• SUMAN MUKHERJEE Department of Periodontics and Oral Implantology, Arogya Bardini Polyclinic, Puruliya, West Bengal, India.
  • SHARMISTHA DASGUPTA Department of Periodontics and Oral Implantology, RHT Multispeciality Clinic, New Delhi, India.


The microscope has been one of the oldest yet most exquisite inventions in human history. The lenses changed the future of medical science and its abstraction forever. Previously, humans never know much about the source of disease, but today we know that the universe of microbes is vaster and more limitless than it ever was. However, the microscope is not just limited to laboratory in vitro research and study; it has remodeled dentistry more today than ever. This article describes the various types of microscopes used in periodontics, endodontics, and oral pathology in dentistry.

Keywords: Microscope, Dark field, Electron, Viruses, Loupes, Microsurgery, Confocal, Compound, Microbes


1. Clay RS, Court TH. The History of the Microscope: Compiled from Original Instruments and Documents, up to the Introduction of the Achromatic Microscope. London: Holland Press; 1975.
2. Mary B. History of the Microscope. Thought Co.; 2021. Available from: http://www.thoughtco.com/history-of-the-microscope-1992146.
3. The British Museum. The Nimrud Lens/the Layard Lens. Collection Database. The British Museum; 2012.
4. David B. The invention of the microscope. BIOS 2004;75:78-84.
5. Mark C. “Roman Glass”. Ancient History Encyclopedia. Available from: https://www.ancient.eu/article/592. [Last accessed on 2013 Aug 05].
6. Ilardi V. Eyeglasses and concave lenses in fifteenth-century Florence and Milan: New documents. Renaiss Q 1976;29:341-60.
7. Edward R. The invention of eyeglasses. J Hist Med 1956;2:183-218.
8. The Invention of Spectacles; 2004. The College of Optometrists. Available from: http://www.college-optometrists.org/en/college/museyeum/online_exhibitions/spectacles/invention.cfm.
9. Eyeglasses through the Ages; 2016. Available from: http://www.antiquespectacles.com/history/ages/through_the_ages.htm.
10. Ball CS. The early history of the compound microscope. Bios 1966;37:51-60.
11. Available from: https://www.smithsonianmag.com/science-nature/scientists-finally-unravel-mysteries-sperm-180963578.
12. Available from: http://www.lensonleeuwenhoek.net/content/leeuwenhoeks-microscopes.
13. Available from: http://www.cas.miamioh.edu/mbi-ws/microscopes/fathers.html.
14. Pearce JM. Malpighi and the discovery of capillaries. Eur Neurol 2007;58:253-5.
15. Romero RR. Marcello Malpighi (1628-1694), founder of microanatomy. Int J Morphol 2011;29:399-402.
16. DiDio LJ. Marcello Malpighi: The father of microscopic anatomy. Ital J Anat Embryol 1995;100 Suppl 1:3-9.
17. Britannica T. Editors of Encyclopaedia, Robert Hooke. Encyclopedia Britannica; 2021. Available from: https://www.britannica.com/biography/robert-hooke.
18. Woodruff LL. Hooke’s micrographia. Am Natural 1919;53:247-64.
19. West JB. Robert Hooke: Early respiratory physiologist, polymath, and mechanical genius. Physiology 2014;29:222-33.
20. Gest H. The discovery of microorganisms by Robert Hooke and Antoni Van Leeuwenhoek, fellows of the Royal Society. Notes Rec R Soc Lond 2004;58:187-201.
21. Available from: http://www.bbc.co.uk/history/historic_figures/van_leeuwenhoek_antonie.shtml.
22. Lane N. The unseen world: Reflections on Leeuwenhoek (1677) ‘concerning little animals”. Philos Trans R Soc Lond B Biol Sci 2015;370:20140344.
23. Available from: https://www.educationalgames.nobelprize.org/educational/physics/microscopes/timeline/index.html.
24. Available from: https://www.micro.magnet.fsu.edu/optics/timeline/people/lister.html.
25. Available from: https://www.sciencelearn.org.nz/resources/1692-history-of-microscopy-timeline.
26. Lines L. Fall-Leitz simple magnifiers. J Microscope Hist Soc 2006;14:1-93.
27. Grehn J. Leitz-Microscopes for 125 Years. Rockleigh, NJ: E. Leitz, Inc.; 1977. p. 07647.
28. Gray N. Knowing the limit. Nat Cell Biol 2009;11:S8.
29. Volkmann H. Ernst abbe and his work. Appl Opt 1966;5:1720-31.
30. Available from: https://www.micro.magnet.fsu.edu/optics/timeline/people/abbe.html.
31. Wimmer W. Carl zeiss, ernst abbe, and advances in the light microscope. Microsc Today 2017;25:50-7.
32. History of Oil Immersion Lenses. Available from: https://www.smecc.org/history_of_oil_immersion_lenses.htm.
33. Zeiss FC, Paetrow S, Wimmer W. Carl Zeiss 1816-1888. Böhlau, Weimar: A Biography; 2016.
34. Wimmer W. Carl Zeiss, Ernst abbe, and advances in the light microscope. Microscopy Today 2017;25:50-7.
35. Jena VB, Heidenheim CZ. Bibliographisches institut AG (Mannheim) v. VEB bibliographisches institut (Leipzig). Int Law Rep 1987;72:550-65.
36. Wollman AJ, Nudd R, Hedlund EG, Leake MC. From animaculum to single molecules: 300 years of the light microscope. Open Biol 2015;5:150019.
37. Shampo MA, Kyle RA. Ernst Ruska inventor of the electron microscope. Mayo Clin Proc 1997;72:148.
38. Big EJ. A short history of the electron microscope. Bios 1956;27:33-7.
39. “Scientists”.; 2017. Available from: http://www.siemens.com/global/en/home/company/about/history/people/scientists.html. [Last accessed on 2017 Oct 11].
40. NSF Awards Announced. Zernike awarded Nobel Prize. Phys Today 1953;6:28.
41. Binnig G, Rohrer H. Scanning tunneling microscopy. Surf Sci 1983;126:236-44.
42. Binnig G, Rohrer H. Scanning tunneling microscopy. Helv Phys Acta 1982;55:726-35.
43. St. Croix CM, Shand SH, Watkins SC. Confocal microscopy: Comparisons, applications, and problems. Biotechniques 2005;39:S2-5.
44. Minsky M. Memoir on inventing the confocal scanning microscope. Scanning 1988;10:128-38.
45. White JG, Amos WB, Fordham M. An evaluation of confocal versus convential imaging of biological structures by fluorescence light microscopy. J Cell Biol 1987;105:41-8.
46. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett 1986;56:930-3.
47. Rugar D, Hansma P. Atomic force microscopy. Phys Today 1990;43:23-30.
48. Jaschke M, Butt HJ, Manne S, Gaub HE, Hasemann O, Krimphove F, et al. The atomic force microscope as a tool to study and manipulate local surface properties. Biosens Bioelectron 1996;11:601-12.
49. Agocs E, Attota RK. Enhancing optical microscopy illumination to enable quantitative imaging. Sci Rep 2018;8:4782.
50. Ki-Chul K, Young-Tae L, Nam K, Kwan-Hee Y, Hong JM, Park GC. High-definition 3D stereoscopic microscope display system for biomedical applications. EURASIP J Image Video Proc 2010;2010:724309.
51. Wang Z, Zheng W, Hsu SC, Huang Z. Optical diagnosis and characterization of dental caries with polarization-resolved hyperspectral stimulated Raman scattering microscopy. Biomed Opt Express 2016;7:1284-93.
52. Rajan R, Krishnan R, Bhaskaran B, Kumar SV. A polarized light microscopic study to comparatively evaluate four remineralizing agents on enamel viz CPP-ACPF, ReminPro, SHY-NM and colgate strong teeth. Int J Clin Pediatr Dent 2015;8:42-7.
53. Shah SP, Birur PN. Polarized light microscopic evaluation of remineralization by casein phosphopeptide-amorphous calcium phosphate paste of artificial caries-like lesion: An in vitro study. J Indian Acad Oral Med Radiol 2015;27:559-64.
54. Kardam P, Jain K, Mehendiratta M, Mathias Y. Kaleidoscope of oral artifacts: A vivid picture through light and polarizing microscope. Indian J Pathol Microbiol 2016;59:31-4.
55. Heydarian H, Yazdanfar P, Zarif A, Rashidian B. Near field differential interference contrast microscopy. Sci Rep 2020;10:9644.
56. Obara B, Roberts MA, Armitage JP, Grau V. Bacterial cell identification in differential interference contrast microscopy images. BMC Bioinformat 2013;14:134.
57. Shribak M, Inoué S. Orientation-independent differential interference contrast microscopy. Appl Opt 2006;45:460-9.
58. Shribak M, LaFountain J, Biggs D, Inouè S. Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system. J Biomed Opt 2008;13:014011.
59. Fish KN. Total internal reflection fluorescence (TIRF) microscopy. Curr Protoc Cytom 2009;12:1218.
60. Guo M, Chandris P, Giannini JP, Trexler AJ, Fischer R, Chen J, et al. Single-shot super-resolution total internal reflection fluorescence microscopy. Nat Methods 2018;15;425-8.
61. Mattheyses AL, Simon SM, Rappoport JZ. Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 2010;123:3621-8.
62. Schneckenburger H. Total internal reflection fluorescence microscopy: Technical innovations and novel applications. Curr Opin Biotechnol 2005;16:13-8.
63. Boulanger J, Gueudry C, Münch D, Cinquin B, Paul-Gilloteaux P, Bardin S, et al. Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging. Proc Natl Acad Sci 2014;111:17164-9.
64. Larson A. Multiphoton microscopy. Nat Photon 2011;5:1.
65. Benninger RK, Piston DW. Two-photon excitation microscopy for the study of living cells and tissues. Curr Protoc Cell Biol 2013;4:59.
66. Diaspro A, Bianchini P, Vicidomini G, Faretta M, Ramoino P, Usai C. Multi-photon excitation microscopy. Biomed Eng Online 2006;5:36.
67. Ingaramo M, York AG, Wawrzusin P, Milberg O, Hong A, Weigert R, et al. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue. Proc Natl Acad Sci 2014;111:5254-9.
68. Zhanghao K, Chen X, Liu W, Wang Y, Luo S, Wang X, et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy. Nat Commun 2019;10:4694.
69. Markwirth A, Lachetta M, Mönkemöller V, Heintzmann R, Hübner W, Huser T, et al. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction. Nat Commun 2019;10:4315.
70. Curd A, Cleasby A, Makowska K, York A, Shroff H, Peckham M. Construction of an instant structured illumination microscope. Methods 2015;88:37-47.
71. Yadav A, Rao C, Nandi CK. Fluorescent probes for super-resolution microscopy of lysosomes. ACS Omega 2020:5:26967-77.
72. Ryl PS, Bohlke-Schneider M, Lenz S, Fischer L, Budzinski L, Stuiver M, et al. In situ structural restraints from cross-linking mass spectrometry in human mitochondria. J Prot Res 2020;19:327-36.
73. Fang H, Yao S, Chen Q, Liu C, Cai Y, Geng S, et al. De novo-designed near-infrared nanoaggregates for super-resolution monitoring of lysosomes in cells, in whole organoids, and in vivo. ACS Nano 2019:13:14426-36.
74. Mako TL, Racicot JM, Levine M. Supramolecular luminescent sensors. Chem Rev 2019;119:322-477.
75. Wijesooriya CS, Nyamekye CK, Smith EA. Optical imaging of the nanoscale structure and dynamics of biological membranes. Anal Chem 2019;91:425-40.
76. Hui F, Lanza M. Scanning probe microscopy for advanced nanoelectronics. Nat Electron 2019;2:221-9.
77. Colton RJ, Baselt DR, Dufrêne YF, Green JB, Lee GU. Scanning probe microscopy. Curr Opin Chem Biol 1997;1:370-7.
78. Ushiki T. SS2-1Scanning probe microscopy and its biomedical application from the historical viewpoint. Microscopy 2019;68:i27.
79. Krieg M, Fläschner G, Alsteens D, Gaub BM, Roos WH, Wuite GJ, et al. Atomic force microscopy-based mechanobiology. Nat Rev Phys 2019;1:41-57.
80. Jalili N, Laxminarayana K. A review of atomic force microscopy imaging systems: Application to molecular metrology and biological sciences. Mechatronics 2004;14:907-45.
81. Dufrêne YF. Atomic force microscopy, a powerful tool in microbiology. J Bacteriol 2002;184:5205-13.
82. Marti O, Elings V, Haugan M, Bracker CE, Schneir J, Drake B, et al. Scanning probe microscopy of biological samples and other surfaces. J Microsc 1988;152:803-9.
83. Hirano Y, Takahashi H, Kumeta M, Hizume K, Hirai Y, Otsuka S, et al. Nuclear architecture and chromatin dynamics revealed by atomic force microscopy in combination with biochemistry and cell biology. Pflugers Arch 2008;456:139-53.
84. Kuznetsov YG, Victoria JG, Robinson WE Jr, McPherson A. Atomic force microscopy investigation of human immunodeficiency virus (HIV) and HIV-infected lymphocytes. J Virol 2003;77:11896-909.
85. Arif M, Kumar GV, Narayana C, Kundu TK. Autoacetylation induced specific structural changes in histone acetyltransferase domain of p300: Probed by surface enhanced Raman spectroscopy. J Phys Chem B 2007;111:11877-9.
86. Morikawa K, Ohniwa RL, Kim J, Maruyama A, Ohta T, Takeyasu K. Bacterial nucleoid dynamics: Oxidative stress response in Staphylococcus aureus. Genes Cells 2006;11:409.
87. Stylianou A, Kontomaris SV, Grant C, Alexandratou E. Atomic force microscopy on biological materials related to pathological conditions. Scanning 2019;2019:8452851.
88. Golding C, Lamboo L, Beniac D, Booth TF. The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci Rep 2016;6:26516.
89. Thiberge S, Nechushtan A, Sprinzak D, Gileadi O, Behar V, Zik O, et al. Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc Natl Acad Sci 2004;101:3346-51.
90. Philips Corporation. Environmental Scanning Electron Microscope. El Dorado Hills, CA: Robert Johnson Assoc; 1996.
91. Goldstein JI, Newbury DE, Echlin P, Joy DC, Romig AD, Lyman CE, et al. Scanning Electron Microscopy and X-Ray Microanalysis. 2nd ed. New York: Plenum; 1992.
92. Boyde A, Reid SA. A new method of scanning electron microscopy for imaging biological tissues. Nature 1983;302:522-3.
93. Joy D, Ko YU, Hwu J. Proceeding SPIE 3998; 2000. p. 108-115. available from: http://www.web.utk.edusrcutk.
94. Levenberg S, Katz BZ, Yamada KM, Geiger B. Longrange and selective autoregulation of cell-cell or cell-matrix adhesions by cadherin or integrin ligands. J Cell Sci 1998;111:347-57.
95. Chowers MY, Keller N, Tal R, Barshack I, Lang R, Bar-Meir S, Chowers Y. Human gastrin: A Helicobacter pylori specific growth factor. Gastroenterology 1999;117:1113-8.
96. Liu L, Liang XH, Uliel S, Unger R, Ullu E, Michaeli S. RNA interference of signal peptide-binding protein SRP54 elicits deleterious effects and protein sorting defects in trypanosomes. J Biol Chem 2002;277:47348-67.
97. Ning G, Fugimoto T, Koike H, Ogawa K. Cathodoluminescence-emitting lipid droplets in rat testis: a study by analytical color fluorescence electron microscopy. Cell Tissue Res 1993;271:217-25.
98. Brown DA. Lipid droplets: proteins floating on a pool of fat. Curr Biol 2001;11:R446-9.
99. Bosworth N, Towers P. Scintillation proximity assay. Nature 1989;341;167-68.
100. National Research Council. Health Effects of Exposure to Low Levels of Ionizing Radiation, Biological Effects of Ionizing Radiation Report 5. Washington, DC: The National Academies Press; 1990.
101. Dos Santos QM, Dzika E, Avenant-Oldewage A. Using scanning electron microscopy (SEM) to study morphology and morphometry of the isolated haptoral sclerites of three distinct diplozoid species. PLoS One 2019;14:e0211794.
102. Smith KC, Oatley CW. The scanning electron microscope and its fields of application. Br J Appl Phys 1955;6:391.
103. Dai B, Jiao Z, Zheng L, Bachman H, Fu Y, Wan X, et al. Colour compound lenses for a portable fluorescence microscope. Light Sci Appl 2019;8:75.
104. Toda K, Tamamitsu M, Nagashima Y, Horisaki R, Ideguchi T. Molecular contrast on phase-contrast microscope. Sci Rep 2019;9:9957.
105. Park Y, Christian D, Gabriel P. Quantitative phase imaging in biomedicine. Nat Photon 2018;12;578-89.
106. Yin Z, Kanade T, Chen M. Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation. Med Image Anal 2012;16:1047-62.
107. Palima D, Glückstad J. Generalised phase contrast: Microscopy, manipulation and more. Contemp Phys 2010;51:249-65.
108. Ueno H, Nishikawa S, Iino R, Tabata KV, Sakakihara S, Yanagida T, et al. Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution. Biophys J 2010;98:2014-23.
109. Kim JH, Park JS. Partial dark-field microscopy for investigating domain structures of double-layer microsphere film. Sci Rep 2015;5:10157.
110. Zhang J Li Y, Zhang X, Yang B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv Mater 2010;22:4249-69.
111. Antolovi? V, Marinovi? M, Fili? V, Weber I. A simple optical configuration for cell tracking by dark-field microscopy. J Microbiol Methods 2014;104:9-11.
112. Mehta V, Saurav K, Balachandran C. Dark ground microscopy. Indian J Sex Transm Dis 2008;29:105-6.
113. Abdel-Fattah AI, El-Genk MS, Reimus PW. On visualization of sub-micron particles with dark-field light microscopy. J Colloid Interface Sci 2002;246:410-2.
114. Lee CW, Chen MJ, Cheng JY, Wei PK. Morphological studies of living cells using gold nanoparticles and dark-field optical section microscopy. J Biomed Opt 2009;14:034016.
115. Magidson V, Khodjakov A. Circumventing photodamage in live-cell microscopy. In: Sluder G, Wolf DE, editors. Digital microscopy. In: Book Series: Methods in Cell Biology. Vol. 114. Amsterdam, Netherlands: Elsevier Inc.; 2013. p. 545-60.
116. Nenasheva TA, Carter T, Mashanov GI. Automatic tracking of individual migrating cells using low-magnification dark-field microscopy. J Microsc 2012;246:83-8.
117. Sanderson MJ, Smith I, Parker I, Bootman MD. Fluorescence microscopy. Cold Spring Harb Protoc 2014;2014:pdb.top071795.
118. Combs CA. Fluorescence microscopy: A concise guide to current imaging methods. Curr Protoc Neurosci 2010;2:2.
119. Lichtman J, Conchello JA. Fluorescence microscopy. Nat Methods 2005;2:910-9.
120. Adams JK, Boominathan V, Avants BW, Vercosa DG, Ye F, Baraniuk RG, et al. Single-frame 3D fluorescence microscopy with ultraminiature lensless flat scope. Sci Adv 2017;3:e1701548.
121. Kanemaru T, Hirata K, Takasu S, Isobe S, Mizuki K, Mataka S, et al. A fluorescence scanning electron microscope. Mater Today 2010;12:18-23.
122. Hasan MM, Alam MW, Wahid KA, Miah S, Lukong KE. A low-cost digital microscope with real-time fluorescent imaging capability. PLoS One 2016;11:e0167863.
123. Ilie MA, Caruntu C, Lupu M, Lixandru D, Tampa M, Georgescu SR, et al. Current and future applications of confocal laser scanning microscopy imaging in skin oncology. Oncol Lett 2019;17:4102-11.
124. Nwaneshiudu A, Kuschal C, Sakamoto FH, Anderson RR, Schwarzenberger K, Young RC. Introduction to confocal microscopy. J Investig Dermatol 2012;132:1-5.
125. Elliott AD. Confocal microscopy: Principles and modern practices. Curr Protoc Cytometry 2019;92:68.
126. Jonkman J, Brown CM, Wright GD, Anderson KI, North AJ. Tutorial: Guidance for quantitative confocal microscopy. Nat Protoc 2020;15:1585-611.
127. Paddock SW. Principles and practices of laser scanning confocal microscopy. Mol Biotechnol 2000;16:127-49.
128. Goldsmith CS, Miller SE. Modern uses of electron microscopy for detection of viruses. Clin Microbiol Rev 2009;22:552-63.
129. Doane FW, Anderson N. Electron Microscopy in Diagnostic Virology: A Practical Guide and Atlas. New York: Cambridge University Press; 1987.
130. Williams DB, Carter CB. The transmission electron microscope. In: Transmission Electron Microscopy. Boston, MA: Springer; 1996.
131. Tang CY, Yang Z. Transmission electron microscopy (TEM). In: Membrane Characterization. Amsterdam, Netherlands: Elsevier; 2017. p. 145-59.
132. Winey M, Meehl JB, O’Toole ET, Giddings TH Jr. Conventional transmission electron microscopy. Mol Biol Cell 2014;25:319-23.
133. Casciardi S, Sisto R, Diociaiuti M. The analytical transmission electron microscopy: A powerful tool for the investigation of low-dimensional carbon nanomaterials. J Nanomater 2013;2013:506815.
134. Beniac DR, Siemens CG, Wright CJ, Booth TF. A filtration based technique for simultaneous SEM and TEM sample preparation for the rapid detection of pathogens. Viruses 2014;6:3458-71.
135. Thiberge S, Nechushtan A, Sprinzak D, Gileadi O, Behar V, Zik O, et al. Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc Natl Acad Sci USA 2004;101:3346-51.
136. Walther P, Muller M. Biological ultrastructure as revealed by high resolution cryo-SEM of block faces after cryo-sectioning. J Microsc 1999;196:279-87.
137. Thomas JM. Reflections on the value of electron microscopy in the study of heterogeneous catalysts. Proc R Soc A 2017;473:20160714.
138. Liu J, Cowley JM. Scanning reflection electron microscopy and associated techniques for surface studies. Ultramicroscopy 1993;48:381-416.
139. Yagi K. Reflection electron microscopy. J Appl Crystallogr 1987;20:147-60.
98 Views | 30 Downloads
How to Cite
MUKHERJEE, S., & DASGUPTA, S. (2021). MICROSCOPE IN DENTISTRY: A REVIEW ARTICLE. Innovare Journal of Medical Sciences, 9(2), 15-21. https://doi.org/10.22159/ijms.2021.v9i2.41044
Review Article(s)