Exploring the pharmacological mechanism of Naringenin and its derivatives against Rheumatoid arthritis using network pharmacology and molecular docking techniques

Authors

  • SAMEER SHARMA Indian Academy Degree College - Autonomous

Keywords:

rheumatoid arthritis, Naringenin, autoimmune, molecular docking, network pharmacology

Abstract

Objective: Flavonoids like Naringenin, which have potent anti-inflammatory effects, are crucial in the treatment of rheumatoid arthritis. By using network pharmacology and molecular docking, this study investigates the potential pharmacological mechanism of naringenin and its derivatives in the treatment of rheumatoid arthritis. Methods: The current study's purpose was to employ computational methodologies to evaluate the efficiency of several naringenin phytochemicals against rheumatoid arthritis. The IMPPAT and Drugbank database is used to retrieve potential ligands. While known target proteins associated with RA were retrieved via the GeneCards database and predicted target proteins related to NR were screened through the STITCH database. STRING database was used to construct a protein-protein interaction network. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment involved in targets was performed by the ShinyGo 0.76.3 database. The BIOVIA Discovery Studio Visualizer and the virtual screening tool PyRx were used to systematically perform molecular docking. To assess their compatibility with the RA, the top 6 phytocompounds from naringenin were selected. The pharmacological evaluation of the ligands was carried out using ADMET filters.

 

Results: The phytocompounds 4'-Hydroxyflavanone and Sakuranetin from the Naringenin derivatives were discovered to be the most potent antagonistic for the protein TP53 and IL10 protein.

Conclusion: ligands 4'-Hydroxyflavanone and Sakuranetin are deserving candidates for the suppression of inflammation of rheumatoid arthritis due to their strong affinity for the protein.

References

Kabra, A., Garg, R., Brimson, J., Živković, J., Almawash, S., Ayaz, M., Nawaz, A., Hassan, S. S. U., & Bungau, S. (2022). Mechanistic insights into the role of plant polyphenols and their nano-formulations in the management of depression. Frontiers in pharmacology, 13, 1046599. https://doi.org/10.3389/fphar.2022.1046599

Duda-Madej, A., Stecko, J., Sobieraj, J., Szymańska, N., & Kozłowska, J. (2022). Naringenin and Its Derivatives-Health-Promoting Phytobiotic against Resistant Bacteria and Fungi in Humans. Antibiotics (Basel, Switzerland), 11(11), 1628. https://doi.org/10.3390/antibiotics11111628

Salehi, B., Fokou, P. V. T., Sharifi-Rad, M., Zucca, P., Pezzani, R., Martins, N., & Sharifi-Rad, J. (2019). The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals (Basel, Switzerland), 12(1), 11. https://doi.org/10.3390/ph12010011

Ionescu, C. E., Popescu, C. C., Agache, M., Dinache, G., & Codreanu, C. (2022). Depression in Rheumatoid Arthritis: A Narrative Review-Diagnostic Challenges, Pathogenic Mechanisms and Effects. Medicina (Kaunas, Lithuania), 58(11), 1637. https://doi.org/10.3390/medicina58111637

Smesam, H. N., Qazmooz, H. A., Khayoon, S. Q., Almulla, A. F., Al-Hakeim, H. K., & Maes, M. (2022). Pathway Phenotypes Underpinning Depression, Anxiety, and Chronic Fatigue Symptoms Due to Acute Rheumatoid Arthritis: A Precision Nomothetic Psychiatry Analysis. Journal of personalized medicine, 12(3), 476. https://doi.org/10.3390/jpm12030476

Scherer, H. U., Häupl, T., & Burmester, G. R. (2020). The etiology of rheumatoid arthritis. Journal of autoimmunity, 110, 102400. https://doi.org/10.1016/j.jaut.2019.102400

Slagter, L., Demyttenaere, K., Verschueren, P., & De Cock, D. (2022). The Effect of Meditation, Mindfulness, and Yoga in Patients with Rheumatoid Arthritis. Journal of Personalized Medicine, 12(11), 1905. https://doi.org/10.3390/jpm12111905

Metsios, G. S., & Kitas, G. D. (2018). Physical activity, exercise and rheumatoid arthritis: Effectiveness, mechanisms and implementation. Best practice & research. Clinical rheumatology, 32(5), 669–682. https://doi.org/10.1016/j.berh.2019.03.013

Aletaha, D., & Smolen, J. S. (2018). Diagnosis and Management of Rheumatoid Arthritis: A Review. JAMA, 320(13), 1360–1372. https://doi.org/10.1001/jama.2018.13103

Prasad, P., Verma, S., Surbhi, Ganguly, N. K., Chaturvedi, V., & Mittal, S. A. (2022). Rheumatoid arthritis: advances in treatment strategies. Molecular and cellular biochemistry, 10.1007/s11010-022-04492-3. Advance online publication. https://doi.org/10.1007/s11010-022-04492-3

Ma, C., Wang, J., Hong, F., & Yang, S. (2022). Mitochondrial Dysfunction in Rheumatoid Arthritis. Biomolecules, 12(9), 1216. https://doi.org/10.3390/biom12091216

Radu, A. F., & Bungau, S. G. (2021). Management of Rheumatoid Arthritis: An Overview. Cells, 10(11), 2857. https://doi.org/10.3390/cells10112857

Tanase, D. M., Gosav, E. M., Petrov, D., Teodorescu, D. S., Buliga-Finis, O. N., Ouatu, A., Tudorancea, I., Rezus, E., & Rezus, C. (2022). MicroRNAs (miRNAs) in Cardiovascular Complications of Rheumatoid Arthritis (RA): What Is New?. International journal of molecular sciences, 23(9), 5254. https://doi.org/10.3390/ijms23095254

Yang, G., Kang, H. C., Cho, Y. Y., Lee, H. S., & Lee, J. Y. (2022). Inflammasomes and their roles in arthritic disease pathogenesis. Frontiers in molecular biosciences, 9, 1027917. https://doi.org/10.3389/fmolb.2022.1027917

Inciarte-Mundo, J., Frade-Sosa, B., & Sanmartí, R. (2022). From bench to bedside: Calprotectin (S100A8/S100A9) as a biomarker in rheumatoid arthritis. Frontiers in immunology, 13, 1001025. https://doi.org/10.3389/fimmu.2022.1001025

Scherer, H. U., Häupl, T., & Burmester, G. R. (2020). The etiology of rheumatoid arthritis. Journal of autoimmunity, 110, 102400. https://doi.org/10.1016/j.jaut.2019.102400

Mueller, A. L., Payandeh, Z., Mohammadkhani, N., Mubarak, S. M. H., Zakeri, A., Alagheband Bahrami, A., Brockmueller, A., & Shakibaei, M. (2021). Recent Advances in Understanding the Pathogenesis of Rheumatoid Arthritis: New Treatment Strategies. Cells, 10(11), 3017. https://doi.org/10.3390/cells10113017

Zhu, Y., Zhao, T., Liu, M., Wang, S., Liu, S., Yang, Y., ... & Ai, K. (2022). Rheumatoid arthritis microenvironment insights into treatment effect of nanomaterials. Nano Today, 42, 101358. https://doi.org/10.1016/j.nantod.2021.101358

Huang, J., Fu, X., Chen, X., Li, Z., Huang, Y., & Liang, C. (2021). Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Frontiers in immunology, 12, 686155. https://doi.org/10.3389/fimmu.2021.686155

Kang, R., Kroemer, G., & Tang, D. (2019). The tumor suppressor protein p53 and the ferroptosis network. Free radical biology & medicine, 133, 162–168. https://doi.org/10.1016/j.freeradbiomed.2018.05.074

Saraiva, M., Vieira, P., & O'Garra, A. (2020). Biology and therapeutic potential of interleukin-10. The Journal of experimental medicine, 217(1), e20190418. https://doi.org/10.1084/jem.20190418

Tang, R. (2022). Improved Dynamic PPI Network Construction and Application of Data Mining in Computer Artificial Intelligence Systems. Scientific Programming, 2022.https://doi.org/10.1155/2022/2729401

Muhammed, M. T., & Aki-Yalcin, E. (2019). Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chemical biology & drug design, 93(1), 12–20. https://doi.org/10.1111/cbdd.13388

Pinzi, L., & Rastelli, G. (2019). Molecular Docking: Shifting Paradigms in Drug Discovery. International journal of molecular sciences, 20(18), 4331. https://doi.org/10.3390/ijms20184331

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427

Inciarte-Mundo, J., Frade-Sosa, B., & Sanmartí, R. (2022). From bench to bedside: Calprotectin (S100A8/S100A9) as a biomarker in rheumatoid arthritis. Frontiers in immunology, 13, 1001025. https://doi.org/10.3389/fimmu.2022.1001025

Lim, Y. Y., Zaidi, A. M. A., & Miskon, A. (2022). Composing On-Program Triggers and On-Demand Stimuli into Biosensor Drug Carriers in Drug Delivery Systems for Programmable Arthritis Therapy. Pharmaceuticals (Basel, Switzerland), 15(11), 1330. https://doi.org/10.3390/ph15111330

Zeng, W., Jin, L., Zhang, F., Zhang, C., & Liang, W. (2018). Naringenin as a potential immunomodulator in therapeutics. Pharmacological research, 135, 122–126. https://doi.org/10.1016/j.phrs.2018.08.002

Arafah, A., Rehman, M. U., Mir, T. M., Wali, A. F., Ali, R., Qamar, W., Khan, R., Ahmad, A., Aga, S. S., Alqahtani, S., & Almatroudi, N. M. (2020). Multi-Therapeutic Potential of Naringenin (4',5,7-Trihydroxyflavonone): Experimental Evidence and Mechanisms. Plants (Basel, Switzerland), 9(12), 1784. https://doi.org/10.3390/plants9121784

Taghadosi, M., Adib, M., Jamshidi, A., Mahmoudi, M., & Farhadi, E. (2021). The p53 status in rheumatoid arthritis with focus on fibroblast-like synoviocytes. Immunologic research, 69(3), 225–238. https://doi.org/10.1007/s12026-021-09202-7

Hernández-Bello, J., Oregón-Romero, E., Vázquez-Villamar, M., García-Arellano, S., Valle, Y., Padilla-Gutiérrez, J. R., Román-Fernández, I. V., Palafox-Sánchez, C. A., Martínez-Bonilla, G. E., & Muñoz-Valle, J. F. (2017). Aberrant expression of interleukin-10 in rheumatoid arthritis: Relationship with IL10 haplotypes and autoantibodies. Cytokine, 95, 88–96. https://doi.org/10.1016/j.cyto.2017.02.022

Cruz, M. P., Andrade, C. M., Silva, K. O., de Souza, E. P., Yatsuda, R., Marques, L. M., David, J. P., David, J. M., Napimoga, M. H., & Clemente-Napimoga, J. T. (2016). Antinoceptive and Anti-inflammatory Activities of the Ethanolic Extract, Fractions and Flavones Isolated from Mimosa tenuiflora (Willd.) Poir (Leguminosae). PloS one, 11(3), e0150839. https://doi.org/10.1371/journal.pone.0150839

Published

16-01-2023

How to Cite

SHARMA, S. (2023). Exploring the pharmacological mechanism of Naringenin and its derivatives against Rheumatoid arthritis using network pharmacology and molecular docking techniques. Innovare Journal of Medical Sciences, 11(2). Retrieved from https://innovareacademics.in/journals/index.php/ijms/article/view/47144

Issue

Section

Original Article(s)