FEASIBILITY STUDY FOR PRODUCTION OF IODINE-131 USING DIOXIDE OF TELLURIUM-130

ABDESSAMAD DIDI*, AHMED DADOUCH, HASSANE EL BEKKOURI

Laboratory of Integration System and Technology Advanced (LISTA), Department of Physics, Faculty of Science Dhar Mabraz, University of Sidi Mohamed Ben Abdellah Fez Morocco
Email: abdessamad.didi1@usmba.ac.ma

Received: 21 Jun 2016 Revised and Accepted: 12 Aug 2016

ABSTRACT

Objective: Currently, nuclear medicine is becoming increasingly important, through the discovery of several medical radioisotopes, which are used in diagnosis, treatment, and medical imaging. Among the most important radionuclide which is commonly used is iodine-131, with a half-life of 8.02 d. Iodine-131 is one of the mainly essential elements in nuclear medicine. Since their first use, several studies have been conducted to meet the world need of hospital specialists in nuclear medicine. The purpose of this study was to participate in a lawsuit about the feasibility of producing 131I.

Methods: using neutron activation of the dioxide of tellurium (TeO₂) under a neutron flux which varies between 5 \times 10^{11} and 10^{13} n/cm² s for 4, 6 and 8 hours** per irradiation cycle during 5 d, and used the Fortran90 Code to calculate the activity of iodine-131.

Results: The result of the activity of iodine-131 found about 4,634 Curie with an irradiation of 4 hours** per day and 9.381 Curie with an activation of 8 hours** per day.

Conclusion: Production of iodine-131 can be very effective if an acceptable capsule is used for different masses of tellurium and a neutron flux in a nuclear reactor.

Keywords: Iodine-131, Tellurium, Neutron activation, Thyroid, Cancer, Nuclear medicine, Becquerel

INTRODUCTION

Radioisotopes used for many years in many fields of medicine [1-14], industry [15], food and science, [16-17]. Accelerators and nuclear reactors are frequently used for the production of radioisotopes, at the moment, the demand for medical isotopes increases, such as iodine-131, [18-32], but it raises problems of cost and transportation of the producer country to consumer countries, which requires a new strategy for countries who had research reactors to produce iodine-131 [33]. Such as Morocco, which has personal skills, researchers and academics in the nuclear field. Furthermore, Morocco is also a well-developed infrastructure which uses the nuclear research reactor TRIGA-MARC II 2-MW installed at the National Centre of Energy and Science and Nuclear Techniques in Rabat (CNESTEN). This facility meets the global regulatory requirements, nuclear safety, radiation protection and environmental protection. At this time, some studies are made to the feasibility of the production of 131I E. B. El Bakkari [34], A. S. Elmom Achoribo [35], O. Yu. Kochnov [36], M. A. El-Abisy [37], D. IAEA CDCO[38]. There are two main methods for the production of 131I, the first way is the fission of 235U [36] and the second way is a radiation of discontinuous operation is obligatory for the production of iodine-131. We call it cyclical irradiation, [40-42]. It is a radiation of the irradiation for some hours; we repeat this method for many cycles until the attainment of our objective.

The main aim of this theoretical study was to search the feasibility of producing 131I. We are interested in a range of neutron flux in the channel of irradiation from 5 \times 10^{11} to 10^{13} n/cm² s which is generated by research nuclear reactor and capsulated targets of TeO₂ with the mass from 1 g to 150 g. By using an analytical method and the cyclic neutron activation technical, we calculate the following activities of 4, 6 and 8 hours** of irradiation per day to achieve our goal.

METHODS AND MATERIALS

Production of-131

Productions of iodine-131 are generated by the following equation,

\[\frac{dN(131I)}{dt} = \sigma(130Te)\varphi N(130Te) \left(1 - e^{-\lambda(131I)\tau_{irrad}} \right) - \lambda(131I)N(131I) \]

... Equation 1

With,

\[\sigma \] Cross section microscopic (barn)
\[\varphi \] Neutron fluxes n/cm² s
\[\lambda \] Radiative constant h⁻¹

At t=0 are found that \[N(131I) = N(131I) = 0 \]

By integrating equation 1 can give the number of formal's core in each irradiation cycle which is in Equation 2, [34] [36][43-48].

\[N(131I) = \sigma(130Te)\varphi N(130Te) \left(\frac{1 - e^{-\lambda(131I)\tau_{irrad}}}{\lambda(131I)} + \frac{e^{-\lambda(131I)\tau_{irrad}} - e^{-\lambda(131I)\tau_{decay}}}{\lambda(131I) - \lambda(131I)\tau_{decay}} \right) \]

... Equation 2

Or \[\tau_{irrad}: \] Irradiation time
\[\tau_{decay}: \] Decay time at the end of irradiation

And \[N(131I) = \frac{N(131I)\tau_{irrad}}{M(130Te)} \]

... Equation 3

m(129Te)=6.02 \times 10^{23} mol⁻¹, Avogadro's number;
m[^{130}\text{Te}] the weight in grams of tellurium;
M[^{130}\text{Te}] the atomic mass of irradiated Tellurium isotope.

We can extract activity of ^{131}I in each irradiation cycle using equation 4

$$A(^{131}\text{I}) = \lambda(^{131}\text{I}) N(^{131}\text{I}) \quad \text{Equation 4}$$

With A activity by Curie,

As it was motioned at the beginning of the irradiation ^{130}Te in the form of a cyclic radiation from each study, with $4, 6$ and 8 hours** respectively per day for 5 d, the fig. 1 explains the steps of irradiation in each cycle.

![Fig. 1: Evolution of activity with a cyclic irradiation](image)

By accumulation of activity for each cycle is,

For the 1st cycle:

$$A(\text{cycle 1}) = A_{\text{irrad \ time \ of \ first \ cycle}}(^{131}\text{I}) - A_{\text{decay \ (0h \ to \ 24h) \ of \ first \ cycle}}(^{131}\text{I})$$

For the 2nd cycle:

$$A(\text{cycle 2}) = A(\text{cycle 1}) + A_{\text{irrad \ time \ of \ second \ cycle}}(^{131}\text{I}) - A_{\text{decay \ time \ of \ second \ cycle}}(^{131}\text{I})$$

For the 3rd cycle:

$$A(\text{cycle 3}) = A(\text{cycle 2}) + A_{\text{irrad \ time \ of \ third \ cycle}}(^{131}\text{I}) - A_{\text{decay \ time \ of \ third \ cycle}}(^{131}\text{I})$$

For the 4th cycle:

$$A(\text{cycle 4}) = A(\text{cycle 3}) + A_{\text{irrad \ time \ of \ fourth \ cycle}}(^{131}\text{I}) - A_{\text{decay \ time \ of \ fourth \ cycle}}(^{131}\text{I})$$

For the 5th cycle:

$$A(\text{cycle 5}) = A(\text{cycle 4}) + A_{\text{irrad \ time \ of \ fifth \ cycle}}(^{131}\text{I}) - A_{\text{decay \ time \ of \ fifth \ cycle}}(^{131}\text{I})$$

Finally, we found the global activity of ^{131}I after the final calculation, the results obtained are shown schematically in the form of figures.

RESULTS AND DISCUSSION

From the simulations obtained in five irradiation cycles for each cycle with $4, 6$ and 8 hours** of irradiation in a neutron flux 5×10^{11}, 10^{12}, 5×10^{12} and 10^{13} n/cm2s, we have observed clearly that the activity increases during $4, 6$ and 8 hours**.

After the stoppage of the first irradiation, the activity decreases slightly in the hours after (radioactive decay of Iodine-131). When we start the second cycle, the activity increases in the irradiation period and it decreases in the cooling period.

This process continues to increase and decrease until the end of the fifth round to achieve the maximum activity, fig. from 4 to 15 show the variation of the activity of ^{131}I at different target weights ($5g, 10g, 30g, 50g, 100g$ and $150g$) and attached to a neutron flux ranges from 5×10^{11} to 10^{13} n/cm2s, for irradiation time $4, 6$ and 8 hours** in each cycle. This work was well validated with the study of A. S. Elom Achoribo [35] and B. El Bakkari [34].

To validate our results we compared them with the results of AS Elom Achorido [35] (fig. 3). For 1g, 3g and 5g, with a neutron flux of 5×10^{11} n/cm2s, masses of TeO$_2$ irradiated for 6 hours** per day (fig. 2), the results show the validation of our work. In our study, we are interested in $5g, 10g, 30g, 50g, 100g$ and $150g$.

Productions ^{131}I with 4 hours** of irradiation for each cycle

After four hours of irradiation by cycle, the results which are shown in fig. 4, 5 and 7 clarify that the activity increases with irradiation time, then a slight decrease at the end of irradiation, then it begins to increase after the second irradiation. For example, the neutron flux of 5×10^{11} n/cm2s for masses of $5g, 10g, 50g, 100g$ and $150g$ this activity is 2.86×10^9, 5.72×10^9, 1.71×10^{10}, 2.86×10^{10}, 5.72×10^{10} and 8.57×10^{10} Becquerel respectively. if we increase the fluxes to 10^{13} n/cm2s, and for the same masses, the activity is equal to 3.80×10^{10}, 1.14×10^{11}, 3.43×10^{11}, 5.72×10^{11}, 1.14×10^{12} and 1.71×10^{12} Becquerel, respectively.
Fig. 5: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 10^{12} n/cm²s⁻¹ for an irradiation time of 4h during each day

Fig. 6: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 5×10^{12} n/cm²s⁻¹ for an irradiation time of 4h during each day

Fig. 7: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 10^{13} n/cm²s⁻¹ for an irradiation time of 4h during each day

Fig. 8: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 5×10^{11} n/cm²s⁻¹ for an irradiation time of 6h during each day

Fig. 9: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 10^{12} n/cm²s⁻¹ for an irradiation time of 6h during each day

Fig. 10: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 5×10^{12} n/cm²s⁻¹ for an irradiation time of 6h during each day

Fig. 11: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 10^{13} n/cm²s⁻¹ for an irradiation time of 6h during each day

The schemes illustrated in fig. 8, 9, 10 and 11 explain that the activity clearly related to the level of neutron flux and the mass of samples in addition to the microscopic Cross section of target of tellurium. After the analysis of the evolution of the activity, we noticed that the activity increases every day and every increase of irradiation followed directly with a slight decrease. For example, the neutron flux of 5×10^{11}n/cm²s and masses of 5g, 10g, 30g, 50g, 100g and 150g, activity was 3.08×10^9, 8.71×10^9, 2.61×10^{10}, 4.35×10^{10}, 8.71×10^{10} and 2.61×10^{11} Becquerel, respectively.

Productions 131I with 6 hours** of irradiation for each cycle

Productions 131I with 8 hours** of irradiation for each cycle

Fig. 12, 13, 14 and 15 show the evolution of 131I with activation of 8 hours** per day for 5 d. The activity of iodine-131 depends on irradiation time, the neutron flux and the mass of target capsules. For example in fig. 12, the neutron flux equal to 5×10^{10} n/cm²s, the activity becomes at the end of the cyclic irradiation 5.79×10^9, 1.16×10^{10}, 3.47×10^{10}, 5.79×10^{10}, 1.16×10^{11} and 1.74×10^{11} Becquerel,
respectively for 5 g, 10 g, 30 g, 50 g, 100 g et 150 g. Therefore, an increase in the neutron flux to \(10^{11} \text{n/cm}^2\text{s}\) and for the same masses in fig. 15, the activity increases respectively \(1.16 \times 10^{11}, 2.31 \times 10^{11}, 6.94 \times 10^{11}, 1.16 \times 10^{12}, 2.31 \times 10^{12}\) and \(3.47 \times 10^{12}\) Becquerel.

Profile of activity

Maximum feasible activities have been based on the capsules used; when we increase the mass of TeO\(_2\), it causes an increase in the activity. Maximum activity in irradiation period 4, 6 and 8 hours** for the mass of 150 g gives 2.317Curie, 3.530 Curie, 4.69 Curie respectively in a flux of \(5 \times 10^{11}\) n/cm\(^2\)s, if the neutron flux increases to \(10^{12}\) n/cm\(^2\)s, for the identical weight (150g) and for the same irradiation period 4, 6 and 8 hours** per day, we note that the activity increases respectively in the following values, 4.6345 Ci and 9.3818 Curie, fig. 16 and 17.

CONCLUSION

A feasibility study of the production of iodine-131 is done by using a neutron flux from \(5 \times 10^{11}\) to \(10^{13}\) n/cm\(^2\)s. Then the results were that the mass of 150 g and a flux of \(5 \times 10^{11}\) n/cm\(^2\)s the activity gives (2.317 Curie in 4 hours**, 4.69 Curie in 8 hours** of irradiation), for the same mass of 160 g in a flux of \(10^{12}\) n/cm\(^2\)s gives (4.634 Curie in 4 hours** of irradiation and 9.381 Curie in 8 hours** of irradiation). These results are compared with study of B. El Bekkouri [34] and AS Elom Achoribo [35]. We noticed that the neutron standpoint, an acceptable capsule for different masses of tellurium, and an irradiation in a neutron flux in the reactor, approximately in the center, can give continuation to the production of iodine-131.

CONFLICTS OF INTERESTS

Declared none

REFERENCES

35. Daniel Gestau. Production of Iodine-131 from Low Enriched Uranium Targets International Meeting on Reduced Enrichment for Research and Test Reactors, Cape Town, South Africa; 2006.

38. Daniel Gestau. Production of Iodine-131 from Low Enriched Uranium Targets International Meeting on Reduced Enrichment for Research and Test Reactors, Cape Town, South Africa; 2006.

How to cite this article