Original Article

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR DETERMINATION OF HYDROCHLOROTHIAZIDE, OLMESARTAN MEDOXOMIL AND THEIR RELATED SUBSTANCES IN COMBINED TABLET DOSAGE FORM

URVESH M. PATEL, AVANI B. CHOKSHI, PRITESH R. DESAI

Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa 388421, Ta. Petlad, Dist. Anand, Gujarat, India. Email: urvesh.pharmacist@gmail.com

Received: 15 Jul 2014 Revised and Accepted: 21 Aug 2014

ABSTRACT

Objective: Development of RP-HPLC method for determination of Hydrochlorothiazide (HCTZ), Olmesartan medoxomil (OLM) and their related substances in combined tablet dosage form and validation of the developed method.

Methods: Gradient mobile phase system was used for estimation of drug contents and their related substances. Mobile phase A contained the mixture of Acetonitrile and 15 mM Phosphate buffer (pH adjusted to 3.4 with orthophosphoric acid) in the ratio of 20:80. Mobile phase B contained the same mixture in the ratio of 80:20. Chromatographic separation was carried out at the mobile phase flow rate of 0.8 mL/min using C₁₈ Phenomenax inplace of Enable ($250 \times 4.6 \text{ mm}$) 5 µm column and detection was made at 254 nm.

Results: The linearity of developed method was tested in the range of 62.5-187.5 µg/mL for Hydrochlorothiazide, 100-300 µg/mL for Olmesartan medoxomil, 1-1.8 µg/mL for Hydrochlorothiazide. The % recovery was found to be 99.88-100.67 % (HCTZ), 99.14-99.91 % (OLM), 99.11-100.71% (HCTZ-IMP) and 98.13-100.83% (OLM-IMP). The assay of marketed formulation was found to be 99.78% (HCTZ) and 99.26% (OLM).

Conclusion: A simple, precise and accurate RP-HPLC method was developed for determination of Hydrochlorothiazide, Olmesartan medoxomil and their related substances.

Keywords: Hydrochlorothiazide (HCTZ), Olmesartan medoxomil (OLM), Hydrochlorothiazide Related Impurity (HCTZ-IMP), Olmesartan medoxomil Related Impurity (OLM-IMP), Reversed phase high performance liquid chromatography (RP-HPLC).

INTRODUCTION

Hydrochlorothiazide (HCTZ) is a diuretic antihypertensive drug. Chemically it is 6-chloro-3, 4-dihydro-2H-1,2,4-benzothiadiazine-7sulphonamide 1,1-dioxide clinically used in treatment of hypertension and management of edema. It inhibits the reabsorption of sodium in the distal convoluted tubule thereby decreasing the blood pressure.

Olmesartan medoxomil (OLM) is an antihypertensive drug. Chemically it is (5-Methyl-2-oxo-1,3-dioxol-4-yl)methyl 4-(1-hydroxy-1-methylethyl)-2-propyl-1-[[2'-(1*H*-tetrazol-5-yl)biphenyl-4-yl]methyl]-1*H*-imidazole-5-carboxylate clinically used in the treatment of hypertension. Olmesartan is an angiotensin receptor blocker that selectively inhibits the binding of Angiotensin II to AT1. This results in decreased vascular resistance and blood pressure.

The literature review reveals various analytical methods for determination of Hydrochlorothiazide like UV [1,2], RP-HPLC [3,4], and HPTLC [5] and Olmesartan medoxomil UV [6,7], RP-HPLC [8,9] and HPTLC [10] individually as well as in combined dosage form with other drugs [11,12] but there was no method available for determination of these two drugs along with their related substances in combined tablet dosage form. There are various sources through which impurities (related substances & other impurities) may be generated in the drug product affecting its efficacy. It becomes necessary to have a method which can analyze such impurities in drug product.

Hydrochlorothiazide and Olmesartan medoxomil both have some related substance reported in pharmacopoeias [13,14]. They may be present in combined drug product in some amount or may get generated in the amount beyond the acceptance limit under worse conditions. So, the objective of present work was determination of Hydrochlorothiazide, Olmesartan medoxomil and their related substances in combined tablet dosage form by validated RP-HPLC method as per ICH Q2(R1) [15].

Fig. 1: Structure of HCTZ

Fig. 2: Structure of OLM

Fig. 3: Chlorothiazide (HCTZ-IMP)

Fig. 4: Olmesartan acid impurity (OLM-IMP)

MATERIALS AND METHODS

Instrumentation

HPLC: Shimadzu LC-20AT system equipped with LC solution software, PDA detector, injection volume: 20μ L, column: C₁₈ Phenomenax inplace of Enable (250 × 4.6 mm) 5µm , Milli Q water purification system.

Materials

Standard gift samples of Hydrochlorothiazide, Olmesartan medoxomil and their related impurities were provided by Zydus Cadila Healthcare Ltd. Combined tablet dosage form OLMEZEST H-20 was purchased from local market. Acetonitrile (HPLC Grade) was procured from Loba Chemie Pvt Ltd, Mumbai. Potassium dihydrogen phosphate (HPLC Grade) was used for preparation of buffer solution.

Chromatographic conditions

The chromatographic column used was C_{18} Phenomenax inplace of Enable (250 × 4.6 mm) 5µm. The gradient method was employed with mobile phase A & B using 0.8 mL/min flow rate and 254 nm detection wavelength during entire gradient program. Injection volume was 20 µL.

Mobile phase A- Acetonitrile: 15 mM Phosphate buffer (pH 3.4) in the ratio of 20:80 $\,$

Mobile phase B- Acetonitrile: 15 mM Phosphate buffer (pH 3.4) in the ratio of $80{:}20\,$

Table 1: Gradient Program

Time (min)	A (% v/v)	B (% v/v)	
0-26	87→13	13→87	
26-27	13→87	87→13	
27-30	87	13	

Preparation of Solutions

Preparation of standard stock solutions

Stock solutions of 1250 $\mu g/mL$ of HCTZ and 2000 $\mu g/mL$ of OLM were prepared by dissolving 125 mg of HCTZ and 200 mg of OLM in 100 mL of acetonitrile in separate 100 mL volumetric flasks respectively.

HCTZ-IMP (4 mg) was accurately weighed and transferred to a 10 mL volumetric flask and then dissolved and diluted to 10 mL with acetonitrile. From above solution 1 mL was transferred to a 10 mL volumetric flask and diluted to 10 mL with acetonitrile to obtain stock solution of 40 μ g/mL.

OLM-IMP (5 mg) was accurately weighed and transferred to a 10 mL volumetric flask and then dissolved and diluted to 10 mL with acetonitrile. From above solution 2 mL was transferred to a 10 mL volumetric flask and diluted to 10 mL with acetonitrile to obtain stock solution of 100 μ g/mL.

Validation of developed method

The developed method was validated according to International Conference on Harmonization (ICH) Q2(R1) guideline.

System suitability

They are used to verify that resolution and reproducibility of chromatographic system are adequate for the analysis to be done. The parameters include Resolution (R), Tailing factor (T), Theoretical plates and Precision of replicate injection.

Linearity

Linearity of response was assessed by calibration curve in terms of slope, intercept and regression coefficient values. Five standard mixture solutions of HCTZ (62.5-187.5 μ g/mL), OLM (100-300 μ g/mL), HCTZ-IMP (1-1.8 μ g/mL) and OLM-IMP (1-3 μ g/mL) were analyzed for linear regression analysis.

Precision

Intraday and interday precision were performed over 3 levels of concentration at 3 different times in a day and on 3 different consecutive days respectively. Concentration levels of standard mixture of HCTZ, OLM, HCTZ-IMP and OLM-IMP used were 50%, 100% and 150% of the test concentration.

Specificity

Specificity for drug substances was assessed by taking the overlay of chromatograms of standard and sample. Specificity for impurities was assessed by taking the overlay of chromatogram of sample (i. e. drug product) and that of the mixture of impurity standards & drug substances.

Accuracy (n=3)

Accuracy was determined in terms of percentage recovery. Accuracy was determined by spiking 3 different known concentrations of standard to sample solution to obtain three levels of concentrations (80%, 100% and 120%).

Limit of Detection (LOD) and Limit of Quantitation (LOQ)

LOD and LOQ were determined using following equations.

 $LOD = 3.3 \sigma/S$

 $LOQ = 10 \sigma/S$

Where, σ = Standard deviation of response

S = Slope of calibration curve

Robustness

The developed HPLC method was tested for robustness using factorial design (2³⁻¹) with four experiments. Three factors selected were Flow rate, Mobile phase ratio in line A and pH of buffer solution. The selection of factors was based on observation during method development. Each factor was studied at two levels. The levels of factors studied were selected according to error ranges which would be typically encountered in an analytical laboratory.

Table 2: Selected factors and levels

S. No.	Factor	Low level (- 1)	High level (+1)
1.	Mobile phase ratio in line A	15:85	25:75
2.	pH of buffer solution	3.2	3.6
3.	Flow rate	0.7	0.9

Table 3: Factorial design 2³⁻¹

S.	Mobile phase in line	pH of buffer	Flow
No.	Α	solution	rate
1.	15:85	3.2	0.7
2.	25:75	3.2	0.9
3.	15:85	3.6	0.9
4.	25:75	3.6	0.7

Analysis of marketed formulation

Twenty tablets were powdered and the powder quantity equivalent to 200 mg of OLM and 125 mg of HCTZ was accurately weighed and

transferred to a 100 mL volumetric flask. 50 mL of acetonitrile was added to dissolve the drug content and solution was filtered. The filtrate solution was diluted to 100 mL using acetonitrile. From above solution, 1 mL was transferred to a 10 mL volumetric flask and diluted to 10 mL with mixture of acetonitrile and water (50:50) to obtain final solution of 200 μ g/mL (OLM) and 125 μ g/mL (HCTZ). The amount of both the drugs was calculated from regression equation of calibration curve and percentage assay was calculated.

Forced degradation of marketed formulation

Sample solution of marketed formulation was prepared containing 2500 $\mu g/mL$ OLM and 1562.5 $\mu g/mL$ HCTZ. This solution was used as stock solution for degradation.

Acidic degradation

10 mL of above stock solution was transferred to a 100 mL volumetric flask and 10 mL of 0.1N HCl was added to it. Solution was kept for 60 min at room temperature and then it was neutralized. The final volume was made up to 100 mL using mixture of acetonitrile and water (50:50).

Alkaline degradation

10 mL of stock solution was transferred to a 100 mL volumetric flask and 10 mL of 0.1N NaOH was added to it. Solution was kept for 30 min at room temperature and then it was neutralized. The final volume was made up to 100 mL using mixture of acetonitrile and water (50:50).

Oxidative degradation

10 mL of stock solution was transferred to a 100 mL volumetric flask and 10 mL of 5% H_2O_2 was added to it. Solution was kept for 60 min at room temperature. The final volume was made up to 100 mL using mixture of acetonitrile and water (50:50).

The degraded samples were subjected to HPLC analysis using developed method and the percentage impurity of interest was calculated using following equation.

% Impurity = (Area of that impurity peak / Total Area of all peaks) * 100

RESULTS AND DISCUSSION

Optimization of chromatographic condition

The retention time was found to be 6.194 min (HCTZ), 8.389 min (HCTZ-IMP), 15.226 min (OLM) and 19.309 min (OLM-IMP).

Fig. 5: Chromatogram of Mixture of HCTZ, HCTZ-IMP, OLM & OLM-IMP (125, 1.4, 200 & 2 μg/mL in ACN:Water-50:50 respectively)

System Suitability Test

Results of theoretical plate, tailing factor, resolution and precision of injection repeatability have been shown below (Table 4).

Table 4: Data of System Suitability Test (n=6)

Parameter	HCTZ	OLM	HCTZ-IMP	OLM-IMP
Retention Time (min) ±SD	6.194±0.021	15.16±0.115	8.380±0.014	19.279±0.053
Tailing Factor ±SD	1.343±0.030	1.481±0.065	0.929±0.043	1.346±0.014
Theoretical Plate ±SD	2363.281 ± 214.089	29127.175 ± 1128.663	1797.433 ± 91.445	51571.147 ± 1031.876
Resolution	-	11.908	3.373	11.717
%RSD (Injection repeatability)	0.95	1.72	0.64	0.54

Linearity

The data of linearity of HCTZ, OLM, HCTZ-IMP and OLM-IMP has been shown below (Table 5). The results are within the acceptance criteria.

Precision

The % RSD for Intraday and Interday precision were found to be less than 2 for HCTZ, OLM, HCTZ-IMP and OLM-IMP which indicates that the developed method is precise.

The results of precision study have been shown below (Intraday: Table 7 & Table 8) (Interday: Table 9 & Table 10).

Fig. 6: Overlay Chromatogram for Linearity of HCTZ, OLM, HCTZ-IMP, OLM-IMP.

Specificity

Overlay of chromatograms for specificity has been shown below (fig. 7 and fig. 8).

Fig. 7: Overlay Chromatogram of Standard & Sample for Specificity of HCTZ & OLM.

Accuracy

Accuracy study was performed at three levels for HCTZ, OLM, HCTZ-IMP and OLM-IMP (Table 11 and 12). The values of % recovery were found in the acceptance limit of 98-102 % with low % RSD, which justifies that, the method is accurate and free from the interference of excipients used in formulation and is applicable for analysis of marketed formulation.

Parameter	HCTZ	OLM	HCTZ-IMP	OLM-IMP
Regression equation	y = 30,571.4944x +	y = 47,953.4380x -	y = 188,952.50x -	y = 35,586.80x +
	291,450.4	57,777.4	73,059.9	104,769.8
Regression coefficient mean ±SD	0.997±0.00037	0.998±0.00032	0.999±0.00030	0.997±0.00089
Mean of intercept ±SD	291,450.4 ± 12269.537	57,777.4 ± 3303.837	73,059.9 ± 2436.1	104,769.8 ± 1141.972
95% Confidence interval for	277565.705 to	54038.647 to 61516.153	70303.113 to 75816.687	103477.499 to
intercept	305335.095			106062.101
Slope ±SD	30,571.4944 ± 196.99	47,953.4380 ± 489.83	188,952.50 ± 1563.52	35,586.80 ± 692.49
95% Confidence interval for	30185.3944 to	46993.372 to 48913.504	185888.001 to	34803.151 to 36370.449
Slope	30957.5944		192016.999	

Table 6: LOD and LOQ data

	HCTZ	OLM	HCTZ-IMP	OLM-IMP
LOD (µg/mL)	1.32	5.08	0.04	0.10
LOQ (µg/mL)	4.01	15.39	0.13	0.32

Robustness

The effect of 3 factors on the response was analyzed using design expert software and p-value was obtained for each factor. The p-value for factors Mobile phase ratio in line A and pH of buffer solution were found to be greater than 0.05 which indicates that they are non significant factors within the study range of factors for robustness. The p-value of factor Flow rate was found to be less than 0.05 for HCTZ and OLM which indicates that flow rate is a significant factor affecting the response of HCTZ and OLM.

Fig. 8: Overlay Chromatogram of Standard spiked with impurities and Sample for Specificity of HCTZ-IMP & OLM-IMP

Table 7: Intraday Precision Data of HCTZ & OLM (n=3)

HCTZ			OLM		
Conc. (µg/mL)	Mean Area ± SD	%RSD	Conc. (µg/mL)	Mean Area ± SD	%RSD
62.5	2098427 ± 4553.48	0.22	100	4585538 ± 1659.25	0.04
125	4144189 ± 9575.98	0.23	200	9648941 ± 83119.86	0.86
187.5	5967782 ± 24816.77	0.42	300	14137073 ± 65355.89	0.46

Table 8: Intraday Precision Data of HCTZ-IMP & OLM-IMP (n=3)

HCTZ-IMP			OLM-IMP		
Conc. (µg/mL)	Mean Area ± SD	%RSD	Conc. (µg/mL)	Mean Area ± SD	%RSD
1	114895 ± 1537.68	1.34	1	138950 ± 425.61	0.31
1.4	192754 ± 614.51	0.32	2	175622 ± 88.15	0.05
1.8	265152 ± 170.28	0.06	3	211829 ± 1407.87	0.66

Table 9: Interday Precision Data of HCTZ & OLM (n=3)

HCTZ			OLM		
Conc. (µg/mL)	Mean Area ± SD	%RSD	Conc. (µg/mL)	Mean Area ± SD	%RSD
62.5	1930766 ± 10293.61	0.53	100	4543694 ± 56438.02	1.24
125	4090065 ± 39388.14	0.96	200	10149030 ± 119970.5	1.18
187.5	6222916 ± 654.82	0.01	300	15401259 ± 39407.02	0.26

Table 10: Interday Precision Data of HCTZ-IMP & OLM-IMP (n=3)

HCTZ-IMP			OLM-IMP		
Conc. (µg/mL)	Mean Area ± SD	%RSD	Conc. (µg/mL)	Mean Area ± SD	%RSD
1	113193 ± 2015.28	1.78	1	121755 ± 1495.97	1.22
1.4	215568 ± 1808.22	0.84	2	180156 ± 1315.37	0.73
1.8	281837 ± 1262.29	0.46	3	220241 ± 2198.62	0.99

Analysis of marketed formulation

Marketed formulation OLMEZEST H-20 containing 20 mg of OLM and 12.5 mg of HCTZ was used for assay purpose. Tablet powder was dissolved, filtered and diluted to make the final concentration of 200 μ g/mL (OLM) and 125 μ g/mL (HCTZ). Along with the peaks of HCTZ and OLM, a small peak at 8.386 min was obtained which is a

peak of HCTZ Related substance (i. e. HCTZ-IMP) present in marketed formulation.

Forced degradation of marketed formulation:

The tablet sample was subjected to acidic, basic and oxidative degradation to generate the impurities in sample. The impurities of

interest were quantified using regression equation obtained from calibration curves of impurity standards. In all three conditions for degradation of marketed formulation, HCTZ-IMP was generated in more amounts and OLM-IMP was generated in very less amount because the chromatogram of marketed formulation without degradation shows that the HCTZ Related Impurity was already present within the acceptance limit and after degradation its amount got increased.

Fable 11: Accuracy	y Data	of HCTZ	& OLM
--------------------	--------	---------	-------

	Sample (µg/mL)	Std added (µg/mL)	Total (ug/mL)	Mean Area ± SD	% RSD	Total found (μg/mL)	% Reco-verv
	75	60	135	4446142±54748.6	1.23	135.90	100.67
HCTZ	75	75	150	4871521±57179.3	1.17	149.82	99.88
	75	90	165	5354073±43326.3	0.81	165.60	100.36
	120	96	216	10211399±139896.2	1.37	214.15	99.14
OLM	120	120	240	11370489±89519.63	0.79	238.32	99.30
	120	144	264	12591083±10306.66	0.08	263.77	99.91

Table 12: Accuracy Data of HCTZ-IMP & OLM-IMP

	(HCTZ + OLM) (µg/mL)	Impurity Std spiked (µg/mL)	Mean Area±SD	% RSD	Spiked Std found (µg/mL)	% Recovery
HCTZ IMP	125 + 200	1.12	137886±822.50	0.59	1.11	99.11
	125 + 200	1.4	192577±622.73	0.32	1.41	100.71
	125 + 200	1.68	243042±1200.65	0.49	1.67	99.40
OLM IMP	125 +200	1.6	160769±1087.36	0.67	1.57	98.13
	125 + 200	2	175133±434.17	0.25	1.97	98.50
	125 + 200	2.4	191004±763.04	0.39	2.42	100.83

Table 13: p-values of factors for robustness

	_p-value of factors				
	Mobile Phase Ratio in line A	pH of buffer solution	Flow rate		
HCTZ	0.9166	0.8075	0.0223		
OLM	0.9700	0.8175	0.0173		
HCTZ-IMP	0.7276	0.2360	0.4151		
OLM-IMP	0.6794	0.7586	0.0841		

p-value < 0.05: Factor has significant effect on response, p-value > 0.05: Factor has no significant effect on response

Fig. 10: Acidic degradation of tablet sample

Fig. 11: Alkaline degradation of tablet sample

Fig. 12: Oxidative degradation of tablet sample

Table 14: Data	of Marketed	formulation	Analysis
----------------	-------------	-------------	----------

	Mean Area±SD	% RSD	% Assay	
HCTZ (125 μg/mL)	4104467±5848.43	0.14	99.78 %	
OLM (200 μg/mL)	9461639±88939.41	0.94	99.26 %	
HCTZ-IMP	139486±727.99	0.52	1.01 %	

Table 15: Acidic degradation data

Impurity	Retention Time (min)	Peak Area	Conc. found (µg/mL)	% Impurity
HCTZ-IMP	8.278	850913	4.89	5.79 %
OLM-IMP	18.795	110533	0.16	0.75 %

Table 16: Alkaline degradation data

Impurity	Retention Time (min)	Peak Area	Conc. found (µg/mL)	% Impurity
HCTZ-IMP	8.148	664499	3.90	4.10 %
OLM-IMP	19.466	119840	0.42	0.74 %

Table 17: Oxidative degradation data

Impurity	Retention Time (min)	Peak Area	Conc. found (µg/mL)	%Impurity
HCTZ-	8.537	396041	2.48	4.94 %
IMP				
OLM-	19.550	117986	0.37	1.47 %
IMP				

CONCLUSION

The developed method was validated as per ICH Q2(R1) guideline and was found to be within the prescribed limit. It concludes that the developed method is simple, accurate, sensitive and precise and suitable for routine quality control analysis of Hydrochlorothiazide, Olmesartan medoxomil and their related substances in combined tablet dosage form.

CONFLICT OF INTERESTS

Declared None

ACKNOWLEDGEMENT

The authors are very thankful to Dr. R. H PARIKH; Principal, Ramanbhai Patel College of Pharmacy, Changa, for providing the research facilities. We are also thankful to Zydus Cadila Healthcare Ltd for providing gift samples of Hydrochlorothiazide and Olmesartan medoxomil.

REFERENCES

- 1. Alagar Raja M, Selvakumar D. Method development and validation of hydrochlorothiazide in tablet dosage form by UV spectroscopy. Int J of Res Pharm Sci 2010;1(3):369-71.
- Jothieswari D, Anandkumar K, Vijayasanthi D, Vijayakumar B, Priya D, Stephen Rathinaraj B. A Validated UV Spectrophotometric Method for Simultaneous Estimation of Amlodipine besylate, Valsartan and Hydrochlorothiazide in Bulk and in Combined Tablet Dosage Form. J of Pharm Biol Sci 2010;5(13).
- Kavitha J, Muralidharan S. Development and Validation of New Method for Atenolol, Hydrochlorothiazide and Losartan potassium by RP-HPLC:Its Application to Routine Quality Control Analysis. Int J of Chem Tech Res 2010;2(2):880-84.
- 4. Tengli AR, Gurupadayya BM. Method Development and Validation of Tablet Dosage form Containing Losartan, Atenolol

and Hydrochlorthiazide Using Internal Standard by RPHPLC. J Chromat Separation Techniq 2013;4(5).

- Kumbhar ST, Chaugule GK, Tegeli VS, Gajeli VS, Thorat YS, Shivsharan US. A Validated HPTLC Method for Simultaneous Quantification of Nebivolol and Hydrochlorothiazide in Bulk and Tablet Formulation. Int J of Pharm Sci Drug Res 2011;3(1):62-6.
- Abdullah Al Masud Md Mahfuzur R, Moynul Hasan, Md Kamal Hossain Ripon, Ahsanur, Rahman Khan, Md Rabiul Islam, Md Raihan S. Validated Spectrophotometric Method for Estimation of Olmesartan Medoxomil in Pharmaceutical Formulation. Int J of Pharm Life Sci 2012;1(3).
- Vora BN, Parmar RR, Shah DA, Nayak PP. Absorption Correction Method for Simultaneous Estimation of Metoprolol Succinate and Olmesartan Medoxomil in Combined Tablet Dosage Form. J of Pharm Sci Bioscientific Res 2012;2(2):54-7.
- Hamrapurkar PD, Gadapayale KK. Optimization and Validation of RP-HPLC Stability Indicating Method for Determination of Olmesartan Medoxomil and Its Degraded Product. Int J of Applied Sci and Engineering 2013;11(2):137-47.
- Rane VP, Patil KR, Sangshetti JN, Yeole RD, Shinde DB. Stability-Indicating LC Method for the Determination of Olmesartan in Bulk Drug and in Pharmaceutical Dosage Form. Chromatographia 2009;69:169-73.
- Della Grace Thomas Parambi, Mathew M, Ganesan V, Jose A, Revikumar KG. A Validated HPTLC Determination of an Angiotensin receptor blocker Olmesartan medoxomil from Tablet Dosage form. Int J of Pharm Sci Rev Res 2010;4(3):36-9.
- Sagirli O, Onal A, Toker SE, Sensoy D. Simultaneous HPLC Analysis of Olmesartan and Hydrochlorothiazide in Combined Tablets and *in vitro* Dissolution Studies. Chromatographia 2007;66:213-18.
- Ashok kumar J, Sathya A, Senthil kumar K, Patil SN, Prathap B, Lokesh SB, Gopal V. Simultaneous Estimation of Olmesartan medoxomil and Hydrochlorothiazide by RP-HPLC Method from Combined Dosage Forms. Int J of Res and Pharm Sci 2010;1(1):24-7.
- European Pharmacopoeia 7th ed. European Directorate for the Quality of Medicines and Healthcare:Published by Council of Europe (Suppl 7.4):4347-48.
- 14. British Pharmacopoeia, Government of British,Vol-1:Published by Council of Europe;2011. p. 1072-73.
- The International Conference on Harmonization, Q2(R1), Validation of Analytical Procedure: Text and Methodology;2005.