USE OF CASHEW BARK EXUDATE GUM IN THE PREPARATION OF 4 % LIDOCAINE HCL TOPICAL GELS

M. SAQUIB HASNAIN1, POONAM RISHISHWAR1*, SADATH ALI2

1Department of Pharmacy, Shri Venkateshwara University, NH-24, Rajabpur, Gajraula, Amroha 244236, U. P., India, 2Department of Pharmacy, Glocal University, Saharanpur 247001, U. P., India

Email: prishishwar@gmail.com

Received: 09 May 2017 Revised and Accepted: 19 Jun 2017

ABSTRACT

Objective: The objective of the current work was to prepare and evaluate ex vivo skin permeation of cashew bark exudate gum based 4 % lidocaine HCl topical gels.

Methods: In the current work, 4 % lidocaine HCl topical gels were prepared by using different concentrations of cashew bark exudate gum, HPMC K4M, lidocaine HCl, methyl paraben (as preservative) and glycerin (as plasticizer). The formulated topical gels were evaluated for pH, viscosity, and ex vivo skin permeation through excised porcine ear skin membrane.

Results: The pHs of these formulated 4 % lidocaine HCl topical gels were found within the range of 6.04±0.02 to 6.52±0.04; whereas, the viscosities were measured within the range, 4.38±0.02 x 10⁶ to 4.74±0.04 x 10⁶ cps. Sustained ex vivo permeation of lidocaine was measured over 7 h. Highest ex vivo permeation flux was measured when 0.1 % menthol was incorporated as a permeation enhancer. It was also higher than that of the marketed 4 % lidocaine HCl topical gel. The stability study by freeze thaw cycle method revealed physically stable gels without the occurrence of syneresis.

Conclusion: The results clearly indicate a promising potential of the use of cashew bark exudate gum as a gelling material with HPMC K4M to prepare 4 % lidocaine HCl topical gels of good skin permeation capability.

Keywords: Cashew bark exudate gum, Gel, Lidocaine HCl, Skin permeation, Topical application

INTRODUCTION

During past few decades', topical drug delivery through the skin has been employed as a safe and effective way to deliver drugs for local and sustained actions [1-6]. As compared to oral drug delivery, it restricts systemic absorption and hepatic metabolism of drugs, avoids the chances of gastrointestinal irritation and also, minimises systemic toxicities [7-9]. The therapeutic effectiveness of topical drug delivery formulations mostly depends on the capability to deliver drugs to the sites of action onto skin surface [9-11]. In general, local anaesthetics are administered through parenteral routes (mainly, intravenous and hypodermic routes) [12]. Only, a few local anaesthetics are applied topically, by the dermatologists and the dentists, mainly [13]. The topical applications of local anaesthetics facilitate some potential benefits over parenteral routes such as continuous drug delivery, avoidance of systemic side-effects (like hematoma and nerve damages) and thus, improvement of patient compliances [14]. However, the topical delivery of local anaesthetics is associated with some constraints like poor skin permeability and slow skin penetration rates. Therefore, effective topical formulations of local anaesthetics with good skin permeability and rapid skin penetration rates are desperately essential.

Lidocaine is a local anaesthetic, which is employed in the treatment of open skin lesions and sores [15]. It is also employed as a topical local anaesthetic in various small surgical procedures like venipuncture, suturing of wounds, etc [16]. The topical application of lidocaine recommends some potential benefits such as rapid onset of action, minimum systemic toxicity, etc [17]. These benefits favour the topical delivery of lidocaine for local action. In the previous literature, a few topical formulations of lidocaine are reported [18-22]. In the current research, we made an attempt to prepare 4 % lidocaine HCl topical gels of using cashew bark exudate gum.

Cashew bark exudate gum is a natural polymer extracted from Anacardium occidentale tree, belonging to the family: Anacardiaceae [23-24]. This plant derived gum molecules are composed of galactose unit-chains of with branches of glucose, arabinose, rhamnose and uronic acid units [25-26]. According to the previous literature, a flurry of the investigation was performed on the utilizations of cashew bark exudate gum as pharmaceutical excipients, such as, tablet binder in paracetamol tablets [27], mucoadhesive in the buccal formulation of curcumin [28] and gelling agent in aceclofenac gel [29]. In the present research, cashew bark exudate gum and hydroxypropyl methylcellulose (HPMC K4M) was employed as a gelling agent in the formulation of lidocaine HCl topical gels. In vitro skin permeability of lidocaine through the excised porcine ear skin membrane from the formulated 4 % lidocaine HCl topical gels were also tested and analyzed.

MATERIALS AND METHODS

Materials

Lidocaine HCl (Albert-David Pvt. Ltd., India), HPMC K4M (Loba Chemie Pvt. Ltd., India), menthol (Qualigens Fine Chemicals, India) were used. Cashew bark exudate gum was extracted from the crude exudate of cashew tree bark [collected at Jharppokharia, Odisha, India in the month of September 2015]. All the other chemicals and reagents used were of analytical grade and commercially available.

Extraction of cashew gum

The crude cashew bark exudate was cleaned by removing bark pieces and further extraneous substances. The crude exudate was dried in a tray drier at 50±2 °C for 10 h until it became brittle. The dried exudate was reduced to powder through milling in a domestic blender and then, sieving. 1 kg of the crude cashew bark exudate powder was dissolved in 2 liter distilled water and the exudate solution was boiled for 1 hour under occasional stirring in a temperature controlled water-bath. After cooling at room temperature, the resulting exudate solution was further cooled by keeping in a refrigerator overnight to settle out proteins and
Preparation of 4 % lidocaine HCl gels

4 % Lidocaine HCl gels were prepared by using different concentrations of cashew bark exudate gum, HPMC K4M, lidocaine HCl, methyl paraben [as a preservative] and glycerin [as plasticizer]. The formula of 4 % lidocaine HCl gels is shown in table 1. The formulated gels were stored in a cool place until further use.

Skin permeation data analysis

Permeation flux

The drug amounts permeated through excised porcine ear skin membrane from various formulated 4 % lidocaine HCl gels and marketed 4 % lidocaine HCl gels were plotted against the function of time. The slopes of the linear portion of the plots were derived through regression analyses. The permeation fluxes were calculated as the slope divided by the surface area of skin membrane employed [32]:

\[J_{ss} = \frac{A}{A_s} \times \frac{dQ}{dt} \]

The data were analyzed with simple statistics using Bio Stat version 2009 for Windows software, Analyst Soft Inc.

RESULTS AND DISCUSSION

Preparation of 4 % lidocaine HCl gels

Lidocaine HCl (4 %) gels were formulated by using different concentrations of cashew bark exudate gum along with HPMC K4M as a gelling agent. In these formulated 4 % lidocaine HCl gels, methyl paraben and glycerine were added as preservative and plasticizer, respectively (table 1). These formulated 4 % lidocaine HCl gels were assessed for pH, viscosity, and ex vivo skin permeation of drug through excised porcine ear skin membrane.

pH

For a topical gel formulation, pH is important. The more acidic or basic pH of the topical formulations can change the skin membrane.

Skin permeation of drug

The occurrence of microbial growth [30-31]. The whole system was positioned over a magnetic stirrer at 37±0.7 °C. At the start, the skin membrane was left in the Franz diffusion cell for 2 h so as to make possible hydration of the skin membrane. After 2 h of hydration of the skin membrane, 1 gm of 4 % lidocaine HCl gels was applied onto the skin membrane surface. 1 ml of receptor phase medium was collected from the receptor chamber at predetermined intervals and the same amount of fresh receptor phase medium was replaced to the receptor chamber. The amount of drug permeated through the excised porcine ear skin membrane was determined by means of a UV-VIS spectrophotometer (Shimadzu, Japan) at 274 nm of wavelength.

Kinetics

The drug permeation data were assessed by means of some important mathematical models [33]: Zero order model: \(F = K_A \cdot t \); First order model: \(\ln (1 - F) = - K_C \cdot t \); Higuchi model: \(F = K_t \cdot t^{1/2} \) and Korsmeyer-Peppas model: \(F = K_n \cdot t^n \), where \(F = \text{fraction of drug permeated} \), \(A \) = the amount of drug permeated through the excised porcine ear skin membrane per unit time at a steady state \(\mu g/hr) \).

Stability testing

Stability testing of formulated 4 % lidocaine HCl gels was carried out using freeze-thaw cycling method [34]. The temperature of the study was varied every 24 h in between 25 °C and-5 °C for complete 5 cycles. Gel samples were scrutinised for the physical stability and syneresis.

Statistical analysis

The data were analysed with simple statistics using Bio Stat version 2009 for Windows software, Analyst Soft Inc.
environment, which can produce skin irritation upon application [22]. The pH of all these 4 % lidocaine HCl gels containing cashew bark exudate gum was measured within the range of 6.0±0.02 to 6.52±0.04 (table 2), demonstrating that these gels were close to normal pH of the skin and can be used topically.

Viscosity

The viscosities of these formulated 4 % lidocaine HCl gels containing cashew bark exudate gum were determined at 25±0.3 °C, which ranges in between, 4.38±0.02 x 10⁶ to 4.74±0.04 x 10⁶ cps (table 2). All these gels demonstrated a pseudoplastic flow (indicative of share thinning). This kind of rheology of these gels is ideal for topical formulations [34].

Ex vivo permeation

The formulated 4 % lidocaine HCl gels containing cashew bark exudate gum and marketed topical gel formulation of 4 % lidocaine HCl were evaluated for ex vivo permeation through excised porcine ear skin membrane. The ex vivo skin permeations of lidocaine from the formulated and marketed topical gels were observed to be sustained over a period of 7 h (fig. 1). The ex vivo skin permeation flux (µg/cm²/hr) values for all these topical gels through the excised porcine ear skin membrane were shown in table 3. The results of ex vivo skin permeation experiment of 4 % lidocaine HCl gels illustrated permeation fluxes within the range, 836.42±10.78 to 1538.38±14.03 µg/cm²/hr. The permeation flux values were found to be increased with the increment of HPMC K4M amounts within the gel formula.

![Fig. 1: Ex vivo permeation profile through excised porcine ear skin membrane per unit area from 4 % lidocaine HCl topical gels (mean±standard error, n = 3)](image)

<table>
<thead>
<tr>
<th>Formulation codes</th>
<th>Permeation flux (J, µg/cm²/h)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>836.42±10.78</td>
</tr>
<tr>
<td>G2</td>
<td>992.76±9.12</td>
</tr>
<tr>
<td>G3</td>
<td>1236.68±11.70</td>
</tr>
<tr>
<td>G4</td>
<td>1538.38±13.77</td>
</tr>
<tr>
<td>Marketed gel</td>
<td>1422.18±12.76</td>
</tr>
</tbody>
</table>

*(mean±standard error, n = 3)
The results of ex vivo skin permeation from formulated topical gels containing cashew bark exudate gum and marketed topical gel of 4% lidocaine HCl through excised porcine ear skin membrane were kinetically evaluated and analyzed using various kinetic models: zero order, first order, Higuchi, and Korsmeyer-Peppas model. The respective correlation coefficients (R²) were compared. Korsmeyer-Peppas model was found as a best-fit model (R² = 0.9957 to 0.9982) over a period of 7 h. Besides, zero order model was also found to be almost closer to the best-fit Korsmeyer-Peppas model. Again, the Korsmeyer-Peppas model was employed in the ex vivo lidocaine HCl skin permeation behavior analysis of these formulations: Fickian (nonsteady) when n ≤ 0.5, case-II transport (zero order) when n ≥ 1, and non-Fickian (anomalous) when the value of n is in between 0.5 and 1 [30-31]. The calculated diffusion exponent (n) values of formulated 4% lidocaine HCl topical gels containing cashew bark exudate gum (G1 to G4) were ranged within 0.95 and 1.12 (table 4). On the other hand, n value of 0.88 was calculated for the marketed topical gel of 4% lidocaine HCl. These results indicated that the ex vivo lidocaine HCl skin permeation from these formulated 4% lidocaine HCl topical gels containing cashew bark exudate gum (G1 to G4) followed the super case-II transport mechanism.

Stability

The stability of the formulated 4% lidocaine HCl topical gels containing cashew bark exudate gum (G1 to G4) was determined by freeze thaw cycling method. The stability study by freeze thaw cycling revealed that these formulated topical gels were physically stable. However, syneresis (spontaneous contraction of gel exuding some of the fluid medium) was not observed, even after completion of 5 complete freeze thaw cycling.

CONCLUSION

4% lidocaine HCl topical gels were prepared by using different concentrations of cashew bark exudate gum, HPMC K4M, lidocaine HCl, methyl paraben (as a preservative) and glycerin (as plasticizer). The pH of these formulated topical gels (G1 to G4) was found within the range of 6.04±0.02 to 6.52±0.04 and the viscosity was found in between 4.38±0.02 x 10⁴ to 4.74±0.04 x 10⁴ cps. These topical gels demonstrated sustained ex vivo permeation through excised porcine ear skin membrane of lidocaine HCl over a period of 7 h using Franz diffusion cell. The ex vivo skin permeation fluxes of these 4% lidocaine HCl topical gels containing cashew bark exudate gum ranged 836.42±10.78 to 1538.38±14.03 µg/cm²/hr. Highest ex vivo permeation flux (1538.38±13.77 µg/cm²/hr) was measured in the case of G4 gel containing 0.1% menthol as a permeation enhancer.

These formulated topical gels (G1 to G4) found to be best-fit with Korsmeyer-Peppas model (R² = 0.9957 to 0.9982) with super case-II transport mechanism over a period of 7 h. The stability study revealed that these 4% lidocaine HCl topical gels containing cashew bark exudate gum were physically stable. Even after completion of 5 complete freeze thaw cycling, any sign of syneresis was absent in these topical gels.

ACKNOWLEDGEMENT

The authors would like to acknowledge the financial assistance provided by University Grant Commission, New Delhi, India under Maulana Azad National Fellowship for minority students as well as Shri Venkateshwara University, Gajraula, U. P, India for providing the research facility.

AUTHORS CONTRIBUTION

All authors of the current manuscript contributed equally.

CONFLICT OF INTERESTS

Declared none

REFERENCES

Table 4: Curve fitting results of the ex vivo skin permeation of 4% lidocaine HCl topical gels

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>Marketed gel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero order model</td>
<td>0.9886</td>
<td>0.9903</td>
<td>0.9907</td>
<td>0.9889</td>
<td>0.9926</td>
</tr>
<tr>
<td>First order model</td>
<td>0.8846</td>
<td>0.9013</td>
<td>0.9643</td>
<td>0.8607</td>
<td>0.8839</td>
</tr>
<tr>
<td>Higuchi model</td>
<td>0.7814</td>
<td>0.6539</td>
<td>0.5715</td>
<td>0.6524</td>
<td>0.7844</td>
</tr>
<tr>
<td>Korsmeyer-Peppas model</td>
<td>0.9963</td>
<td>0.9957</td>
<td>0.9968</td>
<td>0.9960</td>
<td>0.9982</td>
</tr>
<tr>
<td>n (diffusion exponent)</td>
<td>0.95</td>
<td>1.08</td>
<td>1.17</td>
<td>1.12</td>
<td>0.88</td>
</tr>
</tbody>
</table>

How to cite this article