ETHNO-PHARMACOLOGICAL EVALUATION OF MEDICINAL PLANTS FOR CYTOTOXICITY AGAINST VARIOUS CANCER CELL LINES

RUCHI SINGH THAKUR, BHARTI AHIRWAR*
Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur (C. G.), India
Email: gaurhari7@gmail.com

ABSTRACT

Objective: To evaluate the cytotoxic potential of leaves and seeds of Hibiscus sabdariffa L., fruit juice of Phyllanthus emblica, rhizomes of Dryopteris cochlearia and flowers of Caesalpinia decapetala (Roth) Alston along with the chemical profiling of the most toxic extract through Gas-mass spectroscopy-MS technique.

Methods: The hydroalcoholic extract of the selected crude drugs was prepared by maceration method and the extracts were undergone through phytochemical analysis. The cytotoxic activity of the hydroalcoholic extract was performed against four cancer cell lines i.e. liver (HepG2), breast (MCF7), prostate (PC-3) and leukemia (HL60) using sulphorhodamine B assay. The hydroalcoholic extract of Caesalpinia decapetala flowers was profiled through using gas mass spectroscopy.

Results: The results confirmed that Phyllanthus emblica inhibited HL60 cancer cells at the dose of 35.6 µg/ml and show dose-dependent growth inhibition. The flowers of Caesalpinia decapetala inhibited nearly fifty percent of HL60 cancer cells at very low dose i.e. 10 µg/ml. The analysis of Caesalpinia decapetala flowers shows the presence of diterpenoid furanolactones, bufadienolides, polycyclic enones, and androsterone.

Conclusion: The fruit juice of Phyllanthus emblica and flowers of Caesalpinia decapetala showed good inhibitory activity against HL60 cancer cell line. The use of Phyllanthus emblica in herbal medicine is justified. The data obtained impelled to further assess the in vivo efficacy of Caesalpinia decapetala flowers for anticancer activity.

Keywords: Bufadienolides, Adriamycin, Sulphorodamine, Rhizomes, Cytotoxicity, Androsterone, Diterpenoid, Flowers

INTRODUCTION

Natural compounds obtained from plants, animals, and microorganisms contain a wide variety of chemical constituents. These diverse ranges of natural compounds turn boon for the medical industry. The history of traditional medicine system laid the foundation of existing modern medicine system. Plants are an integral part of traditional medicine and proved their significance in modern medicine system [1]. In the traditional medicine system, the crude extract of various herbal plants is used for the treatment of various diseases, whereas in the modern medicine system, pure bioactive molecules obtained from plants are used to target the specific receptors of the body for the treatment of a disease. The adverse side effects of modern medicine due to multiple-drug resistance and no specificity to cancer has renewed the interest in herbal medicine and to give scientific support to the knowledge of traditional healers. In the current experiment, we have collected seeds and leaves of Hibiscus sabdariffa L., rhizomes of Dryopteris cochlearia, fruit juice of Phyllanthus emblica, and flowers of Caesalpinia decapetala (Roth) Alston from Chhattisgarh to evaluate the potential for anticancer activity.

Hibiscus Sabdariffa L. is perennial shrub belongs to family Malvaceae. Hibiscus Sabdariffa L. showed antihypertensive, hepatoprotective, antibacterial, antihyperlipidemic and anti-atherosclerotic activity. A decoction of seeds is used traditionally in indigestion, dysuria nation, antitumor and as an antioxidant [6, 7]. Phyllanthus emblica is also known as Emblica officinalis belongs to family Euphorbiaceae. It is a rich source of vitamin C and considered as chemomodulatory, antioxidant, free radical scavenging, anti-inflammatory, antimutagenic, radio modulatory and immune-modulatory [8]. Due to its rich phenolic compounds and diterpenoids, it has been frequently tested for anticancer activity. Dryopteris cochlearia is a pteridophyte which belongs to family Dryopteridaceae. It is extensively used by traditional healers as antidotes for snake bite and dog bite. Rhizomes are rich in flavonoids and phenolic contents and so it shows high antioxidant activity. Root juice is used in amoebic dysentery, while rhizomes are given for treatment of rheumatism, leprosy, epilepsy and wound ulcers. Leaves have antioxidant, free radical scavenging activity and antibacterial activity [9]. Caesalpinia decapetala (Roth) Alston belongs to family Fabaceae. It is traditionally used as antiinflammatory and immunomodulatory [10]. Previous studies reported that it has antioxidant, antifertility, antipyretic and...
the present experiment, cell lines were grown in RPMI 1640 medium containing 2 mmol L-glutamine and 10% fetal bovine serum. Grown at 37 °C, 95% air, 100% humidity and 5% CO2.

RESULTS

Plates were incubated for 48 h, cold TCA was added in plates to terminate the assay. For fixing the cells in situ 50 µl of 30% (w/v) cold TCA was added in plates and incubated at 4 °C for 60 min. The supernatant was removed and plates were washed 5 times and air dried. For staining, 50 µl of sulphorhodamine solution (0.4% in 1% acetic acid) was added, plates were incubated at room temperature for 20 min. The unbound dye was recovered and plates were washed five times with 1% acetic acid to remove residual dye and air dried. Trizma base (10M) was added to remove the bound stain, finally, absorbance at 540 nm and 690 nm were read on the plate reader. The percentage growth of cells was calculated by comparing test wells with control wells on a plate-by-plate basis. The percent growth was expressed as the ratio of average absorbance of the test well to the average absorbance of the control wells multiplied by 100.

The percentage growth of cells by each extract was calculated by taking six absorbance measurement i.e. time zero (Tz), control growth (C) and growth in test samples for four concentrations (T1, T2, T3, T4) and LC50. All the results were processed in Microsoft Excel and all statistical calculations were done as per the guidelines of US National Cancer Institute. All the extracts were statistically analyzed using analysis of variance (ANOVA) followed by Dunnett’s test to calculate the significant differences at 5% level (P<0.05) using Graph Pad prism.

Identification of components by gc-ms analysis

GC-MS analyses were carried out by dissolving a Caesalpinia decapetula flowers aliquot in methanol. The extract was analyzed by using gas chromatography-mass spectroscopy on Agilent’s (Agilent Technologies, Palo Alto, CA) 7890 GC system with 5975C inert XL EI/CI MSD with triple detector equipped with a firmware version A.01.13 and software driver version 4.01(054) gas chromatography with FID. The column used is Agilent’s 19091S-433:325C: 25 meters* 320 micrometers*0.25 micrometers. Helium was used as a carrier gas with a flow rate of 1.1 ml/min and program commenced at 60 °C and held for 0.5 min and then raised to 275 °C at a rate of 40 °C/min with a final hold time of 10 min. Data was acquired by NIST library.

RESULTS

The present study was designed to evaluate the cytotoxic activity of hydroalcoholic extracts of seeds and leaves of Hibiscus sabdariffa L., flowers of Caesalpinia decapetula (Roth) Alston, rhizomes of Dryopteris coechleata, and dried juice of Phyllanthus emblica fruits.

Phytochemical screening

The hydroalcoholic extract was prepared through using maceration method. The phytochemical analysis of all the plant extracts confirmed the presence of general phytochemical constituents viz. glycosides, tannins, flavonoids, amino acids, proteins, steroidal, carbohydrates, reducing sugar, mono saccharides, a pentose sugar, fats and oils (table 1).
Cytotoxic activity

Cytotoxicity of the selected plants against four cancer cell lines i.e. HepG2, MCF7, HL60, and PC3 was investigated by using sulphorhodamine B assay. To determine the cytotoxic potential of the extracts, GI50 (50% growth inhibition), TGI (total growth inhibition) and LC50 values were observed. Adriamycin was used as standard drug. The dried fruit juice of Phyllanthus emblica showed a dose-dependent inhibition of cancer cell growth. It inhibited fifty percent of the HL60 cancer cells and the total cell growth at the dose of 35.6 µg/ml and 75.8 µg/ml respectively, it suggest that, at higher dose it may show significant cytotoxicity, which is in accordance with the study reported that extract enhances cytotoxicity in dose-dependent manner [13, 14]. The dried juice of Phyllanthus emblica did not show significant inhibition on other cancer cell lines. The rhizomes of Dryopteris cochleata and seeds and leaves of Hibiscus sabdariffa L showed the absence of significant inhibition of cancer cell growth on any of the selected cancer cell lines (Fig. 1). The negative results of these plants are in accordance with the absence of cytotoxicity against selected types of cancer cells, the difference in extraction procedure or extraction solvents.

The flowers of Caesalpinia decapetula showed nearly 50% control growth of HL60 cells at the dose of 10 µg/ml, but the cytotoxicity decline with the increase in dose concentration. The results of hydroalcoholic extracts of Caesalpinia decapetula prompted to identify the compounds present in Caesalpinia decapetula flowers, by using gas chromatography-mass spectroscopy.
DISCUSSION

The aim of the present study is to evaluate the phytochemical composition and cytotoxicity of the herbal drugs. The detailed literature survey revealed that all the selected plants are used by traditional healers for the treatment of various diseases. The phytochemical analysis of the selected plants showed the presence of various chemical constituents which are responsible to elicit the response for various pharmacological activity. The rhizomes of Dryopteris cohnii and dried fruit juice of Phyllanthus emblica against four cancer cell lines viz. HepG2, PC3, MCF7, and HL60. It includes Glu, TGI, and Lc values of extracts against various cancer cell lines. The cytotoxicity of the selected plant drugs was evaluated by Sulforhodamine B assay. The dried juice of Phyllanthus emblica inhibited the HL60 cell growth in a dose-dependent manner. Considering the previous reports, Phyllanthus emblica shows cytotoxicity on various other cancer cell lines of leukemia [21-23]. This is the first report of Phyllanthus emblica cytotoxicity against HL60 cancer cells. The earlier studies reported that tannins, flavonoids, triterpenoids and polyphenols present in plants are responsible for the cytotoxic effect on various human cancer cell lines [24, 25]. It is also the first study that shows the

Table 2: GC-EI/MS data of compounds from hydroalcoholic extracts of Caesalpinia decapetala flowers

<table>
<thead>
<tr>
<th>S. No.</th>
<th>RT</th>
<th>EI/MS m/z [rel. int.]</th>
<th>CF</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1,4a-Dimethyl-2,3,4,4a-tetrahydro-9(1H)-phenanthrenone</td>
<td>226(999), 171(781), 170(559), 211(415), 172(344), 141(326), 115(312), 158(297), 142(269), 128(255).</td>
<td>C_{15}H_{18}O</td>
<td>226</td>
</tr>
<tr>
<td>2.</td>
<td>2,2’-Dimethyl-6,6’-dinitro-1,1’-biphenyl</td>
<td>226(999), 91(614), 137(430), 65(280), 152(244), 165(171), 227(163), 178(143), 77(128), 63(119)</td>
<td>C_{19}H_{16}N_{2}O_{4}</td>
<td>272</td>
</tr>
<tr>
<td>3.</td>
<td>Tetracyclo[10.2.1.0(2,11).0(4,9)]pentadeca-2(11),6,13-triene-5,8-dione</td>
<td>226(999), 115(595), 128(421), 91(410), 160(405), 55(376), 141(369), 39(366), 117(352), 211(314).</td>
<td>C_{15}H_{18}O</td>
<td>226</td>
</tr>
<tr>
<td>4.</td>
<td>cis-1-Benzylidene-8-methylindan</td>
<td>129(225), 135(212), 115(197), 184(193), 77(187).</td>
<td>C_{16}H_{12}</td>
<td>226</td>
</tr>
<tr>
<td>5.</td>
<td>4a-Phenyl-4,4a,5,6,7-hexahydro-2(3H)-naphthalenone</td>
<td>170(604), 198(554), 115(534), 142(534), 77(465).</td>
<td>C_{16}H_{12}O</td>
<td>226</td>
</tr>
<tr>
<td>6.</td>
<td>Bicyclo[4.3.0]nonan-2-one, 8-benzylidene, ZE</td>
<td>226(999), 135(632), 91(546), 155(409), 115(252).</td>
<td>C_{16}H_{12}O</td>
<td>270</td>
</tr>
<tr>
<td>7.</td>
<td>11,13-Dihydroxy-tetradec-5-ynoic acid, methyl ester</td>
<td>131(999), 129(828), 157(815), 171(766), 55(705).</td>
<td>C_{17}H_{12}O</td>
<td>426</td>
</tr>
<tr>
<td>9.</td>
<td>2-[(Trimethylsilyloxy)-1-[(trimethylsilyloxy)methyl]]ethyl (9E,12E,15E)-9,12,15-octadecatrienoate</td>
<td>45(199), 73(870), 55(760), 27(700), 43(700), 29(650).</td>
<td>C_{27}H_{42}O_{5}Si_{2}</td>
<td>496</td>
</tr>
<tr>
<td>10.</td>
<td>1,3-Xylyl-18-crown-5, 2-(9-borabicyclo[3.3.1]non-9-yl)</td>
<td>45(199), 131(369), 115(335), 105(278), 130(261), 67(256), 129(254), 89(252), 95(221), 43(215).</td>
<td>C_{27}H_{37}BO_{5}</td>
<td>416</td>
</tr>
<tr>
<td>11.</td>
<td>cis-5,8,11,14,17-Eicosapentaenoic acid, trimethylsilyl ester</td>
<td>79(999), 73(956), 75(848), 91(836), 117(694), 67(570), 93(553), 105(493), 119(474), 106(458).</td>
<td>C_{26}H_{35}O_{5}Si_{2}</td>
<td>374</td>
</tr>
<tr>
<td>12.</td>
<td>10,12-Tricosadiynoic acid, trimethylsilyl ester</td>
<td>105(483), 135(450), 55(432), 93(362), 79(361).</td>
<td>C_{26}H_{35}O_{5}Si_{2}</td>
<td>358</td>
</tr>
<tr>
<td>13.</td>
<td>Columbin</td>
<td>44(999), 91(234), 79(215), 178(180), 94(173), 28(164).</td>
<td>C_{18}H_{28}O_{4}</td>
<td>389</td>
</tr>
<tr>
<td>14.</td>
<td>Acetic acid, 10,13-dimethyl-2-oxo-2,3,4,7,9,10,1,12,13,14,15,16,17-tetradehydro-1H-cyclopenta[a]phenanthren-17-yl ester</td>
<td>105(305), 55(273), 79(270), 91(270), 270(290).</td>
<td>C_{28}H_{37}O_{3}</td>
<td>330</td>
</tr>
<tr>
<td>15.</td>
<td>Resibufogenin</td>
<td>107(999), 97(764), 91(713), 55(632), 105(560), 95(549), 81(509), 93(505), 67(493), 215(480).</td>
<td>C_{28}H_{37}O_{3}</td>
<td>384</td>
</tr>
<tr>
<td>16.</td>
<td>dl-3Beta-hydroxy-d-homo-18-nor-Salphea-androst-13(17a)-en-1-one</td>
<td>110(999), 270(419), 107(321), 91(284), 288(270).</td>
<td>C_{20}H_{36}O_{2}</td>
<td>288</td>
</tr>
<tr>
<td>17.</td>
<td>6,10-Methano-19-norandrost-4-ene-3,17-dione, 6-methyloxy-</td>
<td>314(999), 91(872), 41(625), 59(577), 105(522), 126(515), 115(514), 176(514), 113(508), 129(460).</td>
<td>C_{20}H_{36}O_{2}</td>
<td>314</td>
</tr>
<tr>
<td>18.</td>
<td>Acetic acid, 12a-methyl-7,10-dioxo-1,2,3,3a,4,6,7,8,9,10,11,12,12a-tetradehydrobenzocyclopenta[a]azulen-1-yl ester</td>
<td>43(999), 28(796), 92(725), 160(719), 91(638).</td>
<td>C_{20}H_{36}O_{2}</td>
<td>330</td>
</tr>
</tbody>
</table>

Ahirwar et al.
evaluation of flowers of Caesalpinia decapetala (Roth) Alston on cancer cell lines with nearly 50% control growth at 10 µg/ml dose against HL60 cancer cells. The details of chemical constituents presence in Caesalpinia decapetala (Roth) Alston have been previously shown cytotoxicity activity. The secondary metabolites such as steroids, terpenoids, saponins, flavonoids, polyphenolic compounds, and glycosides are responsible for pharmacological properties [26]. Although the rhizomes of Dryopteris cochleata showed a variety of flavonoids in the phytochemical analysis but was insignificant to control cell growth. It is the first study which shows the evaluation of rhizomes of Dryopteris cochleata against various cancer cell lines.

CONCLUSION

In conclusion, our study demonstrates that fruit juice of Phyllanthus emblica inhibited fifty percent of the HL60 cells at the dose of 35.6 µg/ml and total cell growth at the dose of 75.8 µg/ml. The flowers of Caesalpinia decapetala showed inhibition of HL60 cells at very low dose i.e. fifty percent of the HL60 cells were inhibited at the dose of 10 µg/ml. The GC-MS analysis of the Caesalpinia decapetala flower extract showed the presence of androstene, polycyclic enone, diterpenoid furanolactone and bufadienolide. The use of Caesalpinia decapetala flowers should be further investigated for in-vivo efficacy in cancer.

ACKNOWLEDGEMENT

Authors thanks, Mr. Sadhan Bhattacharya for his support in providing information about traditional medicines and Dr. Jyoti Kode to provide a facility in Tata memorial research centre, navi Mumbai for cytotoxicity testing.

AUTHOR CONTRIBUTION

The corresponding author designed the study protocol and guided in writing the research paper while presenting author performed the protocol and write the research paper.

CONFLICT OF INTEREST

Authors declare no conflict of interest

REFERENCES


How to cite this article