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ABSTRACT 

Objective: Hyponatremia (HN) is associated with mortality and morbidity risks due to the development of hyponatremic encephalopathy. Its rapid 

correction also carries a high risk of development of the serious cerebral disorder. This study investigated the possible therapeutic and 

neuroprotective effects of the green tea (GT) extract against HN and its complications in rats and compared those effects with the outcome of the 

rapid correction of chronic HN using hypertonic saline (HtNaCl).  

Methods: Chronic HN was induced using terlipressin (TP; 0.2 mg/kg, s. c) and 2.5% d-glucose solution (equivalent to 5% initial bw/day, i. p) for 3 d. 

A stabilizing dose of TP (0.1 mg/kg) was used for the following 3 d, along with administration of either saline, GT (600 mg/kg/day, p. o), or HtNaCl 

(15 ml/kg/day, i. p). Serum sodium level, locomotor activity, pain reflex, and brain contents of iNOS and NO were assessed, together with a 

histopathological examination of brain tissues.  

Results: TP-induced profound chronic HN that was corrected with administration of GT and HtNaCl. In a GT-treated group, correction of HN was 

coupled with improvement of TP-induced alteration of locomotor activity and brain histopathological picture. Elevation of brain iNOS and NO 

contents, along with detection of focal cellular necrosis and gliovascular proliferation changes in the HtNaCl-treated group indicated neuro 

pathological complications are accompanying the correction of HN with HtNaCl; a result that was not found in the GT-treated group.  

Conclusion: Our findings revealed that GT corrected HN induced by TP in rats, and protected against the neuropathological features that 

characterized hyponatremic encephalopathy and accompanied with its rapid correction.  
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INTRODUCTION 

Hyponatremia (HN) is defined as a decrease in serum sodium 

concentration to a level below 136 mmol/l [1]. It is the most 

common electrolyte disorder occurring in 15–30% of hospitalized 

patients [2]. Etiologies of HN include renal and extra-renal loss of 

sodium with water retention as in cases of mineralocorticoid 

deficiency, autoimmune diseases, adrenal hemorrhage, muscle 

trauma, burns, sweat losses, and gastrointestinal losses due to 

vomiting and diarrhea [3]. Moreover, various pharmacological 

agents are known to be associated with induction of HN, including, 

narcotics, sedatives, analgesics, hypoglycaemic agents, anti-

neoplastic drugs, and antidepressants [4, 5]. HN can also arise in a 

variety of diseases such as congestive heart failure, liver cirrhosis, 

and renal failure whether acute or chronic [6]. The most common 

cases of HN include exercise-associated HN, particularly in athletes 

who participate in endurance events [7], ecstasy-associated HN [8], 

and postoperative HN [9]. 

HN is physiologically significant when it indicates a state of 

extracellular hypo-osmolality and a tendency for free water to shift 

from the vascular space to the intracellular space. However, 

although cellular edema is well tolerated by most tissues, it is not 

tolerated in the brain as its maximum swelling is limited to 8% 

secondary to the presence of the rigid calvarium [3]. In severe HN, 

this cytotoxic cerebral edema results in the development of 

hyponatremic encephalopathy, which is a medical emergency that 

can be lethal [10]. The rate of development of HN plays a critical role 

in its pathophysiology and subsequent treatment [11]. In acute HN 

that is developed rapidly over a period of hours (<48 h), a more 

severe degree of cerebral edema for a given serum sodium level 

results. Thus, it occurs with alarming hyponatremic encephalopathy 

findings, and the primary cause of morbidity and death is brainstem 

herniation and mechanical compression of vital midbrain structures 

[12]. In chronic HN, when serum sodium concentration falls slowly 

over a period of several days or weeks (≥ 48 h), a slower process of 

adaptation then occurs in which the brain cells extrude sodium and 

potassium as well as organic solutes including phosphocreatine, 

myoinositol, and amino acids, such as glutamine and taurine, from 

their cytoplasm to the extracellular space [13]. Compensatory 

extrusion of solutes allows intracellular osmolality to be equal to 

plasma osmolality and, in turn, reduces the flow of free water into 

the intracellular space [14]. Therefore, brain swelling is minimized 

with more modest symptoms and cases, almost, never die from 

brain herniation [14]. However, the principal causes of morbidity 

and death in chronic HN are status epilepticus, when chronic HN 

reaches levels of 110 mmol/l or less, and osmotic demyelination 

syndrome (ODS), which occurs in association with rapid correction 

of chronic HN [11]. ODS is characterized by focal destruction of 

myelin sheaths that cover axons in the brainstem, in the pontine and 

extrapontine areas, associated with serious neurologic sequelae 

[15]. Several lines of evidence have linked the pathogenesis of 

myelinolysis to the slow reuptake of organic osmolytes by the brain. 

[16, 17]. 

Treatment of HN consists of free water restriction and correction of 

the underlying condition. The daily fluid intake must be restricted to 

less than the urine output volume and the insensible losses of water 

during 24 h in order to cause a negative water balance and increase 

serum sodium concentration [3]. Some cases of chronic HN do not 

tolerate or comply with this degree of daily fluid restriction. In these 

cases, the use of diuretics that increase electrolyte-free water 

excretion may be added to the treatment protocol [18-20]. 

Green tea (GT) is a popular worldwide beverage that has been 

shown to possess several pharmacological activities [21-24]. It has 

been reported for its diuretic [25-28], anti-inflammatory [29], 

antiarthritic [30], antibacterial [31], antiviral [32], antiproliferative 

[33], antioxidant [34,35], neuroprotective [36, 37], and cholesterol-

lowering effects [23, 38, 39]. Moreover, consuming green tea has 
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been found to protect against obesity [40, 41], cancer [42, 43], and 

cardiovascular diseases [44-46]. The chemical composition of green 

tea is complex; it contains xanthic bases (caffeine and theophylline), 

polyphenols commonly known as catechins, pigments, volatile 

compounds, proteins, amino acids, carbohydrates, vitamins (B, C, E), 

minerals, trace elements, and trace amounts of lipids and sterols [23, 24, 

45]. Caffeine and theophylline account for the diuretic effect of GT [25-

28]. It has been demonstrated that caffeine could increase urine 

production in patients with congestive heart failure and edema; 

however, theophylline has been found to induce even higher diuretic 

effect than caffeine [47, 48]. On the other hand, GT polyphenols are 

responsible for the neuroprotective and the antioxidant properties of GT. 

The present study aimed at testing the possible protective effects of GT 

extract against chronic HN and hyponatremic encephalopathy induced 

in rats using terlipressin (triglycyl–lysine vasopressin; TP), which is a 

long-acting analog of the antidiuretic hormone, vasopressin (VP) [49]. 

Moreover, the study compared the effects of GT with those resulted from 

the rapid correction of chronic HN using hypertonic saline (HtNaCl). 

MATERIALS AND METHODS 

Animals 

Adult male albino Wister rats, weighing 180–200 g, was utilized in the 

present study. Standard food pellets and tap water were supplied ad 

libitum unless otherwise stated. Animals and food pellets were obtained 

from the animal house colony of the National Research Center (NRC, 

Egypt). Ethical considerations in handling laboratory animals that stated 

by NRC were followed throughout the study period. 

Drugs 

TP vials (Glypressin®; Ferring Pharmaceuticals, Germany) were 
used in the current study. GT water extract, in the form of powder, 
was obtained from Technomate for Chemicals and Pharmaceuticals 
(Egypt), and was used orally in a dose of 600 mg/kg/day [35]. All 
other chemicals were of the highest available commercial grade. 

Experimental design 

Chronic HN was induced in rats according to the method established 
in our previous study with colleagues [49]. The animals were 

randomly allocated into four groups; each group consisted of 10 
rats. During the induction phase of this experiment (days 1–3), rats 

of the first group received s. c injections of saline and served as the 
normal group. In the remaining three groups, chronic HN was 

induced by injections of TP (0.2 mg/kg/day, s. c) and 2.5% d-glucose 

solution (equivalent to 5% initial bw/day, i. p) for 3 successive days. 
Rats of TP-induced HN group had free access to distilled water only 

during this phase of experiment with no access to food.  

In the 2nd phase of the experiment (days 4–6), animals of all groups 
had free access to food and tap water. In this phase, the normal 
group received saline; the other three groups received TP (0.1 
mg/kg/day, s. c.) as a stabilizing dose. Group 2 served as the HN-
control group; groups 3 and 4 were treated with GT (600 
mg/kg/day, p. o.) and 1 M sodium chloride solution (hypertonic 
saline, HtNaCl; 15 ml/kg/day, i. p.), respectively.  

Estimation of serum sodium level 

Blood samples were withdrawn from the retro-orbital plexus of each 
animal, under light diethyl ether anesthesia, following induction 
phase (on day 4), and one hour following the last drug 
administration in the treatment phase (on day 6). The blood was 
allowed to coagulate and then centrifuged, using a cooling centrifuge 
(Sigma and laborzentrifugen, 2k15, Germany), at 3000 rpm for 20 
min for serum separation. Serum sodium level was estimated using 
specific reagent kit (Stanbio Laboratory, USA). 

Measurement of locomotor activity 

On days 0, 4 and 6 of the experiment, locomotor activity was 

assessed by detecting rat movements using grid floor activity cage 

(Model no. 7430, Ugo-Basile, Italy). Interruptions of infrared beams 

were automatically detected during a 10 min test session. Beam 

interruption information was processed in the activity cage software 

to provide an index of horizontal movements [50, 51]. Change of the 

basal locomotor activity was calculated for each rat. 

Evaluation of pain reflex 

The delay in pain reactivity, as a neuronal reflex, was evaluated on 

days 0, 4 and 6 of the experiment using the hot-plate test (7280 Ugo 

Basile, Italy) according to the method described by Laviola and 

Alleva [52]. Change of the basal response to the nociceptive stimulus 

was calculated for each rat. 

Tissue sampling and estimation of brain inducible nitric oxide 

synthase (iNOS) and nitric oxide (NO) contents 

Directly after collecting the last blood sample in the experiment, rats 

were decapitated under light diethyl ether-anesthesia, and their 

brain was carefully isolated and dissected through the midline into 

two hemispheres. One brain hemisphere from each rat was 

immediately weighed and homogenized in ice-cold potassium 

chloride (1.15%; pH 7.4) to yield a 20% (w/v) tissue homogenate 

(using MPW–120 homogenizers, Med instruments, Poland). The 

homogenates were centrifuged using a cooling centrifuge (Sigma 

and laborzentrifugen, 2k15, Germany) at 4000 r. p. m for 10 min; the 

supernatant was used for biochemical estimation of brain content of 

iNOS, using iNOS ELISA kit (MyBioSource, USA), and NOx (nitrite and 

nitrate, stable metabolites of NO) utilizing an NOx concentration 

assay kit (Cayman chemical company, Germany).  

Histopathological examination of brain tissues 

The other brain hemisphere of each rat was removed and 

immediately placed in 10% formalin. Afterward, brains were 

sectioned coronally at six levels. Sections were stained with 

hematoxylin and eosin (H&E), and processed for light microscopy 

evaluation of neuronal density, edema, and inflammation. 

Statistical analysis 

All the values are presented as means±standard error of the means 

(SE). Comparisons between different groups were carried out using 

one-way analysis of variance (ANOVA) followed by Tukey’s multiple 

comparison post hoc tests. For behavioral parameters, square root 

transformed percent was calculated according to Jones et al. [53] 

then comparisons between different groups were carried out using 

the nonparametric one-way ANOVA followed by Dunn's multiple 

comparisons post hoc test. The difference was considered significant 

when p˂0.05. GraphPad prismsoftware (version 6) was used to carry 

out these statistical tests.  

RESULTS 

Serum sodium level 

Subcutaneous injection of TP produced stable HN demonstrated by 

decreased serum sodium level to 109.85±4.8 and 112.08±5.3 

mmol/l on days 4and 6, respectively. Treatment of rats with GT or 

HtNaCl corrected TP-induced HN (fig. 1). 

Saline, rats, treated with saline and represented the normal group; 

TP, rats treated with terlipressin and served as a hyponatremia 

(HN)-model group; TP-GT, rats with TP-induced HN treated with 

green tea; TP-HtNaCl, rats with TP-induced HN treated with 

hypertonic saline. 

a Significantly different from the normal group at the corresponding 

day at p<0.05. 

bSignificantly different from TP group at the corresponding day at 

p<0.05. 

Locomotor activity and Pain reflex 

Induction of HN in rats using TP was coupled with a decrease in 

the basal locomotor activity that was observed on days 4 and 6 

(table 1). A delay of the basal pain reflex was also observed 

following the induction phase (on day 4); however, no significant 

difference was observed in a TP-treated group on day 6 (table 2). 

Treatment of rats with GT improved that TP-induced decrease in 

locomotor activity; however, HtNaCl failed to do so (table 1). On 

the other hand, rats treated with GT showed a significant delay 

of the response to pain stimulus as compared to both normal and 

HN group (table 2). 
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Fig. 1: Effects of TP-induced HN, and the co-administration of GT and HtNaCl on serum sodium level in rats 

Saline, rats treated with saline and represented the normal group; TP, rats treated with terlipressin and served as hyponatremia (HN)-model group; 

TP-GT, rats with TP-induced HN treated with green tea; TP-HtNaCl, rats with TP-induced HN treated with hypertonic saline. 

aSignificantly different from normal group at the corresponding day at p < 0.05., bSignificantly different from TP group at the corresponding day at p < 0.05. 

 

Table 1: Effects of TP-induced HN, and the co-administration of GT and HtNaCl on the locomotor activity of rats 

Groups Locomotor activity 

Count/10 min. Square-root-transformed % of basal activity 

Day 0 Day 4 Day 6 Day 4 Day 6 

Saline 162.40±13.43 179.80±11.91 178.60±7.81 1.06b±0.04 1.06b±0.03 

TP 118.60±25.24 55.20±16.70 80.40±15.36 0.69a±0.12 0.83a±0.02 

TP-GT 161.20±26.84 96.00±21.19 155.60±25.08 0.78a±0.09 0.98b±0.01 

TP-HtNaCl 123.40±10.09 73.80±14.35 70.20±8.50 0.76a±0.11 0.76a±0.08 

Saline, rats treated with saline and represented the normal group; TP, rats treated with terlipressin and served as a hyponatremia (HN)-model 

group; TP-GT, rats with TP-induced HN treated with green tea; TP-HtNaCl, rats with TP-induced HN treated with hypertonic saline. 

Data are presented as mean±SE., a Significantly different from the normal group at the corresponding day at p<0.05., bSignificantly different from TP 

group at the corresponding day at p<0.05. 

 

Table 2: Effects of TP-induced HN, and the co-administration of GT and HtNaCl on the response of rats to the nociceptive stimulus 

Groups Delay of pain reflex 

Nociceptive response (sec) Square-root-transformed % of basal response 

Day 0 Day 4 Day 6 Day 4 Day 6 

Saline 38.25±3.71 27.72±3.05 29.02±2.62 0.84b±0.07 0.86±0.06 

TP 24.30±4.25 31.06±3.58 26.56±3.38 1.20a±0.08 0.98±0.13 

TP-GT 26.58±2.60 35.38±4.51 38.38±5.61 1.13a±0.05 1.21ab±0.10 

TP-HtNaCl 33.25±2.36 39.30±4.18 34.18±3.33 1.06a±0.04 0.99±0.03 

Saline, rats treated with saline and represented the normal group; TP, rats treated with terlipressin and served as a hyponatremia (HN)-model 

group; TP-GT, rats with TP-induced HN treated with green tea; TP-HtNaCl, rats with TP-induced HN treated with hypertonic saline. 

Data are presented as mean±SE., a Significantly different from the normal group at the corresponding day at p<0.05., bSignificantly different from TP 

group at the corresponding day at p<0.05. 

 

Fig. 2: Effects of TP-induced HN, and the co-administration of GT and HtNaCl on brain contents of iNOS and NOx in rats 

Saline, rats treated with saline and represented the normal group; TP, rats treated with terlipressin and served as hyponatremia (HN)-model group; 

TP-GT, rats with TP-induced HN treated with green tea; TP-HtNaCl, rats with TP-induced HN treated with hypertonic saline., a Significantly different 

from normal group at p<0.05., bSignificantly different from TP group at p<0.05. 
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Brain iNOS and NO contents 

Treatment of rats with TP to induce HN had no effect on the brain 

contents of iNOS and NOx. Similarly, administration of GT to TP-

treated rats showed normal iNOS and NOxcontent; whereas, 

administration of HtNaCl increased brain iNOS and NOx content in 

rats with TP-induced HN (fig. 2). 

Histopathological examination of brain tissues 

The brain sections prepared from normal rats showed normal brain 

tissue with normal astrocytes and fibrillary background (fig. 3a), 

while those prepared from rats with TP-induced chronic HN 

indicated a marked glial brain edema (fig. 3b). Treatment of rats 

with GT markedly ameliorated the brain edema observed in rats 

with TP-induced chronic HN and restored the normal histological 

structures of brain tissues (fig. 3c). The brain sections prepared 

from rats with TP-induced chronic HN treated by HtNaCl revealed 

marked amelioration of brain edema; however, neuronal cell 

necrosis associated with congestion of cerebral blood vessel was 

detected (fig. 3d). 

 

 

Fig. 3: Photomicrographs of brain sections prepared from (a) a 

normal rat, (b) a rat with TP-induced chronic HN, (c) a rat with 

TP-induced chronic HN treated by GT, and (d) a rat with TP-

induced chronic HN treated by HtNaCl (H&E X 400) 

 

(a) Showing normal brain tissue with normal astrocytes and 

fibrillary background. (b) Showing marked glial brain edema 

(arrow). (c) Showing marked amelioration of the glial astrocytes and 

fibrillary background brain edema observed in rats with TP-induced 

chronic HN. (d) Showing neuronal cell necrosis (short arrow) 

associated with congestion of cerebral blood vessel (long arrow). 

DISCUSSION 

In the present study, injection of TP (0.2 mg/kg/day, s. c.) along with 

2.5% d-glucose solution (equivalent to 5% initial bw/day, i. p), for 3 

successive days, induced profound (<115 mmol/l) chronic (>48 h) 

HN that was evidenced by decreased serum sodium level on days 4 

and 6. A hypotonic dextrose solution was used as a source of 
electrolyte-free water to produce expansion of the extracellular fluid 

volume; while, TP was used as an antidiuretic agent to prevent the 

excretion of that electrolyte-free water for the entire period of the 

experiment. Both elements must be satisfied to induce HN [54]; 

since the administration of antidiuretic agent without water does 

not result in HN [55], and administration of electrolyte-free water in 

the absence of antidiuretic agent leads, only, to a large water 
diuresis [56]. TP is a long-acting analog of VP, the antidiuretic 

hormone [57]. Like VP, TP stimulates vascular vasopressin type 1 

(V1) receptor and renal tubular V2 receptor, resulting in 

vasoconstriction and renal free water reabsorption, respectively. 

However, TP has a relatively higher affinity for the V1 receptor and 

lower affinity to the V2 receptor compared to VP [58]. Nevertheless, 

in agreement with the finding of the present study, Krag et al. [59] 

reported that TP induces V2 receptor-mediated antidiuresis and 

induces a decrease in plasma sodium level. In the common 

experimental animal models of HN, VP has been used, either as 

multiple doses per day or as a continuous infusion via 

subcutaneously implanted osmotic minipump [60, 61]. Interestingly, 

a single daily dose of 0.2 mg/kg TP for three successive days induced 

chronic HN in the current model. The different pharmacokinetic 

properties of VP and TP explain this outcome. TP has a long duration 

of action and its effective half-life time is 6 h, whereas that of VP is 

only 6 min [58, 62]. For that, this TP-induced HN model that was 

established in our previous study with colleagues (unpublished data 

[49]), is less complicated than the common VP model. In addition, TP 

is available in the markets (glypressine; Ferring Company, 

Germany), while VP is not commercially available in all countries 

[62]. A stabilizing dose of TP (0.1 mg/kg/day, s. c.) was used for 

another three days following the induction phase. This regimen was 

carried out to prevent the spontaneous correction of chronic HN 

[48], and to simulate its clinical conditions [63]. The current TP-

induced HN resulted in neurological complications in rats evidenced 

by the deterioration of the locomotor activity and pain reflex and 

confirmed by the histopathological findings revealed a marked brain 

edema. The chronic locomotor deficit that persisted for 6 d, and the 

delay of pain reflex detected on the 4th day, in rats with TP-induced 

HN are parallel to some of the typical signs of hyponatremic 

encephalopathy found in patients with HN [14]. However, the 

improvement of the pain reflex on day 6 may be due to the gradual 

adaptation of the brain to HN by extruding organic solutes from 

their cytoplasm, which decreases the degree of cerebral edema by 

allowing intracellular osmolality to be equal to plasma osmolality 

without a large increase in cell water [64]. This explanation may be 

supported by the study established that the impaired response to 

pain stimuli in patients with HN occurs in the more advanced state 

of cerebral edema rather than that associated with a reduction of 

locomotor activity [11].  

Following the induction phase, administration of GT (600 

mg/kg/day, p. o), for 3 successive days, corrected the serum sodium 

level in rats. This protective effect of GT against HN may be 

attributed to its diuretic effect [25, 26, 28], as previous studies 

showed that diuretics are useful in controlling edematous 

hyponatremic states [65, 66]. Improvement of locomotor activity 

was also observed in GT-treated rats; a finding that indicates a 

neuroprotective effect of GT against TP-induced hyponatremic 

encephalopathy. This conclusion was confirmed by the outcome of 

the histopathological investigation that revealed a marked 

improvement of TP-induced brain edema in the GT-treated group. In 

addition, Michna et al. [67] reported a direct stimulatory effect of 

oral administration of green tea and caffeine on locomotor activity in 

mice.  

On the other hand, delayed response to the nociceptive stimulus was 

noticed in GT-treated rats; though it was normal in untreated rats 

with TP-HN. This finding may be explained by the stated analgesic 

effect of GT [68, 69]. 

Administration of HtNaCl in the present study corrected HN itself 

but not its effect on locomotor activity. Actually, administration of 

high concentrations of NaCl results in a rapid correction of serum 

sodium level, which causes a serious cerebral demyelinating 

disorder known as osmotic demyelination syndrome (ODS) [70]. 

The clinical manifestations of ODS usually develop after a couple of 

days (average 4–6 d) following changes in sodium levels. Hence, the 

non-corrected locomotor activity observed with HtNaCl 

administration in the current study may be due to the beginning of 

the pathological changes in the brain that finally led to ODS. 

Fortunately, these findings were supported by the present 

histopathological observations of focal cellular necrosis with 

neovascular proliferation changes in the cerebral tissue of rats 

treated with HtNaCl, though the marked amelioration of brain 

edema. These observations are in agreement with those of previous 

studies showing that rapid correction of experimental animal 

models of HN with HtNaCl resulting in demyelinative lesions 

associated with focal cellular necrosis, gliovascular proliferation 

changes, and accumulation of active microglia [71-73]. These 

microglia have been found to produce proinflammatory cytokines, 



Hegazy et al. 

Int J Pharm Pharm Sci, Vol 8, Issue 6, 253-259 

257 

which are potent inducers of iNOS [74]. The induction of iNOS by 

proinflammatory cytokines results in NO production, which 

aggravates oligodendroglial injury and demyelination [73]. In the 

present study, significantly high levels of iNOS and NOx were 

observed in the brain tissues of hyponatremic rats treated with 

HtNaCl; this indicated the presence of inflammatory cerebral 

damage coupled with excessive iNOS activation and NO production. 

The presence of this inflammatory cerebral damage in HtNaCl-

treated rats was also supported by the findings of the locomotor 

assessment and histopathological analysis. On the other hand, iNOS 

and NOx levels were normal in the brain tissues of rats with TP-

induced HN, indicating that, iNOS activation and NO production are 

not involved in the neuropathological features of hyponatremic 

encephalopathy. In accordance, studies that assessed iNOS activity 

in experimental animals with HN showed that iNOS activity 

increases only with rapid correction of chronic HN [71-73]. GT 

successfully managed brain iNOS and NOx levels after the correction 

of HN in the present study. This result, together with the findings of 

the histopathological investigation, demonstrated the neuro-

protective effect of GT against the pathological consequences of 

rapid correction of HN. The study of Nakagawa and Yokozawa [75] 

showed a direct scavenging of nitric oxide and superoxide by GT. On the 

other hand, Srivastava et al. [76] demonstrated that GT polyphenols act 

as potent inhibitors of nitric oxide generation independent of their 

antioxidant properties. Correspondingly, many studies reported the 

inhibition of iNOS expression by GT and GT polyphenols [77-80]; and 

considered it as an important mechanism underlying the 

neuroprotective effect of GT [81]. Choosing the 8 d duration for the 

experiment, before sacrificing the animals and isolation of brain for 

estimation of iNOS and NOx contents and histopathological examination, 

was guided by a previous study [60], to allow the development of the 

inflammatory cerebral damage that eventually leads to ODS, if any. In 

addition, another study [73] found that prominent accumulation of 

activated microglia was seen by 3 d after correction and that 

accumulation occurred parallel to the demyelinating changes. 

CONCLUSION 

In conclusion, the current study revealed that TP-induced HN rat 

model produced the main neuropathological features of human HN 

as manifested by the observed decrease of locomotor activity, delay 

of pain reflex, and development of the characteristic 

histopathological changes of the brain tissues. Administration of GT 

markedly improved TP-induced chronic HN in rats and protected 

against the neuropathological features that characterized 

hyponatremic encephalopathy and accompanied with its rapid 

correction. The study suggests GT as a therapeutic agent for 

protection against the neuropathological complications associated 

with chronic HN and its rapid correction. 
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