound passive immunity safeguarding babies against infections [30,31]. Delayed initiation of breast feeding therefore, showed up as significant risk factor. The proportion of cases not receiving minimum 4 months of exclusive breast feeding was significantly twice as high in contrast to the controls. Several studies indicate such deficiet to increase vulnerability to ALRI[6,9,14,16,18,20,32-35].Mother to infant transfer of innate immune effectors,viz, lactoferin, lysozyme, secretory IgA, leukocytes etc is through breast feeding and breast promotes milk maturation of babys immune system[36].Introduction of complementary foods was delayed in significantly higher proportion of cases in contrast to controls. Complementary foods make for the deficiet of trace elements ,vitamins etc in human milk[37-41],and thus support protective immune function.

Significantly high proportion among the cases were low in weight for age, indicating higher prevalence of malnutrition ,an established risk factor for ALRI[6,9,16,18,20,32-34,42-44].Hemoglobin level is rough indicator of nutritional status and relates to iron and folate status.The later bear significant role also in immune competence and their deficiency increases risk of ALRI[18,27,42,45-47].Significantly high proportion of cases exhibited low hemoglobin profiles compared to controls ,implicating possibly the iron-folate deficit as risk factor for ALRI. Significantly high,fifth of the cases in contrast to bare twentieth of controls were found to be incompletely immunized for age. Serious risk implication of incomplete immunization status is proven for ALRI by several studies [7,10,11,14,19,28,30,48-50].

The evidence gathered by present study is by and large consistent with understanding on risk factors for ALRI in under 5 year children. There is overt variance however, in respect of quantitative contribution of risk factors in this study and other reports. The working hierarchy of ALRI risk factors of regional relevance is attempted in table 3,taking in to consideration the level of statistical significance of differences of prevalence of risk factors between cases and controls and their degrees displayed as odds ratios.

Risk Factor	Stat.Significance of Difference	Odds Ratio	
1.Low birth weight <2500 g	****	3.63	
2.Incomplete immunization status	***	5.63	
3.Less than 4 month exclusive br.feeding	***	2.95	
4.Low hemoglobin status<11g%	***	2.57	
5.Delayed initiation of breast feeding>3 days	**	2.85	
6.0ver crowding >2 persons sharing room	**	2.07	
7.Delaed introduction of complementary food >	6 months **	2.05	
8.Respiratory infection in family member in 2 w	eeks **	2.04	
9.Cesarian birth	*	8.74	
10.Preterm birth<37 weeks	*	2.72	
11.Working mother(outdoor)	*	2.53	
12.Low weight for age status <75% of std.	*	2.42	
13.Late order of pregnancy>2	*	2.23	
14.Smoker/s in family	*	1.92	
15.Younger mother <25 year age	NS	1.69	
16.Under educated mother <high school<="" td=""><td>NS</td><td>1.64</td><td></td></high>	NS	1.64	
17.Birth interval <24 months	NS	1.56	

Table 3.Working Hierarchy of risk factors for ALRI based on this study

.Babies under 12 months age constituted 81 cases among the studied 100.Majority of 64 in 100 ALRI cases were males.

Going by the working hierarchy drawn in table 3,good antenatal and immunization care;good breast feeding and nutrition care of babies; restriction of overcrowding in babys room avoidance of infection source in family are conceivable as measures of prime

significance to bring down risk of ALRI in the under 5 age group in the region.Infants born preterm and by cesarian birth need extra care and first year of life is most vulnerable period for ALRI.

Intriguingly,low weight for age was much lower in hierarchy of risk factors contrary to many reports,but less divergent profiles in reference controls may be responsible.Outdoor working of mothers and smoker family members posed but less risk.Probably families handle these more aptly.Some other risk factors reported in other studies did not have significant consequences in studied sample.

CONCLUSION

As manifest from study observations ,effective health education and access to antenatal and immunization care ,proper infant nutrition practices and special care of immature babies specially during first year of age emerge as worthwhile interventions to reduce risk of ALRI in north Indian infants and children under 5 year age.

REFERENCES

- 1. 1.Bulla A, Hitze KL.Acute respiratory infections:a review Bull World Health Organ. 1978;56(3):481-98.
- 2. 2.Pio A,Leowski J,ten DAM HG.The magnitude of the problem of acute respiratory infection.Douglas RM,Kerby-Eaton E Eds.Acute Respiratoy Infection in Childhood.Proc.of International Workshop.Adelaide.Adelaide Univ.Press 1985,3-16
- Denny FW, Clyde WA Jr.Acute lower respiratory tract infection in nonhospitalized children. J Pediatr. 1986; 108(5 Pt 1):635-46.
- 4. Gueri M, Gurney JM, Jutsum P.The Gomez classification:Time for a change? Bull World Health Organ. 1980;58(5):773-7.
- 5. WHO. A growth chart for international use in maternal and child health centres.Geneva.WHO 1978.
- Victora CG, Fuchs SC, Flores JA, Fonseca W, Kirkwood BRisk factors for pneumonia among children in a Brazilian metropolitan area. Pediatrics. 1994;93(6 Pt 1):977-85
- Fonseca W, Kirkwood BR, Misago C. Factors related to child care increase the risk of pneumonia among children living in poor community in northeast Brazil J Trop Pediatr. 1997 ;43(2):123-4.
- Dharmage SC, Rajapaksa LC, Fernando DN.Risk factors of acute lower respiratory infections in children under 5 year age Southeast Asian J Trop Med Public Health. 1996 b;27(1):107-10.
- 9. Goetghebuer T-Kwiatkowski D, Thomson A, Hull J. Familial susceptibility to severe respiratory infection in early life Pediatr Pulmonol. 2004 ;38(4):321-8.
- Shah N, Ramankutty V, Premila PG, Sathy N. Risk factors for severe pneumonia in children in south Kerala: a hospital-based case-control study. J Trop Pediatr. 1994 ;40(4):201-6.
- 11. Hassan MK, Al-Sadoon I. Risk factors for severe pneumonia in children in Basrah. Trop Doct. 2001 ;31(3):139-41.
- 12. Nafstad P, Jaakkola JJ, Hagen JA, Botten G, Kongerud J Breast feeding,maternal smoking and lower respiratory tract infections Eur Respir J. 1996 ;9(12):2623-9.
- Armstrong JR, Campbell H.Indoor air pollution exposure and lower respiratory infections in young Gambian children. Int J Epidemiol. 1991;20(2):424-9.
- 14. Broor S, Pandey RM, Ghosh M, Maitreyi RS, Lodha R, Singhal T, Kabra SK. Risk factors for severe acute lower respiratory tract infection in under five children. Indian Pediatr. 2001;38(12):1361-9.
- 15. Cerqueiro MC, Murtagh P, Halac A, Avila M, Weissenbacher M. Epidemiological risk factors for children with acute lower respiratory tract infection in Buenos Aires, Argentima :a matched case control study Rev Infect Dis. 1990 ;12 Suppl 8:S1021-8.
- Grant CC, Emery D, Milne T, Coster G, Forrest CB, Wall CR, et al. Risk factors for community-acquired pneumonia in pre-schoolaged children. J Paediatr Child Health. 2012 ;48(5):402-12

- 17. Mahalanabis D, Gupta S, Paul D, Gupta A, Lahiri M, Khaled MA. Risk factors for pneumonia in infants and young children and the role of solid fuel for cooking: a case-control study. Epidemiol Infect. 2002 ;129(1):65-71.
- Savitha MR, Nandeeshwara SB, Pradeep Kumar MJ, ul-Haque F, Raju CK.Modifiable risk factors for acute lower respiratory tract infections Indian J Pediatr. 2007 ;74(5):477-82.
- Leis K,McNally JD,Mongomery MR,Sankaran K,Karunanayke C,Rosenberg AM.Vitamin D intake in young children with acute lower respiratory tract infection(Chinese). Chin j contemporary pediatrics 2012 14;1-6
- César JA, Victora CG, Barros FC, Santos IS, Flores JA.Impact of breast feeding on admission for pneumonia during postneonatal period in Brazil:nested case control studyBMJ. 1999 ;318(7194):1316-20.
- Rutayisire E, Huang K, Liu Y, Tao F.^{The mode of delivery affects the diversity} and colonization pattern of gut microbiota during the first year of infants life: a systematic reviewBMC Gastroenterol. 2016 ;16(1):86. doi: 10.1186/s12876-016-0498-0.
- 22. 22Houghteling PD, Walker WA.From birth to immunohealth:allergies and enterocolitis J Clin Gastroenterol. 2015 ;49 Suppl 1:S7-S12
- 23. Victora CG, Kirkwood BR, Ashworth A, Black RE, Rogers S, Sazawal S, Campbell H, Gove S. Potential interventions for the prevention of childhood pneumonia in developing countries: improving nutrition. Am J Clin Nutr. 1999;70(3):309-20.
- Chandra RK. Serum thymic hormone activity and cell mediated immunity in healthy neonates, preterm infants and small for gestational age infants. Pediatrics. 1981;67(3):407-11.
- 25. Ferro-Luzzi A, Ashworth A, Martorell R, Scrimshaw N.Report of IDECG working group on effects of IUGR on infants,children and adolescents:immunocompetence,mortality,moerbidity,body size,body composition and physical performance. Eur J Clin Nutr. 1998 ;52 Suppl 1:S97-9.
- 26. 26Saha K, Kaur P, Srivastava G, Chaudhury DS. A six month followup study of growth,morbidity and functional immunity in low birth weight neonate with special reference to intrauterine growth retardation in small for gestational age infants. J Trop Pediatr. 1983;29(5):278-82.
- Sigaúque B, Roca A, Bassat Q, Morais L, Quintó L, Berenguera Aet al.Severe pneumonia in Mozambican young children:clinical and radiological charecteristics and risk factors. J Trop Pediatr. 2009 ;55(6):379-87.
- 28. Fatmi Z, White F. A comparison of 'cough and cold' and pneumonia: risk factors for pneumonia in children under 5 years revisited. Int J Infect Dis. 2002;6(4):294-301
- 29. 29.Roth DE, Caulfield LE, Ezzati M, Black RE.Acute lower respiratory infections in childhood:Opportunities for reducing the global burden through nutritional interventions. Bull World Health Organ. 2008;86(5):356-64.
- 30. Gephart SM, Weller M.Colostrum as oral immune therapy to promote neonatal health. Adv Neonatal Care. 2014;14(1):44-51
- 31. 31.Ahmad I,Shaheen N,Khan S.Risk factors for pneumonia among hospitalized children between 2 months to 5 years.Pak J Med Sci 2011;19:89-94
- 32. Wayse V, Yousafzai A, Mogale K, Filteau S. Association of subclinical vitamin D deficiency with severe acute lower respiratory infection in Indian children under 5 y. Eur J Clin Nutr. 2004;58(4):563-7.
- 33. Castro-Rodriguez JA, Mallol J, Rodriguez J, Auger F, Andrade R. Risk factors for X-ray pneumonia in the first year of life and its relation to wheezing: a longitudinal study in a socioeconomic disadvantaged population. Allergol Immunopathol (Madr). 2008 ;36(1):3-8.

- 34. Banerji A, Greenberg D, White LF, Macdonald WA, Saxton A, Thomas Eet al. Risk factors and viruses associated with hospitalization due to lower respiratory tract infections in Canadian Inuit children : a case-control study. Pediatr Infect Dis J. 2009 ;28(8):697-701
- 35. Pisacane A, Graziano L, Zona G, Granata G, Dolezalova H, Cafiero M, et al.Breast feeding and acute lower respiratory infection. Acta Paediatr. 1994;83(7):714-8.
- Newburg DS, Walker WA.Protection of the neonate by innate immune system of developing gut and human milk. Pediatr Res. 2007;61(1):2-8.
- Chantry CJ, Howard CR, Auinger P.Full breast feeding duration and risk for iron deficiency in US children. Breastfeed Med. 2007 ;2(2):63-73.
- Phu PV, Hoan NV, Salvignol B, Treche S, Wieringa FT, Khan NC, Tuong PD, Berger J.Complementary foods fortified with micronutrients prevent iron deficiency and anaemia in Vietnamese infants. J Nutr. 2010;;140(12):2241-7.
- Dube K, Schwartz J, Mueller MJ, Kalhoff H, Kersting M. Iron intake and iron status in breastfed infants during the first year of life. Clin Nutr. 2010;29(6):773-8.
- 40. Bhandari N, Bahl R, Nayyar B, Khokhar P, Rohde JE, Bhan MK.Food supplementation with encouragement to feed it to infants from 4 to 12 months of age has a small impact on weight gain J Nutr. 2001;131(7):1946-51.
- 41. Sripaipan T, Schroeder DG, Marsh DR, Pachón H, Dearden KA, Ha TT, Lang TT. Effect of an integrated nutrition program on child morbidity due to respiratory infection and diarrhea in northern Viet Nam. Food Nutr Bull. 2002 ;23(4 Suppl):70-7.
- 42. Coles CL, Fraser D, Givon-Lavi N, Greenberg D, Gorodischer R, Bar-Ziv J, Dagan R. Nutritional status and diarrheal illness as independent risk factors for alveolar pneumonia. Am J Epidemiol. 2005;162(10):999-1007.

- 43. Muhe L, Lulseged S, Mason KE, Simoes EA.Case control study of the role of nutritional rickets in the risk of developing pneumonia in Ethiopian children. Lancet. 1997 ;349(9068):1801-4.
- 44. Grant CC, Emery D, Milne T, Coster G, Forrest CB, Wall CR,et al. Risk factors for community-acquired pneumonia in pre-schoolaged children. J Paediatr Child Health. 2012;48(5):402-12
- 45. Tielsch JM, Khatry SK, Stoltzfus RJ, Katz J, LeClerq SC, Adhikari Ret al. Effect of routine prophylactic supplementation with iron and folic acid on preschool child mortality in southern Nepal: community-based, cluster-randomised, placebo-controlled trial. Lancet. 2006 ;367(9505):144-52.
- 46. Maggini S, Wintergerst ES, Beveridge S, Hornig DH.Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr. 2007 ;98 Suppl 1:S29-35.
- 47. 47.Malla T,Pathak OK,Malla KK. Is low hemoglobin level a risk factor for acute lower respiratory tract infections? J Nepal Pediatr Soc 2010;30:1-7
- Arya LS, Taana I, Tahiri C, Saidali A, Singh M.Spectrum of complications of measles in Afghanistan:a study of 784 cases. J Trop Med Hyg. 1987;90(3):117-22.
- Hutasoit C, Dj MK, Daulay RM, Lubis HM, Siregar Z.Bronchopneumonia with measles in infants and children at the Department of child health School of medicine, University of South Sumatera, Dr. Pirnagadi hospital Medan (jan. 1985-Dec 1989). Paediatr Indones. 1991;31(9-10):273-80.
- Grais RF, Dubray C, Gerstl S, Guthmann JP, Djibo A, Nargaye KDet al.Unacceptably high mortality related to measles epidemic in Niger,Nigeria and Chad. PLoS Med. 2007;4(1):e16.