
 

Original Article 

LIGAND BASED PHARMACOPHORE MODELING, VIRTUAL SCREENING AND MOLECULAR 

DOCKING STUDIES TO DESIGN NOVEL PANCREATIC LIPASE INHIBITORS 

 

MAIDA ENGELSa, S. E., BALAJI B.a, DIVAKAR S.a, GEETHA, G.a* 

aPSG College of Pharmacy, Tamilnadu, India 641004 

Email: ggeetha97@gmail.com     

Received: 29 Nov 2016 Revised and Accepted: 14 Feb 2017 

ABSTRACT 

Objective: To understand the essential structural features required for pancreatic lipase (PL) inhibitory activity and to design novel chemical 
entities, ligand-based pharmacophore modeling, virtual screening and docking studies were carried out. 

Methods: The pharmacophore model was generated based on 133 compounds with PL inhibitory activity using PHASE. An external test set and 
decoy dataset methods were applied to validate the hypothesis and to retrieve potential PL inhibitors. The generated hypothesis model was further 
subjected to virtual screening and molecular docking studies.  

Results: A five point pharmacophoric hypothesis model which consists of three hydrogen bond acceptor sites and two hydrophobic sites was 
developed. The generated pharmacophore gave significant 3D QSAR (three-dimensional Quantitative Structural Activity Relationship) model with r2 
of 0.9389 and Q2 value of 0.4016. After database screening, five molecules were found to have better glide scores and binding interactions with the 
active site amino acid residues. 

Conclusion: As an outcome of this study, five hit molecules were suggested as potent PL inhibitors as they showed good glide scores as well as 
binding interactions with required active site amino acids. The five molecules obtained from this study may serve as potential leads for the 
development of promising anti-obesity agents. 
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INTRODUCTION 

Obesity and excess weight are rapidly growing health hazards in the 
world. The 2014 WHO report indicates that on the whole, about 13% 
of the world’s adult population (11% of men and 15% of women) 
are obese. Obesity is complicated by its associated comorbidities 
which include cancer, diabetes, heart disease, and obstructive sleep 
apnea. The fundamental cause of obesity and overweight is an 
energy imbalance between calories consumed and calories 
expended. There are very few options for the treatment of obesity. 
They are as follows: Cannabinoid receptor type 1 (CB1R) antagonist 
(rimonabant®), Anorectic agent (sibutramine, phentermine), and 
pancreatic lipase (PL) inhibitor orlistat. However, rimonabant has 
been withdrawn from the market due to concerns about increased 
risk of suicidal tendencies [1, 2]. Anorectic agent sibutramine and 
phentermine were withdrawn due to cardiovascular issues and the 
potential for addiction respectively [3-5]. Orlistat, a pancreatic lipase 
inhibitor is the only peripherally acting FDA (Food and Drug 
Administration) approved the drug for obesity [6-9]. PL is a key 
enzyme involved in lipid absorption especially in the step of 
hydrolysis of fat into glycerol and fatty acid. Therefore the 
pancreatic lipase inhibition results in the reduction of fat absorption 
and is beneficial for the regulation of metabolic disorders and 
obesity. PL inhibitors may also devoid of side effects generally 
associated with other centrally acting antiobesity agents [7].  

The rising concerns over obesity as a global health hazard is 
relatively recent, and it has outpaced the pharmaceutical industry’s 
ability to develop new and safe drugs. In silico screening has become 
a routine component of drug discovery in which the pharmacophore 
concept is of central importance in computer-aided drug design. It is 
mainly because of its successful application in medicinal chemistry 
and, in particular, high-throughput virtual screening [10]. Advances 
in computing power and improvements in pharmacophore 
screening algorithms have further stimulated by the increasing 
number of academic services and chemical vendors that offer large 
databases of commercially available compounds and virtual libraries 

[11]. From a practical point of view, pharmacophores can be used to 
screen millions of high-quality compounds structures within a 
reasonable amount of time. Hence, nowadays, pharmacophore study 
has become an important method and has proven extremely 
successful not only in demonstrating structure-activity relationships 
but also in the development of new drugs [12]. In view of these facts 
the pharmacophore modeling, virtual screening and molecular 
docking studies were adopted to design novel PL inhibitors. To the 
best of our knowledge, this is the first ligand-based pharmacophore 
modeling and subsequent virtual screening study to design PL 
inhibitors for the purpose of developing novel anti-obesity 
potentials. The present study may provide deep insights into the 
chemical features required for pancreatic lipase inhibitory activity. 

MATERIALS AND METHODS 

Dataset  

To develop a ligand-based pharmacophore model, a total of one 
hundred and thirty-three (133) molecules from diverse scaffolds 
with PL inhibitory activity evaluated by the same assay method 
(using the p-nitrophenyl butyrate (p-NPB) as substrate) were 
selected [13-18]. The IC50 values were converted into negative 
logarithm of the reported inhibitory concentrations (pIC50). Certain 
compounds with no clear IC50 value (eg. indicated with>100 µM) 
were omitted from the dataset. On the whole, the dataset consisted 
of most active, moderately active and less active molecules, and 
covers a range of activities (>5 log units). The structural and 
biological activity data of PL inhibitors are tabulated in table 1 and 2. 

Generation of common pharmacophore hypothesis and 3D 

QSAR model 

Phase (v3.2), Schrodinger was used to develop pharmacophore 
model and 3D QSAR validation [19]. PHASE is a highly flexible 
system for perception, structure alignment, activity prediction, and 
3D database searching. The two-dimensional (2D) structures of the 
selected PL inhibitors were drawn using Chem Draw Ultra and saved 
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in. mol format. Then they were imported into Maestro (v9.00, 
Schrödinger. Transformation of 2D structures into low energy three-
dimensional (3D) structures was achieved by LigPrep (v2.3), 
Schrodinger [20]. The conformational space was explored by the 
combination of Monte-Carlo Multiple Minimum (MCMM)/low Mode 
(LMOD) with a maximum of 1000 conformers per structure and 100 
minimization steps. Each minimised conformer was filtered by 
limiting 10 kJ. mol−1 as a relative energy window. This value sets the 
energy threshold relative to the lowest-energy conformer and 1.00Å 
as a minimum atom deviation. Conformers with a higher value than 

this threshold energy were discarded. All distances between pairs of 
corresponding heavy atoms were kept below 1.00 Å for two 
conformers to be considered identical [21]. In the pharmacophore 
creating step, each ligand structure is represented by a set of points 
in 3D space, which coincide with various chemical features that may 
facilitate non-covalent binding between the compound and its target 
receptor. PHASE provides a built-in set of six pharmacophore 
features, hydrogen bond acceptor (A), hydrogen bond donor (D), 
hydrophobic group (H), negatively ionisable (N), positively ionisable 
(P), and an aromatic ring (R) [22]. 

 

Table 1a: Dataset used for pharmacophore modeling with actual and predicted activities of vibralactone and its derivatives (compounds 1-55). 
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Table 1b: Dataset used for pharmacophore modeling with actual and predicted activities of vibralactone derivatives (compounds 56-92) 
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Table 1c: Dataset used for pharmacophore modeling with actual and predicted activities of vibralactone derivatives and standard drug 

orlistat (compounds 93-107) 
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Table 2: Dataset used for pharmacophore modelling with actual and predicted activities of some natural products (compounds 107-133) 
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For pharmacophore generation active and inactive thresholds of 
pIC50, 7.000 and 4.500 respectively were applied to the dataset. This 
yields 19 actives and 17 inactives. Hypotheses were generated by a 
systematic variation of the number of sites (nsites) and the number of 
matching active compounds (nact).  

With nact = nact_tot initially (nact_tot) is the total number of active 
compounds in the training set), nsites was varied starting from 7 to 
3 until at least one hypothesis was found and scored successfully 
in this study. The hypotheses were scored using default 
parameters [23]. 

All hypotheses produced in the last step were then used to build 3D 
QSAR models. The dataset was randomly divided into a training set 
of 102 compounds and a test set of 31 compounds (standard 3:1 
ratio) [24]. The most inactive and active molecules were kept in the 
training set.  

Model validation 

The common pharmacophore hypotheses successfully generated 
were scored by correlating the observed and predicted activity for 
the set of 102 training molecules. The Maximum number of PLS 
factors which can be used is N/5 (where N is a number of ligands in 
the training set). The increase in PLS factors could lead to overfitting 
of data. In this study, we used three PLS factors to evaluate the 
pharmacophore model. The model was tested for its predictive 
ability against a decoy test set.  

The GH scoring has been applied to quantify model selectivity 
precision of hits and the recall of actives from a 918 molecule 
dataset consisting of known actives and inactives of PL target. Of 
these molecules, 18 compounds are known inhibitors of PL while 
the other 900 molecules were decoys. The decoy set was created 
using DUD. E (http://dude. docking. org/generate) [25]. 

Database screening 

The best pharmacophore model was used to retrieve molecules 
with desired chemical features from the Phase database [Phase 
CAC (Commercially Available Compounds) database]. This 
database has 4.3 x 106 molecules with the unique identifier code. 
Conformers were generated in PHASE using the option “generate 
conformers during search” by setting it as a default. The search 
process in PHASE is normally performed in two steps: finding 
and fetching.  

Docking studies 

The retrieved compounds by virtual screening were subjected to 
docking by Glide (v5.6), Schrodinger. The crystal structure of porcine 
PL (PDB ID 1LPB) was downloaded from protein data bank [26]. The 
protein was prepared for docking with the Protein Preparation Wizard 
workflow of Maestro, Schrodinger. Glide (Grid-Based Ligand Docking 
with Energetics) treats the ligands with a fully flexible all-atom 
representation and the receptor with a rigid grid depiction [27]. The 
grid was generated by applying a van der Waals radii scaling factor of 
1.00 with a partial charge cut-off of less than 0.25e. The co-crystal 
ligand was used to centre docking box with a size capable of 
accommodating ligands with a length of ≤20Å. Docking calculations 
were performed with Glide using Standard precision (SP) and Extra 
precision (XP) modes. XP Scoring was carried out on the energy-
minimized conformations and re-scored using Schrödinger’s 
proprietary Glide Score (G-Score) scoring function [28, 29]. 

RESULTS AND DISCUSSION 

The primary goal of this study is to identify essential structural 
features that are responsible for potent PL inhibitory activity. To 
achieve this, ligand-based pharmacophore modelling and atom 
based 3D QSAR were performed in PHASE module of Schrodinger. 
Subsequently, database searching in PHASE CAC database and 
docking studies were also done to emphasize the scope of this study. 

Pharmacophore modeling 

Based on the structure of actives and inactive and its occupancy of 
the pharmacophoric features, several four and five points CPHs 
were generated from the list of variants. The four featured 
probable CPHs were not considered for scoring analysis as they 
failed to match with the common sites of active molecules. A total 
of 4383 five featured CPHs belonging to two types AAHHH and 
AAAHH (table 3) were subjected to PHASE scoring procedure 
through three different phases such as survival, surv-inactive, 
posthoc (table 4).  

After applying the scoring function for five featured CPHs using 
default values, 51 CPHs belonging to AAAHH survived and 
therefore they were used for the generation of 3D QSAR 
models. Focusing only on those pharmacophore models whose 
scores ranked in the top 1% [21], the most predictive QSAR 
model was found to be associated with the five point 
hypothesis AAAHH (Three hydrogen bond acceptor and two 
hydrophobic functions). 
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Table 3: Identified pharmacophore hypotheses 

Variant Maximum hypothesis 

AAAHH 4242 
AAHHH 141 

 

Table 4: Best pharmacophore hypotheses according to scoring values 

Model Survival-active Survival-inactive Post-hoc # matches 

AAAHH.5825 3.431 1.783 3.431 18 
AAAHH.8367 3.431 1.783 3.431 18 
AAAHH.7058 3.431 1.783 3.431 18 
AAAHH.4053 3.431 1.783 3.431 18 
AAAHH.503 3.386 1.678 3.386 18 
AAAHH.2704 3.386 3.386 3.386 18 
AAAHH.1323 3.386 3.386 3.386 18 
AAAHH.1364 3.386 3.386 3.386 18 
AAAHH.5830 3.372 1.703 3.372 18 
AAAHH.8373 3.372 1.703 3.372 18 
AAAHH.7062 3.372 1.703 3.372 18 
AAAHH.4058 3.372 1.703 3.372 18 
AAAHH.3927 3.371 1.692 3.371 18 
AAAHH.6893 3.371 1.692 3.371 18 
AAAHH.5722 3.371 1.692 3.371 18 
AAAHH.4713 3.371 1.692 3.371 18 
AAAHH.8289 3.371 1.692 3.371 18 
AAAHH.2701 3.339 1.666 3.339 18 
AAAHH.8370 3.335 1.679 3.335 18 
AAAHH.7061 3.335 1.679 3.335 18 
AAAHH.4056 3.335 1.679 3.335 18 
AAAHH.5828 3.335 1.679 3.335 18 
AAAHH.1362 3.335 1.661 3.335 18 
AAAHH.8336 3.332 1.661 3.332 18 
AAAHH.5795 3.332 1.661 3.332 18 
AAAHH.4821 3.332 1.661 3.332 18 
AAAHH.7001 3.332 1.661 3.332 18 
AAAHH.4008 3.332 1.661 3.332 18 
AAAHH.1321 3.325 1.652 3.326 18 
AAAHH.228 3.297 1.663 3.297 18 
AAAHH.2786 3.297 1.663 3.297 18 
AAAHH.1504 3.297 1.663 3.297 18 
AAAHH.1830 3.297 1.663 3.297 18 
AAAHH.5818 3.291 1.647 3.291 18 
AAAHH.8359 3.291 1.647 3.291 18 
AAAHH.4046 3.291 1.647 3.291 18 
AAAHH.7050 3.291 1.647 3.291 18 
AAAHH.6891 3.291 1.647 3.291 18 
AAAHH.8287 3.291 1.647 3.291 18 
AAAHH.5720 3.291 1.647 3.291 18 
AAAHH.3978 3.257 1.646 3.257 18 
AAAHH.7022 3.257 1.646 3.257 18 
AAAHH.6887 3.248 1.572 3.248 18 
AAAHH.3913 3.248 1.572 3.248 18 
AAAHH.5712 3.248 1.572 3.248 18 
AAAHH.8279 3.248 1.572 3.248 18 
AAAHH.2703 3.195 1.488 3.195 18 
AAAHH.1363 3.195 1.488 3.195 18 
AAAHH.49 3.195 1.488 3.195 18 
AAAHH.1322 3.195 1.488 3.195 18 

 

The pharmacophoric inter sites distance and angles are shown in 
fig. 1a and 1b respectively. The most active molecule was scored 
with the highest fitness and it was automatically selected as the 
reference ligand.  

The most active and inactive compounds of the training set as 
well as the test set mapped to the pharmacophore model are 
depicted in fig. 2a-2d. All the pharmacophoric features highlight 

the importance of acceptors and hydrophobic interactions. From 
the pharmacophore model, it was found that for a good 
pancreatic lipase inhibitory activity molecules should contain 
three hydrogen bond acceptor groups such as carbonyl or 
sulphonyl at particular distance and angle.  

Also, molecules that are able to form hydrophobic interactions 
with the target will show PL inhibitory activity. 
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Fig. 1: The Pharmacophore hypothesis generated from the present study. (a) Intersite distances are expressed in Angstroms. (b) Intersite 

angles are expressed in degrees 

 

 

Fig. 2: Pharmacophore model (AAAHH) aligned with the most active and inactive compounds in data set. Pink sphere: A-acceptor; Green 

sphere: H hydrophobic; (a) the most active compound (b) the least active compound in the data set 

 

Contour plot analysis 

Contour plot analysis was done to understand the influence of 3D 
structural features on pancreatic lipase inhibition. Blue cubes 
indicate positive contributions and negative contributions are 
indicated by red cubes. Fig. 4a illustrates the pharmacophoric site 
map with the most active ligand of the training set (compound no. 
106, pIC50 8.398).  

For hydrogen bond accepting attributes (the blue cubes around the 
beta-lactone ring and carbonyl ring of N-formyl-L-asparagine (A1, 
A2 and A3 pharmacophoric site)) specified the preference of 
hydrogen bond acceptor groups at these positions.  

The two hydrophobic pharmacophoric sites (H7 and H10) map very 
well with the hydrophobic aliphatic chains namely tridecyl and hexyl 
in the third and fourth position of the beta-lactone respectively. Fig. 
4b represents the overlay of the most inactive ligand (compound 
108, pIC50 3.842) in training set on the generated pharmacophore 
hypothesis. We can see that the molecule does not map well into the 
sites of the developed pharmacophore.  

Red cubes around the pharmacophore sites indicated the 
unfavourable structural features of the compound and also explain 
for its lower potency. The rigid and fused aromatic ring system 
devoid of hydrogen bond acceptor features may be the reason for 

the poor overlay of this compound with pharmacophoric sites. The 
chemical classes like stilbenoids, alkaloids, flavonoids, and flavones 
used in the dataset are all devoid of hydrogen bond acceptor and 
hydrophobic features and also exhibit poor activity against PL.  

The compounds possessing either hydrogen bond acceptors or 
hydrophobic features exhibit moderate inhibitory activity 
against PL. This corroborates the significance of the hydrogen 
bond acceptor and the hydrophobic feature for PL inhibitory 
activity.  

3D QSAR model and validation 

The statistical parameters such as r2(squared correlation 
coefficient), Q2(cross-validated correlation coefficient), Pearson-R, 
SD (standard deviation), RMSE (root mean square error), and F-
value (variance ratio)for the selected CPH are tabulated in table 5. 
The good r2(0. 9389) and q2 (0.4016) value shows the predictive 
ability of the model. The predicted pIC50 values by the constructed 
3D-QSAR model are listed in table 1 and 2 and shown in fig. 3.  

The high value of R2 and variance ratio (F) observed for this model 
indicates its statistical robustness. The value of statistical 
significance P<0.05 indicates a greater degree of confidence. This 
means F is significant at 95% level. The low SD and RMSE obtained 
in the present study indicates that the model is significant. 
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Fig. 4: Visual representation of atom-based AAAHH pharmacophore model; (a) the most active molecule (b) most inactive molecule in 

the dataset 
 

Table 5: 3D QSAR statistical parameters of the selected model 

Hypothesis  PLS SD R2 F P Stability RMSE Q2 Pearson-r 

AAAHH.503 1 0.8105 0.4843 93 6.6e-16  0.924 0.5166 0.2579 0.5679 
2 0.5705 0.747 144.7 5.629e-30  0.7899 0.5081 0.2821 0.6128 
3 0.4151 0.8675 211.6 1.994e-42 0.6489 0.4779 0.3647 0.6918 
4 0.3301 0.9171 265.4 5.69e-51  0.5674 0.4591 0.4138 0.6936 
5 0.2848 0.9389 291. 5.087e-56 0.5478 0.4639 0.4016 0.6961 

 

 

Fig. 3: Plot of observes vs predicted pIC50 for training and test set 

 

Database screening and docking studies 

At the end of searching in Phase database [Phase CAC (Commercially 
Available Compounds)], 983 hits that matched with the pharma-

cophore hypothesis were obtained. These compounds were 
subjected to an initial filtration by the Lipinski rule of five [30] and 
predicted pIC50 values>7.00, which in turn yielded 178 compounds. 
The selection of hit molecules from 178 compounds was purely based 
on obtaining a better G-Score and required interactions with active site 
amino acids in the target crystal structure of pancreatic lipase.  

The 178 compounds obtained from the initial filtration were 
subjected to SP docking analysis on 1LPB with hydrogen bonding 
constraints with at least one of the residues of the catalytic triad. Of 
the 93 compounds that satisfied these hydrogen bonding 
constraints, only those compounds with GlideScore>-8.00 (absolute 
value) were selected for further refining with the second run of 
docking in XP mode.  

The second docking XP run identified 5 potentially high active hits 
with a GlideScore>-8.00 (absolute value). These five hits were then 
superimposed on the pharmacophore hypothesis generated from 
our studies. Fig. 5 shows the superimposed hit molecule map well 
with the pharmacophore points AAAHH.  

All the five hit molecules-1LPB complexes showed important 
hydrogen bonding interactions with key amino acid residues. The 
mode of interaction and the amino acids involved are listed in table 6. 

  

Table 6: Glide score and interactions of the hit molecules with 1LPB 

Molecule code Interaction with 1 LPB Glide score 

Amino acid residue involved Type of interaction 
CACPD2011a-0000904029 HIP 263 

SER 152 
PHe 215 

1 Hydrogen bond and 1 pi-pi stacking 
1 hydrogen bond 
1 pi-pi stacking 

-9.15 

CACPD2011a-0002012951 PHE 215 
HIP 263 
PHE 77 
TYR 114 

1 pi-pi stacking 
2 hydrogen bonds 
pi-pi stacking 
pi-pi stacking 

-8.84 

CACPD2011a-0002012956 Thr 255 
HIP 263 
TYR 114 

1 hydrogen bond(back bone) 
1 hydrogen bond 
1 pi-pi stacking 

-8.87 

CACPD2011a-0002070418 PHE 77 
ARG 256 
TRP 252 

1 hydrogen bond 
pi-cationic interaction 
1 pi-pi stacking 

-8.64 

CACPD2011a-0002212015 TYR 114 
PHE 77 
HIP 263 

1 pi-pi stacking 
2 hydrogen bond 
1 hydrogen bond 

-8.72 
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Fig. 5: Superimposition of top-scored hit molecule CACPD2011a-

0000904029 with the pharmacophore hypothesis AAAHH 

 

Earlier, crystallographic studies revealed that PL [26] consisted of 
two structural domains: an amino-terminal domain spanning 
residues 1-336 which contain the active site and a carboxy-terminal 
domain spanning residues 337-449 in which the colipase binding 
site is present. In human PL the foremost catalytic serine residue 
essential for lipid hydrolysis is present at the N-terminal domain and 
is part of Ser-Asp-His triad of the active site. This catalytic triad of PL 
is chemically analogous and structurally distinct to that of serine 
proteases. The essential structural features that are required for 
ester hydrolysis during lipid digestion were discussed by various X-
ray crystallographic studies of PL and PL-colipase complex. PL 
possesses i) catalytic N-terminal domain (residues1-336) which 
contains catalytic triad ii) Non-catalytic C-terminal domain (residues 
337-449) in which binding site for colipase is present and iii) a lid 
domain also called as surface loop (residues 237-261) that cover the 
active site in closed conformation and exposes the active site for the 
substrate in open conformation, especially when the enzyme binds 
with colipase [31-33]. The three important regions of open 
conformation of pancreatic lipase that allows the substrate to access 
the active site are a catalytic triad, oxyanion hole which stabilizes the 
transition state intermediate formed during catalysis, and a 
remarkable continuous hydrophobic plateau. [26, 34]. The amino 
acid residues of the above-mentioned regions are. 

i) Catalytic triad residues-Ser 152, Asp 176, His 263  

ii) Hydrophobic zone-Ala178, Phe215, Prol80, Tyrll4, Leu213 

iii) Oxyanion hole-Phe 77, Leu 153  

Five molecules were selected from the primary hits by considering 
glide score and key interactions with PL enzyme. All the five 
molecules showed good interactions especially with the above 
mentioned catalytic triad, oxyanion hole and hydrophobic zone of 
the target enzyme.  

CACPD2011a-0000904029 comprises a sulphonamide moiety and 
two phenyl rings isolated by N, the N-dimethyl amino group. With 
the glide score-9.15, this compound establishes two hydrogen 
bondings with the active site residues Ser 152 and Hip 263. With 
amino acid residues Phe 215 and Hip 263 it established two π-π 
stackings. All these interactions are attributed to good binding 
affinity. When the binding mode is compared with the standard drug 
orlistat, the compound CACPD2011a-0000904029 also shows a 
hydrogen bonding with ser 152 [35]. So it may exert considerable 
anti-obesity activity. 

Tertiary nitrogen of pyrazole ring of CACPD2011a-0002012951 (fig. 
6b) showed divalent side chain hydrogen bond with HIP 263. The 
terminal phenyl rings established three π-π stackings that are 
associated with Phe 77, Phe 215 and Tyr 114, the residues of a 
hydrophobic patch formed during open conformation. The binding 
mode of the CACPD2011a-0002012956 complex is given in the fig. 
6c. It illustrates the two hydrogen bondings exhibited by the oxygen 
atom of acetyl group attached to indoline nitrogen with Hip 263 and 
the nitrogen atom of amide group linked with phenyl ring with Thr 
255. As shown in MUP (Methoxyundecyl phosphinic acid)-PL 
complex [26] the compounds CACPD2011a-0002012951 and 
CACPD2011a-0002012956 show important interactions with 
oxyanion hole and hydrophobic zone. These interactions are 
essential for fat hydrolysis. So it was observed that these molecules 
can readily replace the fat molecule and prevent the fat hydrolysis. 

The complex 1LPB-CACPD2011a-0002070418 with glide energy of-
8.64 is formed by different interactions that are shown in fig. 6d. 
These electrostatic forces include hydrogen bond, π-cationic 
interaction, and π-π interaction. The hydrogen bonding is 
established by the amino group of semicarbazide type of moiety 
with Phe 77 of oxyanion hole. Pyrazole ring of indoline establishes 
the π-cationic interaction with Arg 256, one of the key residues of lid 
domain and hydrophilic pocket. Phenyl ring of indoline interacts 
with Trp 252 via π-π stacking. Egloff et al. [26] stated that Trp 252 is 
part of the lid domain and fills the active site especially when the 
enzyme is in a closed conformation. Its removal starts an array of 
conformational changes, lid opening, and exposes the active site to 
the substrate. So these interactions clearly describe the ability of the 
compound 1LPB-CACPD2011a-0002070418 to stop the array of 
conformational changes that are required for successful fat 
hydrolysis step. In the complex 1LPB-CACPD2011a-0002212015, 
three hydrogen bonds and one pi-pi interaction were observed with 
a glide score of-8.72. Out of the three hydrogen bonds, a divalent 
hydrogen bond with phe 77 was brought by the nitrogen atom of 
sulphonamide group. Two hydrogen bondings were established by 
the phenacyl ester group with amino acid residues phe 77 and Hip 
263. Another π-π stacking was observed between the phenyl ring of 
the molecule and Tyr 114 [36, 37]. The molecule CACPD2011a-
0002212015 shows binding interactions with all the three essential 
amino acid segments such as a catalytic triad, oxy anionic whole and 
hydrophobic zone. 

  

 

CACPD2011a-0000904029    CACPD2011a-0002012951 
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CACPD2011a-0002012956 

 

CACPD2011a-0002070418   CACPD2011a-0002212015 

Fig. 6a-e: 2D ligand interaction diagram of hit molecules and their binding mode 

 

Docking studies of (-)-Epigallocatechin 3-O-gallate (EGCG), which is 
one of major polyphenols in green tea known for its pancreatic 
lipase inhibitory activity with an IC50 of 0.349 µM revealed that an 
important hydrogen bond was formed between Hydroxyl group of 
the compound and a residue of the catalytic triad His 263 [38]. A 
molecular level docking simulations of berberine (IC50 value of 106.0 
µM) and dihydro berberine (IC50 value of 8 µM) revealed that 
potential hydrophobic interactions with the key amino acids Phe-
215, Phe-77 and Tyr-114 are responsible for the biological activity. 
Also this study focused that multiple strong hydrogen bonds with 
Ser-152 and His-263 stabilizes the ligand–protein complex and 
contributes to the good binding affinity of the two alkaloids [39]. 
When the interactions are compared with the reported studies, it 
was observed that the acceptor group of the hit molecules showed 
hydrogen bonding with His 263. Also hydrophobic interactions with 
the amino acids Phe-215, Phe-77 and Tyr-114 were also observed 
through docking studies.  

When the interactions are thoroughly analyzed, it is supposed that 
the hit molecules possess essential structural features for PL 
inhibitory activity. All the molecules had minimum one interaction 
with i) the residues of active site ii) ion stabilizing residues of oxy 
anionic hole iii) hydrophobic patch and iv) hydrophilic region. It 
indicates that the hit molecules interrupt the conformational 

changes required for the catalysis as well as compete with the 
substrate. In addition, all the molecules have hydrophobic enclosure 
reward points as given in table 7 and fig 7. It enumerates how the 
molecules run parallel to the amino acid residues of the hydrophobic 
plateau that develops during the most active open conformation. 
 

 

Fig. 7: Top scored hit molecule interacting with hydrophobic 

environment and enclosed in a hydrophobic cavity
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Table 7: Glide energy and hydrophobic enclosure reward points of the hit molecules 

Molecule code Glide energy XP PhobEn 

CACPD2011a-0000904029 -39.122 -1.85 
CACPD2011a-0002012951 -55.683 -1.05 
CACPD2011a-0002012956 -44.491 -0.875 
CACPD2011a-0002070418 -58.963 -1.525 
CACPD2011a-0002212015 -46.204 -1.675 

 

CONCLUSION 

In the present study, a five point 3D QSAR pharmacophore model 
was developed using a data set having 133 compounds. The 
developed pharmacophore consists of three hydrogen bond acceptor 
and two hydrophobic features. The model was validated and it was 
found to have high predictive power. The ligand-based 
pharmacophore model furnished structural features that are 
required for pancreatic lipase inhibitory activity in terms of most 
active and inactive ligand in the training set as well as in the test set. 
A database searching and docking studies were applied to identify 
hit molecules that match with the pharmacophore sites as well as 
have the ability to bind with the PL enzyme.  

All the five hit molecules showed interaction with one of the amino 
acid residues presents either in the catalytic triad or ion stabilizing 
residues of oxyanion hole; the regions that actively participate in the 
PL-mediated lipolysis. In addition to this, hit molecules showed 
hydrophobic interactions with amino acid residues of the 
hydrophobic groove that makes the active site remain exposed 
during the catalysis. Taken as a whole, the hit molecules could serve 
as potent lead molecules and provide an opportunity for 
pharmacodynamics and pharmacokinetic studies to develop potent 
pancreatic lipase inhibitors and thereby progress in anti-obesity 
therapeutics. The lipid hydrolysis inhibition may be exerted through 
more than one binding mode and is yet to be illuminated through 
experimental studies.  

ABBREVIATIONS LIST 

PL-Pancreatic lipase, QSAR-Quantitative Structural Activity 
Relationship, SP-Standard precision, XP-Extra Precision, PLS-Partial 
Least Square, PhobEn-Hydrophobic Enclosure rewards. 
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