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ABSTRACT 

Objective: The main objective of the present study was to evolve a novel pharmacophore of methaniminium derivatives as factor Xa inhibitors by 

developing best 2D and 3D QSAR models.  

The models were developed for amino (3-((3, 5-difluoro-4-methyl-6-phenoxypyridine-2-yl) oxy) phenyl) methaniminium derivatives as factor Xa 

inhibitors. 

Methods: With the help of Marvin application, 2D structures of thirty compounds of methaniminium derivatives were drawn and consequently 

converted to 3D structures. 2D QSAR using multiple linear regression (MLR) analysis and PLS regression method was performed with the help of 

molecular design suite VLife MDS 4.3.3. 3D QSAR analysis was carried out using k-Nearest Neighbour Molecular Field Analysis (k-NN-MFA). 

Results: The most significant 2D models of methaniminium derivatives calculated squared correlation coefficient value 0.8002 using multiple linear 

regression (MLR) analysis. Partial Least Square (PLS) regression method was also employed. The results of both the methods were compared. In 2D 

QSAR model, T_C_O_5, T_2_O_2, s log p, T_2_O_1 and T_2_O_6 descriptors were found significant. 

The best 3D QSAR model with k-Nearest Neighbour Molecular Field Analysis have predicted q2 value 0.8790, q2_se value 0.0794, pred r2 value 0.9340 

and pred_r2 se value 0.0540. The stepwise regression method was employed for anticipating the inhibitory activity of this class of compound. The 3D 

model demonstrated that hydrophobic, electrostatic and steric descriptors exhibit a crucial role in determining the inhibitory activity of this class of 

compounds.  

Conclusion: The developed 2D and 3D QSAR models have shown good r2 and q2 values of 0.8002 and 0.8790 respectively. There is high agreement 

in inhibitory properties of experimental and predicted values, which suggests that derived QSAR models have good predicting properties. 

The contour plots of 3D QSAR (k-NN-MFA) method furnish additional information on the relationship between the structure of the compound and 

their inhibitory activities which can be employed to construct newer potent factor Xa inhibitors. 
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INTRODUCTION 

The structure of any molecule dictates its properties. By modifying 

the chemical structure of any compound, its biological activities also 

get changed. In other words, the biological activity of a compound is 

a function of its chemical structure. QSAR suggests that if a group of 

chemicals show the same mechanism of action towards a target then 

alteration in the biological activity also alters chemical, structural 

and physical properties [1]. 

QSAR methods are not only used in drug designing but are widely 

used in other sciences too, i.e. in biology, toxicology [2-3] 

environmental toxicology [4], agrochemistry, pharmaceutical 

chemistry etc. The QSAR is also used to determine the initial and 

final point of synthesis [5]. This, in turn, reduces the number of 

compounds that could be practically/experimentally synthesized. 

This part of QSAR is not only beneficial for the pharmaceutical 

industry but also to environmental regulatory authority and human 

beings for the reduction in toxic effects [6-10]. 

QSAR models are not only used for prediction of properties but are 

also helpful in selection of alternative mechanism of action, 

determination of useful structural characteristics, projecting new 

design methodologies and help in proposing new hypotheses for 

future research work [11]. Thus, QSAR decreases the cost, time and 

human resources to make that drug reachable to the patient. 

The injury to the blood vessel causes the body to use platelets and 

fibrin to make a blood clot or thrombus. The process of formation 

of the blood clot is called thrombosis or coagulation. When clotting 

takes place excessively and the thrombus or clot breaks and 

detaches from its side then an embolus is produced [12-13]. When 

thrombus occlude the blood vessel then the supply of oxygen to 

the tissue through blood is interrupted which causes cell death or 

necrosis. 

The thrombi in the arteries are platelet rich with small fibrin 

requiring antiplatelet therapy primarily in ischemic heart disease. 

For venous thromboembolism and atrial thromboembolism having 

large fibrin burden, for example, deep vein thrombosis (DVT), 

pulmonary embolism (PE), stroke prevention in atrial fibrillation 

(AF) [14-16] and mechanical prosthetic heart valve, long term 

anticoagulation is necessary. 

Venous arterial thromboembolism continues to be a major cause of 

morbidity and mortality globally. Research is going on for long term 
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prevention of thromboembolic episode because of the large burden 

of other thrombotic and thromboembolic disorders. 

Unfractionated heparin was the first anticoagulant (injectable) 

developed a century ago. Later on, heparin was further modified and 

refined resulting in the development of low molecular weight heparin 

and site-specific (injectable) fondaparinux (factor Xa indirect inhibitor). 

Similarly, in the field of oral anticoagulants, classical vitamin K 

antagonists have developed around 70 y ago. Vitamin K antagonist 

acts by competitively inhibiting enzymes involved in the synthesis of 

factor II, VII, IX and X in the liver. Around thirty proteins are needed 

for coagulation cascade [17]. Vitamin K antagonist are having many 

limitations such as the need for INR monitoring due to the narrow 

therapeutic window, numerous drug and food interactions and 

increased chances of bleeding. Therefore, the need for site-specific 

oral anticoagulant having less chance of bleeding, less drug 

interaction and not requiring monitoring was sought and 

development of other antithrombotic agents started [18-23]. 

At present, heparin and oral anticoagulants are only available 

therapy for treating thrombotic disorders. Previously, benzamidine 

[24] and arylamide compounds have been reported as factor Xa 

inhibitors [25] but still, oral anticoagulants which do not require 

monitoring and have less chances of bleeding are essayed to 

decrease the mortality and morbidity rate. 

Factor Xa is present at the central position of coagulation cascade or 
at the converging point of the extrinsic and intrinsic pathway. The 
intrinsic and extrinsic pathway model splits up the coagulation 
process into two fragments. Consequently, Factor Xa has emerged as 
an attractive target for the development of antithrombotic drugs. 

MATERIALS AND METHODS 

Software which was employed to present study includes Marvin 
Sketch, Chem Bio Draw Ultra 12.0 and Vlife MDS 4.3.3 [26]. In the 
present study, a dissimilar set of amino (3-((3, 5-difluoro-4-
methyl-6-phenoxypyridine-2-yl) oxy) phenyl) methaniminium 
derivatives were assessed as factor Xa inhibitor as antithrombotic 
agents. Set of 30 molecules was used as a dataset with their 
inhibitory activities towards factor Xa. The molecular structures of 
amino (3-((3, 5-difluoro-4-methyl-6-phenoxypyridine-2-yl) oxy) 
phenyl) methaniminium derivatives with their binding affinity for 
factor Xa are presented in table 1. 

 

Table 1: The structures of compound and Ki values for factor Xa 

 

Compound R’ R’’ R Ki 

3 
 

H H 5.920 

6 

 

H H 5.886 

8 

 

H H 5.869 

10 

 

 
H 5.850 

13 

 

H H 5.769 

15 

 

H H 5.744 

16 

 

H H 5.744 

18 

 
 

H 5.698 

21 

 

H H 5.677 

23 

 

H H 5.657 

26 

 

H 
 

5.619 

27 
 

H 

 

5.619 

32 

 

H H 5.494 

33 
 

H H 5.481 

36 

 

H 

 

5.346 
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39 

 

H 
 

5.301 

40 

 

H H 5.301 

41 

 

H H 5.301 

42 
 

H 

 

5.300 

43 

 

H H 5.301 

44 

 

H 

 

5.301 

45 

,  

H 

 

5.301 

46 

 
 

H 5.301 

47 

 
, H  

5.301 

48 

 

H 

 

5.301 

49 
 

H H 5.301 

 

50 H H H 5.301 

51 

,  

H 
 

5.301 

52 

 

H 

 

5.301 

53 

 

H H 5.283 

55 

 

H H 5.236 

 

Table 2-i: Molecular descriptors of (Model 1 MLR) training set used in the regression analysis 

Compound T_2_O_1 T_C_O_5 T_2_O_2 T_O_O_6 Slogp 

3 6 6 11 0 4.247 

6 4 2 8 0 5.19 

10 5 4 10 0 5.435 

13 6 5 11 0 3.944 

16 5 6 10 1 3.334 

21 6 8 11 0 4.301 

23 4 2 8 0 4.676 

26 4 2 8 0 4.119 

27 6 6 11 0 3.944 

32 5 3 9 0 4.547 

33 4 4 8 0 4.911 

36 6 7 9 2 4.164 

40 6 4 11 0 4.235 

41 6 5 11 1 4.247 

43 7 7 13 1 4.256 

44 6 4 11 0 3.944 

45 7 6 13 1 3.65 

46 6 5 11 1 3.944 

47 5 3 10 0 4.242 

49 7 6 13 0 3.953 

52 5 5 8 1 4.495 

53 4 3 9 0 3.877 

55 5 4 10 0 4.545 
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RESULTS 

The most remarkable 2D QSAR models employing multiple linear 
regression method (MLR) evaluated squared correlation coefficient 
value 0.8002. The result of MLR analysis were compared with the 
results of Partial Least Square (PLS) regression method. T_C_O_5, 
T_2_O_2, s log p, T_2_O_1 and T_2_O_6 descriptors were found 
significant in 2 D QSAR model. 

k-Nearest Neighbour Molecular Field Analysis of best 3D QSAR 
model predicted q2value 0.8790, q2_se value 0.0794, pred r2 value 
0.9340 and pred_r2se value 0.0540. For predicting the inhibitory 
activity of methaniminium derivatives, stepwise regression method 
was used. The 3D model revealed that hydrophobic, electrostatic 
and steric descriptors exhibit a critical role in determining the 
inhibitory activity of this class of compounds.  

DISCUSSION 

2D-QSAR model 

Dataset of 30 compounds was taken into consideration along with their 

inhibitory activities. 2D-QSAR analysis was performed on the reported 

compounds of the training set (23) and test set (7). The model obtained 

thus, observed to be statistically significant. Therefore, the training set 

(23) and test set (7) were evaluated for the similarity of the distribution 

patterns of the molecules. Results indicated that the maximum of the test 

set is lesser than the maximum of the train set and the minimum of the 

test set is greater than that of the train set, which is required for further 

QSAR study. 

The minimum ‘inhibitory activity’ of the test set was greater than the 

minimum activity of the training set and the maximum activity of the test 

set was less than the maximum activity of the training set. This indicated 

that the test set was within the activity domain of the training set. Higher 

mean value of test set than the training set indicated the presence of 

relatively more potent compounds in the test set as compared to inactive 

ones. Table 2-i, ii, iii and iv represent various descriptors used in training 

and test set of MLR and PLS regression analysis. 

Best models using multiple linear regression and partial least 

square method 

Model-1 (MLR)  

Ki = 0.1397(±0.0209) (T_C_O_5)+0.2246(±0.0270)(T_2_O_2)+ 

0.1146 (±0.0440) (s log p)  

-0.4670(±0.0514) (T_2_O_1)-0.0994(±0.0334) (T_2_O_6)+5.2416 

Model-2 (PLS) 

Ki = 0.1411(T_C_Cl_4)+-0.2032(T_N_O_5)-0.0398 (SsOHcount)+ 

1.1804(chiV3Cluster)+0.0658(T_T_O_5)-0.6267(SdOcount)+4.7066

 

Table 2-ii: Molecular descriptors of (Model 1 MLR) test set used in the regression analysis 

Compound T_2_O_1 T_C_O_5 T_2_O_2 T_O_O_6 slogp 

8 4 3 8 0 6.28 

15 5 4 9 0 5.376 

18 5 5 9 0 5.657 

39 5 3 9 0 3.924 

48 4 2 8 0 4.537 

50 6 4 11 0 3.944 

51 6 4 11 0 4.714 
 

Table 2-iii: Molecular descriptors of (Model 2 PLS) training set used in the regression analysis 

Compound T_C_Cl_4 T_N_O_5 SsOHcount chiV3Cluster T_T_O_5 SdOcount 

10 0 3 0 1.003 15 1 
13 1 2 0 0.791 6 0 
15 0 2 0 0.769 7 0 
16 0 2 0 0.67 8 0 
21 0 2 0 1.033 10 1 
23 0 2 1 1.039 12 1 
27 0 2 1 1.009 12 1 
32 0 2 0 0.665 6 0 
33 0 2 0 0.699 6 0 
39 0 3 0 1.09 10 1 
3 0 2 0 1.036 8 0 
41 0 4 0 1.067 11 1 
43 0 2 1 0.731 12 1 
45 0 5 0 1.056 18 1 
46 0 4 1 1.029 14 1 
47 0 5 2 1.066 17 1 
49 0 2 1 0.677 7 0 
50 0 2 0 0.602 6 0 
51 0 6 1 1.059 18 1 
52 0 4 1 0.991 12 1 
53 0 2 0 0.727 12 1 
55 0 2 0 0.788 9 1 
6 0 2 1 0.72 9 0 
 

Table 2-iv: Molecular descriptors of (Model 2 PLS) test set used in the regression analysis 

Compound T_C_Cl_4 T_N_O_5 SsOHcount chiV3Cluster T_T_O_5 SdOcount 

8 0 2 0 0.67 8 0 

18 0 3 1 1.008 14 1 

26 0 3 0 1.007 12 1 

36 0 4 1 0.991 14 1 

42 0 2 1 0.785 11 1 

44 0 4 0 1.005 13 1 

48 0 4 1 1.01 13 1 
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Table 3: Statistical parameters (uni-column statistics of model 1 MLR and model 2 PLS) for activity distribution in training and test sets 

Parameters Model 1 MLR Model 2 PLS 

Training set Test set Training set Test set 

Max. 5.9200 5.8600 5.9200 5.8600 

Min. 5.2300 5.3000 5.2300 5.3000 

Std. Dev. 0.2304 0.2527 0.2364 0.2317 

Sum 126.2200 38.4900 126.3100 38.4000 

Average 5.4878 5.4986 5.4917 5.4857 

 

Table 4: It shows the summary of statistical parameters for 2D-QSAR models of Amino (3-((3, 5-difluoro-4-methyl-6-phenoxypyridine-2-

yl) oxy) phenyl) methaniminium derivative 

Statistical parameter Best model (MLR) Best model (PLS) 

N  23  23 
Degree of freedom  17  18 
r2  0.8002  0.7813 
q2  0.6107  0.5762 
F test  13.6181  16.0749 
r2

se  0.1172  0.1222 
q2

se  0.1636  0.1702 
pred_r2  0.5248  0.6621 
pred_r2

se  0.1744  0.1347 

MLR analysis with these newly formed datasets showed better statistically significant results (table 3 and 4). In the multiple regression method, 

T_C_O_5, T_2_O_2,s log p,T_2_O_1 and T_2_O_6 were found contributing as descriptors while in Partial Least square 

method,T_C_Cl_4,T_N_O_5,SsOHcount,chiV3Cluster,T_T_O_5 and SdOcount were used as descriptors. On the basis of statistical analysis, the 

compounds have depicted residual value (table 5) less than 1 unit. 

 

Table 5: It represents residuals of 2 D QSAR 

Compound No. -log (Ki)for factor Xa Actual Model 1 MLR Model 2 PLS 

Predicted Ki Residual Predicted Ki Residual 

3 5.9208 5.6385 0.2824 6.0492 0.2093 
6 5.8861 5.6468 0.2393 5.7021 0.0004 
8 5.8697 5.7126 0.1571 5.6171 0.0718 
10 5.8500 5.7376 0.1124 5.6407 0.1229 
13 5.7696 5.4640 0.3055 5.7696 0.1490 
15 5.7447 5.6057 0.1390 5.6682 0.1195 
16 5.7447 5.6768 0.0679 5.6171 0.0108 
18 5.6990 5.5788 0.1202 5.5410 0.1619 
21 5.6778 5.7252 -0.0474 5.5505 0.0062 
23 5.6576 5.5879 0.0697 5.6492 0.0103 
26 5.6198 5.5240 0.0958 5.4481 -0.0399 
27 5.6198 5.5043 0.1155 5.6138 0.0223 
32 5.4949 5.3710 0.1239 5.4797 -0.1146 
33 5.4815 5.8942 -0.4128 5.5199 -0.1292 
36 5.3468 5.2201 0.1267 5.3177 0.0164 
39 5.3010 5.2996 0.0015 5.4146 0.0500 
40 5.3010 5.3576 -0.0566 5.2836 0.0144 
41 5.3010 5.2999 0.0012 5.2500 -0.0084 
43 5.3010 5.3636 -0.0626 5.2856 -0.1942 
44 5.3010 5.2249 0.0762 5.3084 -0.0626 
45 5.3010 5.1545 0.1466 5.4942 -0.0605 
46 5.3010 5.2651 0.0359 5.3626 0.0256 
47 5.3010 5.4611 -0.1601 5.3605 -0.2198 
48 5.3010 5.5719 -0.2709 5.2744 -0.1054 
49 5.3010 5.2886 0.0124 5.5198 0.0453 
50 5.3010 5.2249 0.0762 5.4054 0.1138 
51 5.3010 5.4125 -0.1115 5.2547 -0.0608 
52 5.3010 5.3205 -0.0194 5.1862 0.0345 
53 5.2840 5.7611 -0.4771 5.3208 0.1779 
55 5.2366 5.6356 -0.3990 5.1955 0.2429 
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Fig. 1: It shows percentage contribution of descriptors of 2D QSAR (model 1 MLR) 

 

Fig. 2: It shows percentage contribution of descriptors of 2D QSAR (model 2 PLS) 

 

The ‘fitness plot’ which is a plot of experimental activities with 

predicted activity of test set compounds and training set 

compounds for each model shows that built models are 

statistically significant. This provides an idea about the fitness of 

the model and also about the predictive ability of external test 

set (fig. 3 and fig. 4). 
  

 

Fig. 3: It shows experimental vs. predicted activities for training and test set molecules from the best predictive MLR model (model 1) 
 

 

Fig. 4: It represents experimental vs. predicted activities for training and test set molecules from the best predictive PLS model (model 2)  
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In the generated model of QSAR by MLR method, physicochemical 

descriptor slogp and alignment independent (AI) descriptors T_C_O_5 

and T_2_O_2 contributed positively, therefore, molecules showing higher 

values of T_C_O_5, T_2_O_2 and slogp will have good inhibitory activity. 

The model indicates the negative contribution of alignment 

independent topological descriptors T_2_O_1 and T_2_O_6 thus 

molecules showing higher values of T_2_O_1 and T_2_O_6 will show 

reduced inhibitory activity. Physicochemical descriptor slogp 

signifies log of the octanol/water partition coefficient. Molecules 

with high partition coefficient tends to remain in the lipid bilayer 

that is in the hydrophobic phase. As log p increases, the probability 

of molecule reaching to its critical binding site increases, therefore, 

crossing of lipid bilayer increases. Another alignment independent 

topological descriptor T_2_O_1 and T_2_O_6 contributed negatively 

to the model developed by MLR method and is inversely 

proportional to the activity. T_2_O_1 and T_2_O_6 which contributed 

negatively represent the count of the number of double-bonded 

atoms separated from oxygen atom by one bond distance and six 

bond distances respectively in a molecule. The negative contribution 

of these two descriptors suggests that lower values results in good 

inhibitory activities while greater values of T_2_O_1 and T_2_O_6 

results in reduced inhibitory activities. 2D-QSAR study reveals that 

the physicochemical descriptor plays a pivotal role and is the key 

descriptor. 

In the model generated by PLS method, Alignment Independent (AI) 

descriptors T_C_Cl_4 and T_T_O_5 and chiV3Cluster exhibit positive 

contribution while T_N_O_5 and SsOHcount shows negative 

contribution. chiV3Cluster signifies atomic valence connectivity 

index (order 3) [Hall 1991]. Molecules with higher values of T_C_Cl_4 

and T_T_O_5 and chiV3Cluster will show good inhibitory activity and 

molecules with higher values of T_N_O_5 and SsOHcount will exhibit 

reduced inhibitory activity. These descriptors (Alignment 

Independent) can be calculated as discussed in Baumann’s paper 

[27]. This descriptor specifies the total number of oxygen atoms 

linked with one single bond. The descriptor SdOcount denotes the 

total number of hydroxyl group linked with one single bond. 

The most significant 2D models of methaniminium derivatives using 

MLR and PLS method was compared and it was concluded that MLR 

method generated the better model. The multiple linear regression 

(MLR) analysis calculated squared correlation coefficient r2 value 

0.8002, predictive squared correlation coefficient q2 value 0.6107, F 

test value 13.6181, root mean square error r2
sevalue 0.1172, 

predictive squared correlation coefficient standard error q2
se value 

0.1636, pred_r2 value 0.5248 and root mean square error predicted 

(pred_r2
se) value 0.1744.  

3D-QSAR modeling  

To perform 3D QSAR, the dataset of 30 molecules were taken and it 

was divided into training (22 compounds) and test set (8 

compounds). In this, Ki values act as dependent variable while all 

calculated 3D descriptors act as independent variables. 

Molecular modeling and alignment of molecules 

Conformational search method (grid search) was performed which 

gives all potential conformations, by changing consistently each 

torsion angle of the molecule by increasing it gradually but at the 

same time maintaining the bond length and bond angles. The 

conformers with the lowest energy (therefore more stable) were 

chosen. Template-based alignment method was applied to align all 

the molecules of the series. For this purpose, the most active 

compound with minimum energy conformation was used as the 

template and all the compounds were aligned on that [28]. 

Computation of field descriptors 

In order to perform 3D QSAR, steric and electrostatic field 

descriptors were computed having cutoffs of 30.0 kcal/mol and 10.0 

kcal/mol respectively. The Gasteiger-Marsili [29] charge type was 

chosen. Distance-dependent dielectric function was selected; 

keeping the value of dielectric constant 1.0. A carbon atom with 

charge 1.0 was set as the probe. Using this, electrostatic (1040 

descriptors), steric (1040 descriptors) and hydrophobic descriptors 

(1040 descriptors) were calculated and altogether 3120 descriptors 

were obtained. From this set of descriptors, invariable columns were 

removed as they have no contribution towards QSAR. 

K-nearest neighbour molecular field analysis (kNN-MFA) 

The foremost need of kNN-MFA is an alignment of molecules. After 

that, a rectangular grid is generated all around the molecules. Then 

at the lattice points of the grid, electrostatic and steric energies are 

calculated which are further employed for relationship generation 

with the help of kNN method to determine distances between 

molecules [30]. 

k-NN-MFA with stepwise forward-backward (SW-FB) variable 

selection method 

Forward and backward stepwise selection method was employed to 

generate k-NN-MFA models with cross-correlation limit fixed to 1.0 

and q2 was taken as term selection criteria. The values which were set 

for F-test “in” was 4.0 and F-test ‘out’ as 3.99. Variance cut off was kept 

at 0.0 kcal/mol A ° and scaling was set as Auto Scaling. For k-Nearest 

Neighbour parameter setting, the number of maximum neighbors 

were set to 5, numbers of minimum neighbors were set to 2 and 

distance based weighted average was chosen as prediction method. 

3D QSAR model generation and interpretation 

K-NN-MFA method was employed for the generation of 3D-QSAR 

models. For this purpose, the dataset of 30 compounds was used 

which was further divided into training and test set. The k-NN-MFA 

models (3-4) were obtained utilizing a training set of 22 compounds 

and test set of 8 compounds. The hydrophobicity (H), electrostatic 

(E) and steric (S) descriptors particularize the regions, whereby 

changing the structure of the compound of the training set; the 

activities of the compound may increase or decrease. The 

descriptors are associated with numbers which correspond to its 

place in the 3D MFA grid. Many statistically significant models were 

generated using stepwise forward, backward variable selection 

method, from which model 4 meets the selection criterion at its best. 

The criterion of selection of the best model was internal and external 

predictive ability of the model. This was achieved by q2 which 

represents the internal predictive ability of the model and by 

pred_r2, which anticipate the activity of an external test set. 

 

Table 6-i: It shows 3D molecular descriptors of training set used in the k-NN-MFA (model 4) 

Compound E_513 S_434 E_1897 H_1619 

10 -0.05751 -0.00737 0.261705 0.362097 

16 -0.07086 -0.02495 0.214728 0.420844 

18 0.052579 -0.04344 0.176186 0.345001 

23 -0.05253 -0.08391 0.187079 0.288696 

26 -0.11056 30 0.116523 0.421608 

27 0.056585 -0.03845 0.075065 0.386805 

32 -0.00559 -0.01633 0.195233 0.402994 

40 -0.4109 -0.02305 0.188377 0.358622 

41 0.038644 -0.11408 0.068592 0.327683 

42 0.210907 -0.02251 0.172865 0.383975 

43 -0.00752 -0.03611 0.142588 0.369393 

44 -0.15747 -0.04573 0.082705 0.342664 
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45 0.143883 -0.04939 0.140757 0.362183 

47 0.367139 -0.13843 -0.14734 0.313056 

48 0.025765 -0.10398 -0.06093 0.322267 

50 -0.00545 -0.012 0.082555 0.384552 

51 0.182347 -0.02065 0.129918 0.316739 

52 -0.12303 -0.0318 0.081317 0.349608 

53 0.016184 -0.0914 0.079591 0.371672 

55 -0.04311 -0.11282 0.095685 0.359617 

6 -0.06325 -0.02067 0.1859 0.313061 

8 0.066054 -0.02051 0.124146 0.397901 

 

Table 6-ii: It represents 3D molecular descriptors of test set used in the k-NN-MFA (model 4) 

Compound E_513 S_434 E_1897 H_1619 

13 0.027768 -0.0115 0.099411 0.414873 

15 0.045428 -0.04021 0.19768 0.526284 

21 -0.16166 -0.04177 0.286382 0.41448 

33 0.191621 -0.02135 0.159468 0.351299 

36 0.359089 -0.06424 0.027854 0.323807 

39 0.166087 -0.09394 0.161573 0.369388 

46 0.170558 -0.02543 0.07286 0.358882 

49 0.026955 -0.01761 0.085779 0.375608 

 

Analysis of statistical parameters suggests that the maximum of 

test set compound of Amino (3-((3, 5-difluoro-4-methyl-6-

phenoxypyridine-2-yl) oxy) phenyl) methaniminium derivative is 

less than the maximum of the training set of compounds. The 

minimum binding affinity of training set compounds is also less 

than the minimum of test set compounds. The average of test set 

compounds is higher than the average of train set compounds 

which denotes that comparatively more active compounds are 

present in test set than in train set. The statistical parameters are 

shown in table 8. 

 

Table 7: It shows statistical parameters (uni-column statistics) for biological activity distribution in training and test sets of 3D QSAR 

(model 4 SW-FB) 

Parameters Training set Test set 

Max. 5.8900 5.7700 

Min. 5.2300 5.300 

Std. Dev. 0.2283 0.2087 

Sum 120.24 43.9200 

Average 5.465 5.4900 

 

Models using k-NN-MFA method 

Model-3 (SW-FB) 

Ki =E_513 (-0.0709,-0.0525) E_2066 (0.0755, 0.0914) E_1359 (-
10.0000,-10.0000) 

Model-4 (SW-FB) 

Ki =E_513 (-0.0575,-0.0525) S_434 (-0.0839,-0.0074) E_1897 

(0.1871, 0.2617) H_1619 (0.2887, 0.3621) 

The model 4, which is obtained by SW-FB selection method, is 

chosen as the best model based on an internal prediction. The leave 

one out cross–validation squared correlation coefficient, q2 was 

calculated as 0.8790 which indicated good prediction. It also shows 

better prognostic power for the external test set having predictive 

squared correlation coefficient value (predicted r2) equal to 0.9340 

which is equal to 93 % predictive power. Table 3.10 depicts actual 

and predicted values of test set and training set data by model 4 with 

their residual values. 

The best 3D-QSAR model (model 4) established that electrostatic, 
steric and hydrophobic interactions contribute majorly in 
prediction. In this, E_513 and E_1897 are electrostatic descriptors 
while S_434 is steric descriptor. H_1619 is a hydrophobic descriptor. 

The negative value of the electrostatic field descriptor shows that 

negative electronic potential is needed to enhance the activity, 

therefore more electronegative groups are favoured in that position. 

Likewise, negative values of steric descriptors suggest that negative 

values of steric potential are preferable for activity and less bulkier 

groups as substitutes are favoured in that particular area. Steric 

descriptor with positive range denotes that more bulky substituents 

are favoured in that area. 

 

Table 8: It exhibits summary of statistical parameters for 3D-QSAR models (model 3 and 4) of Amino (3-((3, 5-difluoro-4-methyl-6-

phenoxypyridine-2-yl) oxy) phenyl) methaniminium derivative using similar test set and training set 

Statistical parameter SW-FB selection model 3 SW-FB selection model 4 

k Nearest Neighbour 2 2 

n 22 22 

Degree of freedom 18 17 

q2 0.8475 0.8790 

q2_se 0.0886 0.0794 

Predr2 0.4965 0.9340 

pred_r2se 0.1525 0.0540 

 



Suhane et al. 

Int J Pharm Pharm Sci, Vol 11, Issue 2, 104-114 

 

112 

 

Fig. 5: It shows the graph of experimental versus predicted Ki using model-4 (3D-QSAR) 

 

Table 9: It represents residuals of experimental and predicted inhibitory activities of 3D QSAR for models 3 and 4 containing a test set 

and training set data 

Compound No. -Log (Ki) for factor Xa 

experimental 

Model 3 Model 4 

predicted Ki Residual Predicted Ki Residual 

10 5.85 5.81448 0.03552 5.81451 0.03549 

13 5.77 5.58628 0.18372 5.74955 0.02045 

15 5.74 5.59046 0.14954 5.62259 0.11741 

16 5.74 5.77543 -0.03543 5.66933 0.07067 

18 5.69 5.68094 0.00906 5.58423 0.10577 

21 5.68 5.79688 -0.11688 5.62101 0.05899 

23 5.66 5.81551 -0.15551 5.60157 0.05843 

26 5.62 5.59013 0.02987 5.575 0.045 

27 5.62 5.57641 0.04359 5.58694 0.03306 

32 5.49 5.47969 0.01031 5.51941 -0.02941 

33 5.48 5.48031 -0.00031 5.48747 -0.00747 

36 5.35 5.3 0.05 5.3 0.05 

39 5.3 5.48592 -0.18592 5.3 0 

40 5.3 5.45945 -0.15945 5.3 0 

41 5.3 5.44814 -0.14814 5.25546 0.04454 

42 5.3 5.49065 -0.19065 5.3 0 

43 5.3 5.26515 0.03485 5.39504 -0.09504 

44 5.3 5.3284 -0.0284 5.26669 0.03331 

45 5.3 5.3 0 5.3 0 

46 5.3 5.3 0 5.29025 0.00975 

47 5.3 5.3 0 5.3 0 

48 5.3 5.31608 -0.01608 5.2901 0.0099 

49 5.3 5.28986 0.01014 5.28978 0.01022 

50 5.3 5.28997 0.01003 5.45989 -0.15989 

51 5.3 5.3 0 5.3 0 

52 5.3 5.43031 -0.13031 5.26635 0.03365 

53 5.28 5.3 -0.02 5.26519 0.01481 

55 5.23 5.3 -0.07 5.28987 -0.05987 

6 5.89 5.69988 0.19012 5.75392 0.13608 

8 5.87 5.65471 0.21529 5.65457 0.21543 

 

Fig. 6: It shows a contribution chart of the descriptors of 3D-QSAR model (model 4) 
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Fig. 7-i: It represents contour plots of 3D-QSAR (model 4) with important hydrophobic, electrostatic and steric fields 

 

 

Fig. 7-ii: It represents contour plots of 3D-QSAR (model 4) with important hydrophobic, electrostatic and steric fields 

 

 

Fig. 8: It shows 3D structure of most active molecule 6 
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CONCLUSION 

On the basis of the best model of 3D QSAR (model 4), the following 

outcomes were observed for designing of new molecules with 

regard to electrostatic, steric and hydrophobic fields. The positive 

value of electrostatic field E_1897 (0.1871, 0.2617) denotes that 

positive electrostatic potential is preferable to enhance the 

inhibitory activity of compound and therefore substituents with 

lesser electronegativity values are favourable at that particular place 

while negative value of electrostatic field E_513 (-0.0575,-0.0525) 

shows that for enhancing the activity of compound, the substituent 

groups with higher electronegativity values are found to be suitable 

for that particular region. The steric field S_434 (-0.0839,-0.0074) 

contributed negatively, which suggests that less bulky substituent 

groups are preferable in that domain. The positive hydrophobic field 

descriptors H_1619 (0.2887, 0.3621) indicates that hydrophilic 

groups in that region can raise the activity of the compounds. 

Thus, contour plots of KNN-MFA method furnish additional 

information on the relationship between the structure of compounds 

and their inhibitory activities which can be employed to construct 

newer factor Xa inhibitors.  
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