ETHNOMEDICINAL, PHYTOCHEMICAL, AND PHARMACOLOGICAL ASPECTS OF GENUS ACANTHUS

REKHA BORA1, PARTHA PRADIP ADHIKARI2*, AJIT KUMAR DAS1, NANJIAN RAAMAN3, GAURI DUTT SHARMA4
1Laboratory of Ethnobotany and Medicinal Plants Conservation, Department of Ecology and Environmental Science, Assam University, Silchar 788011, India, 2Laboratory of Natural Product and Synthetic Organic Chemistry, Department of Chemistry, Assam University, Silchar 788011, India and Genoine Research Laboratory Pvt. Ltd., Subhash Nagar, Karimganj 788710, Assam, India, 3Center for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, India, 4Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India and Bilaspur Vishwavidyalaya, Bilaspur 495001, Chhattisgarh, India
Email: dr.parthaadhikari@gmail.com

ABSTRACT

Acanthus (family Acanthaceae) is a genus of the major group angiosperms (flowering plants) comprising more than 29 species widely distributed in the tropical and subtropical region. The aim of this review is to offer thorough scientific information on ethnomedicinal uses, phytochemical, and pharmacological activities of the plant species belonging to the genus Acanthus. Numerous traditional uses of the genus have been supported in this article from the results, and executed by the extracts and/or pure compounds obtained from pharmacological studies will provide a single platform to help future researches on the genus Acanthus. Furthermore, ethnomedicinal evaluation using fractions or isolation of medicinal principles was extensively explored by databases like Google, Google Scholar, and Science Direct at the same time.

Keywords: Acanthus, Acanthaceae, Ethnomedicinal uses, Phytochemistry, Pharmacology, Medicinal principles

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
DOI: http://dx.doi.org/10.22159/ijpps.2017v9i12.22386

INTRODUCTION

The word ‘Acanthus’ is originated from the Greek word ‘Acantha’ meaning thorn or thistle signifies sensitive leaves [1]. Most of the species are shrubs or perennial herbs with terminal or axillary, uninterrupted spikes; flower with lower lip only; calyx 4-lobed with larger posterior and anterior lobes; corolla tube short, horned; elongate 3-lobed lip and with 4 exerted stamens, inserted at top of corolla tube [2]. The genus exhibits some mangrove species which are known to survive in the most antagonistic environment which makes this genus as inimitable taxa among all true mangrove genera that represent both terrestrial species and true mangrove. Thus, researchers grow attractive reason to assemble attention for the study of the genus Acanthus. Furthermore, ethnomedicinal evaluation using fractions or isolation of medicinal principles was extensively explored by databases like Google, Google Scholar, and Science Direct at the same time.

Description of the genus

The genus Acanthus L. is consist of about 29 representative species geographically distributed mostly in the tropical and subtropical region of the world [3]. Total 20 genera from 20 families represent c. 70 true mangrove species among these the genus Acanthus represents five mangrove species e. g. A. ebracteatus, A. illicifolius, A. volubilis, A. latifolius and A. montanus [4-5]. However, Tomlinson and Yang et al. reported only three mangrove species and c. a. 27 terrestrial species [6-7]. In India, only 6 species of the genus are...
available; *A. ebrachtatus* Vahl, *A. ilicifolius* L., *A. leucostachyus* Wall. ex Nees, *A. carduaceus* Griff., *A. mollis* L., *A. volubilis* Wall. Out of these 6 species *A. ilicifolius* and *A. leucostachyus* are extremely medicinal and *A. leucostachyus* Wall. ex Nees, *A. carduaceus* Griff., *A. mollis* L. are terrestrial species [8]. Asia and Australia represent the paramount variety and distribution of mangrove species [1]. Therefore, the genus is unique among all true mangrove genera, were both true mangrove and terrestrial members are obtainable. The two sub species *A. ebrachtatus* subsp. *ebrachtatus* and *A. ebrachtatus* subsp. *ebrachtatus* were both true mangrove and terrestrial members are obtainable. The plant is a shrub, height up to 3 m green, light green or purple, spiny/dentate, leaf tip acute, petiole low length opposite, lanceolate to broadly lanceolate, leaf margin, oblanceolate, or lanceolate, 9-23 × 2-4.5 cm, margin slightly spinose dentate occasionally unnoticeably dentate or irregularly entire, ovate-lanceolate, base rounded to subcordate, adaxially glabrous, tertiary veins inconspicuous, apex acute. Inflorescences terminal, tops very to acuminately, bracteoles lanceolate to oblanceolate, adaxially pubescent, base rounded, prominently veined, apex rounded with a short tip; calyx ca. 2 cm, pubescent; corolla white, ca. 2.1 cm, villous; lobes orbicular, ca. 5 × 5 mm, apex margined, margin apically spiny, cai 1-2 × 0.2-0.4 cm, nychis grayish pubescent; base rounded, margin entire and ciliate. Staminal filaments ca. 8 mm, upper pair curved, glabrous. Ovary ca. 3 mm [8]. Distribution: The plant is distributed in India Bangladesh (Sylhet), China (Yunnan), Myanmar, Laos, Thailand, and Vietnam. Specimen examination, date, and place of collection of the plant in Bhutan and North East India has been enlisted in table 1.

Table 1: List showing the specimens of *Acanthus leucostachyus* examined in the Bhutan and North East India [8]

<table>
<thead>
<tr>
<th>Specimen examined by</th>
<th>Date of collection</th>
<th>Place of collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. N. Kanjilal</td>
<td>01.10.1908</td>
<td>Nambor Reserve Forest, Assam</td>
</tr>
<tr>
<td>S. R. Sharma</td>
<td>07.03.1932</td>
<td>Nongkhaw Forest, West Khasi Hills, Meghalaya</td>
</tr>
<tr>
<td>N. L. Bor</td>
<td>01.01.1934</td>
<td>Aka Hills, Arunachal Pradesh</td>
</tr>
<tr>
<td>S. R. Sharma</td>
<td>23.03.1936</td>
<td>Umsaw, East Khasi Hills, Meghalaya</td>
</tr>
<tr>
<td>N. L. Bor</td>
<td>March, 1937</td>
<td>Sibsagar, Holongpar, Assam</td>
</tr>
<tr>
<td>G. K. Deha</td>
<td>22.02.1938</td>
<td>Shela, East Khasi hills, Meghalaya</td>
</tr>
<tr>
<td>G. K. Deha</td>
<td>03.02.1939</td>
<td>Powai, Tinsukia, Assam</td>
</tr>
<tr>
<td>G. Panighari</td>
<td>25.05.1957</td>
<td>Garbhanga Reserve Forest, Kamrup, Assam</td>
</tr>
<tr>
<td>R. S. Rao</td>
<td>01.09.1957</td>
<td>Katakhali Reserve Forest, Hailakandi, Assam</td>
</tr>
<tr>
<td>G. Panighari</td>
<td>22.10.1960</td>
<td>Doodomooza Reserve Forest, Tinsukia, Assam</td>
</tr>
<tr>
<td>G. Panighari</td>
<td>09.03.1962</td>
<td>Dulong Reserve Forest, Lakhimpur, Assam</td>
</tr>
<tr>
<td>D. B. Deb</td>
<td>23.01.1963</td>
<td>Khetim, Lushai Hills Mizoram, Assam</td>
</tr>
<tr>
<td>R. M. Dutta</td>
<td>12.07.1963</td>
<td>Vawmbuk to Thahlhang, Mizoram</td>
</tr>
<tr>
<td>N. P. Balakrishnan</td>
<td>14.03.1965</td>
<td>Jashigong to Yangsti, Eastern Bhutan, Butan</td>
</tr>
<tr>
<td>J. Joseph</td>
<td>14.05.1963</td>
<td>Nongphoe, Meghalaya, and Noonmaji-Barholing, Assam</td>
</tr>
<tr>
<td>D. M. Verma</td>
<td>22.05.1968</td>
<td>Chalohowa, Kananadi, North Lakhimpur, Assam</td>
</tr>
<tr>
<td>N. P. Balakrishnan</td>
<td>23.11.1969</td>
<td>Jainita Hills, 16 km from Kheibriat on road to Sonapur, Meghalaya</td>
</tr>
<tr>
<td>A. K. Das</td>
<td>14.02.2002</td>
<td>Goawara forest, Assam</td>
</tr>
<tr>
<td>R. Baran and A. K. Das</td>
<td>05.02.2012</td>
<td>Loharbond, Cachar, Assam</td>
</tr>
<tr>
<td>J. Sarma and S. Baruah</td>
<td>04.03.2013</td>
<td>Gibbon Wildlife Sanctuary, Jorhat, Assam</td>
</tr>
<tr>
<td>J. Sarma and S. Baruah</td>
<td>12.04.2013</td>
<td>Lakhipathar Area of Upper Dihing Reserve Forest under Digboi Forest Division, Assam</td>
</tr>
</tbody>
</table>

Habitat and Ecology: Grow shady places association with other plants like *Thotsea tomentosa* (Blume) Ding Hou and *Borussia hispida* (L.) K.Schm. etc. [8].

Phenology: March-September

Specimen examined: Specimens of *A. leucostachyus* Wallich examined in the Bhutan and North East India by various workers in different times [8, 12, 13].

Status: The plant was reported wrongly as endemic to Eastern Himalaya [13-14].

A. ilicifolius L.

Common names: Holy leaved acanthus, holy mangrove, holy leaved acanthus and sea holy (Eng.), Harkulanta (Hind.), Harkuka kanta (Beng.), Holecudhi (Kan), Payinachuli (Mal), Kududaimuli (Tam.), Alasyakampa, Alchi (Tel.). The plant is a shrub, height up to 3 m green, light green or purple, stem thick, branched, roots rarely above ground leaves simple, opposite, lanceolate to broadly lanceolate, leaf margin spiny/dentate, leaf tip acute, petiole low length ca. 0.5-2 cm long, inflorescences terminal [15]. Distribution: *A. ilicifolius* true mangrove species distributed in tropical Asia and Africa, through Malay to Polynesia grown in the many of the foreshore areas [1, 16]. The plant is also reported to grow in Bangladesh [17, 18]. In India, it is reported from the east (the large area of mangrove forest, the Sunderbans) and west seashore and Andamans and a northeastern state, Meghalaya [1, 17]. Habitat and Ecology: Generally it is found on river banks or low land mangrove forests and its surroundings above the high tide mark [1].

Phenology: February-May.
Specimen examined: India, Andaman and Nicobar Islands, South Andaman, Shoal Bay Creek (P. Ragavan, PBL 30965 and 30966) [15].

A. ebracteatus Vahl-Vahl

It is a shrub up to 2 m tall, branched, axial spines downward facing, stem thick, grey tint, roots rarely above ground, broadly elliptic to lanceolate, ~10-20 x 3-5 cm, leaves simple, opposite, leaf tip acute to obtuse with or without spiny; petiole length low ca ~0.5-1.5 cm; inflorescence terminal; ovary bilocular; style surrounded by stamens [15].

Distribution: India to tropical Australia, Southeast Asia, and the western Pacific islands. In Southeast Asia plant has found in Cambodia, Myanmar, the Philippines, Vietnam, Malaysia, Singapore, Indonesia and Papua New Guinea; in India, it has recorded in Kerala, Puducherry, and ANI [15].

Habitat and Ecology: Grow in landward ends of mangroves over the high tide mark and in inner mangroves.

Phenology: Throughout the year.

Specimen examined. India, Andaman and Nicobar Islands, South Andaman, Sippighat (P. Ragavan, PBL 30969 and 30970) [15].

Acanthus volubilis wall

Plant is a twisted shrub up to ~2-4 m tall; stem slim, soft, green, branched, axial spines lacking; roots rarely above ground/prop roots on lower parts of reclining stem; leaves simple, opposite, spines absent, juicy, elliptic/oblong-lanceolate, leaf tip acute to obtuse with spin, leaf margin spines lacking, petiole low length ca 0.5-2 cm long; green; inflorescence terminal; style surrounded by stamens; ovary bilocular [15].

Distribution: South to Southeast Asia ie Sri Lanka and the Andaman Islands, to Myanmar, Indonesia, Cambodia, Malaysia, Singapore, Thailand and Papua New Guinea. In India, the plant has found in Odisha, ANI, and Sundarbans [15].

Habitat and Ecology: Grown in landward edges of mangroves up to the high tide mark.

Phenology: March-June.

Specimen examined. India, Andaman and Nicobar Islands, South Andaman, Shoal Bay Creek (P. Ragavan, PBL 30969 and 30970) [15].

Acanthus mollis L.

Traditional uses

A. ilicifolius also named as “Holy Mangrove” is used as an ethnomedicinal plant in many countries. In Malaysia the plant leaf used to heal rheumatism, neuralgia and poison arrow wounds; in Bangladesh, leaves are used in the treatment of cancer [18]; in Malaysia, seeds of this plant and *A. ebracteatus* Vahl. Consumed for curing urolithiasis; in India, the root is utilized to treat coughs and asthma; in Thailand, the fresh bark is applied as an antispetic [19].

Moreover, the plant is also used in asthma, diabetes, dyspepsia, hepatitis, leprosy, paralysis, ringworm, rheumatism, skin problems, snakebite, leucorrhoea, leishemia etc. [19, 20], dropy [21], different plant parts, fruit, leaf, bark, and root are used in healing of asthma, diabetes, hepatitis, inflammation, and rheumatism [22-25]; leaves are applied in snake bite [26], consumed as blood purifier [19]; root used in leucorrhoea [27]; different plant parts useful to treat rheumatism, asthma, paralysis, pyrosis and leucorrhoea [28].

A. leucostachyus is another ethnomedicinal plant belongs to this genus. This plant has also been employed in treatment of various diseases like; the leaves of the plant used in fever and toothache [29]; leaf paste is applied externally in cuts and wounds; pest of leaves are prescribed to be applied externally on cancerous tumor by different tribes of Caber district of Assam [12, 30]; paste of leaves combined with the extract of tuber of *Allium* sp. and leaves of *Thuernbergia* sp. is applied externally for swelling, fever, toothache [31]; seed, sap and leaves are used in treatment of allergy, headache, hair tonic, boil, eczema and worms [32]. This plant is also used as traditional medicine by Naga tribe of North East India [33]. Moreover, the plant is used by Derois tribe of India in preparation of Sajen, a rice beer along with other plants like *Alpinia malaccensis*, *Costus speciosus* etc. [34].

A. montanus (Nees.) T. Anders leaves are reported to be practiced in curing cough, pneumonia, and fever by Mount Cameroon region, Africa [35]. While, the fruit of *A. ebracteatus* utilized as a blood purifier, leaf paste is applied in a dressing of burns, roots in snakebite and also used in pain caused by wounds and the seeds are used as anthelmintic [36], 170 genes of *A. ebracteatus* are recognized which are engrossed in response to salt stress [37].

Phytochemistry

Investigation phytochemical study of the genus *Acanthus* indicated that phytochemical study has been extensively done on the true mangrove species; *A. ilicifolius* beside this work no phytochemical isolation has been performed on this genus.

Phytochemical screening

Phytochemical study of *A. ilicifolius* done by Raut and Khan [38] emphasized the presence of some important chemical constituents like triterpenoids, alkaloids, saponins glycosides, flavonoids, steroids etc. Ralf and Gerd [39] study also specify the presence of terpenoids, alkaloids, flavonoids, phenols, coumarins. Flower extracts disclose the occurrence of alkaloids, terpenoids, saponins, phenolics, flavonoids, tannins but the absence of steroids [40]. Other study reveals that the plant possesses alkaloids, steroids, tannins, flavanoids and reducing sugar but saponins and gums are absent in crude methanol extract [27].

Govindasamy and Arulpriya [41] also showed that plant leaves contain with alkaloids, phenol, steroids, protein, resins, steroids, tannins, terpenoids, carbohydrates, saponins, glycosides, sugars, and catechol.

Compound isolation

Wu *et al.* [42-43] obtained two aliphatic glycosides, ilicifolioside B and ilicifolioside C. Some lignan glycosides, (+)-syringaresinol-O-β-D-glucopyranoside, (+)-lyoniresinol 3a-O-β-D-glucopyranoside, (−)-lyoniresinol 2a-O-eq-D-galactopyranosyl-3a-O-β-D-glucopyranoside, (−)-lyoniresinol 3a-O-eq-D-galactopyranosyl-(1-6)-β-D-glucopyranoside, (−)-lyoniresinol 3a-O-β-D-glucopyranoside [51, 43, 57]; fatty acid derivatives, β-sitosterol octadecanoate, octadecanoic acid, octacosanol, palmitic acid, stigmasterol octadecanoate, tetracosanol [48]; triterpenoids, lupeol and oleanolic acid and ursolic acid [44-45] were reported from the same species.

Besides these diverse classes of phytochemicals such as alkaloids, fatty acids, glycosides, lignans, triterpenoid, coumaric acid etc. various derivatives have been isolated and characterized from different extracts like Hexane, chloroform, ethanol, methanol of *A. ilicifolius*, illustrated in table 2 with their structures, pubchem ID’s and relevant citations.

Pharmacology

The pharmacological study has been extensively performed on *A. ilicifolius* among the species of this genus. This study revealed that *A. ilicifolius* has significant bioactivities like, antioxidant and cytotoxic activity [26, 55], antinociceptive activity [56], anti-inflammatory activity [23, 26], anti-osteoporotic activity [57], hepatoprotective activity [26, 59], chemopreventive activity [21]; leishmanicidal tumour reducing and anticanicance activities [26, 58, 59, 60]; antileishmanial, antiuiler, antimicrobial, and osteoelastic, activities [26]. Moreover, Firdaus *et al.* found in their study that flower extract of the plant also has good cytotoxic effects [40]; Smitha *et al.* showed the anticancer activity of ethyl acetate extract of on two cell lines PA-1 and MCF-7 [61].
Table 2: Compounds isolated from *Acanthus ilicifolius*

<table>
<thead>
<tr>
<th>Class of Phytochemicals</th>
<th>Name of the Phyto-constituents</th>
<th>Compound structure</th>
<th>PubChem ID</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>Acanthicifoline</td>
<td></td>
<td>442503</td>
<td>[46]</td>
</tr>
<tr>
<td></td>
<td>Trigonellin</td>
<td></td>
<td>5570</td>
<td>[44]</td>
</tr>
<tr>
<td></td>
<td>2-benzoxazolinone</td>
<td></td>
<td>6043</td>
<td>[47, 48]</td>
</tr>
<tr>
<td></td>
<td>Benzoxacin-3-one</td>
<td></td>
<td>72757</td>
<td>[49]</td>
</tr>
<tr>
<td></td>
<td>5,5’-bis-benzoxazoline-2,2’-dione</td>
<td></td>
<td>NF</td>
<td>[50]</td>
</tr>
<tr>
<td></td>
<td>Benzoxazinoid glucosides</td>
<td></td>
<td>NF</td>
<td>[51]</td>
</tr>
<tr>
<td></td>
<td>4-O-D-glucopyranosyl-benzoxazolin-2(3H)-one</td>
<td></td>
<td>NF</td>
<td>[52]</td>
</tr>
<tr>
<td></td>
<td>2-hydroxy-4H-1,4-benzoxacin-3-one</td>
<td></td>
<td>322636</td>
<td>[48]</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Quercetin</td>
<td></td>
<td>5280343</td>
<td>[44]</td>
</tr>
<tr>
<td></td>
<td>Quercetin-3-O-β-D-glucopyranoside</td>
<td></td>
<td>15959354</td>
<td>[44]</td>
</tr>
<tr>
<td>Steroids</td>
<td>Compound</td>
<td>CAS Number</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acacetin 7-O-α-L-rhamnopyranosyl-(1”6”)-O-β-D-glucopyranoside (Linarin) and vitexin</td>
<td>5317025 & 5280441</td>
<td>[53]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linarin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vitexin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cholesterol</td>
<td>5997</td>
<td>[49]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Campesterol</td>
<td>173183</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stigmasterol</td>
<td>5280794</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>β-sitosterol</td>
<td>222284</td>
<td>[44]</td>
<td></td>
</tr>
</tbody>
</table>
Antioxidant activity

Firdaus et al. [40] have scrutinized the antioxidant properties of A. ilicifolius by the DPPH scavenging assay. The assay was conducted on total five extracts (acetone, methanol, acetone 70%, methanol 80% and water) of flowers and found that methanol extract showed highest antiradical efficiency (141.30%), while water extract of showed lowest (0.0037%) among the extracts. Dey et al. [27] confirmed the antioxidant effects of the methanol extract of the plant. DPPH assay has been adopted for evaluation of the free radical scavenging activity of the extract by preparing ten different concentrations starting from 500 μg/ml to 0.98 μg/ml using serial dilution technique where IC₅₀ was recorded to be 5.1 μg/ml. Moreover, the antioxidant activity of the fractions and isolated compounds of the plant has also been reported [58-60].

Polysaccharides isolated from the plant also showed significant radical scavenging activity [62]; Flavonoids and phenolic compounds of A. ilicifolius displayed their good antioxidant activity on the animal model [63].

Cytotoxic activity

Firdaus et al. [40] analyzed the cytotoxic of the flower extracts of A. ilicifolius on the brine shrimp lethality. The results exhibited methanol extract has lowest LC₅₀ value (22 μg/ml) while water extract showed the highest value at 10 μg/ml among the extracts. Dey et al. [27] have tested the cytotoxic activity of a methanolic crude extract of the plant where it has found that the extract exhibited a significant cytotoxic activity with the LC₅₀ value at 60 μg/ml and LC₉₀ value at 120 μg/ml.

Antimicrobial activity

Antimicrobial activity of alcohol, butanol and chloroform extract (10 mg/ml) of both leaves and roots of the plant exhibited significant activity against all microbes, B. subtilis, P. vulgaris, P. aeruginosa, S. aureus, C. albicans, A. niger, and A. fumigatus. The experiment was followed by agar cup plate method that unveils the leaves were more active than that of roots where ampicillin used as a standard for bacteria and clotrimazole for fungi. Chloroform extract of leaf showed the highest zone of inhibition that was measured ~ 26 mm against the fungus C. albicans. But butanol extract of leaf extract displayed lowest ~ 08 mm against the bacterium S. aureus [64].

Govindasamy and Arulpriya [41] studied antimicrobial activity of against seven skin infection causing microbes, methicillin resistance S. aureus (MRSA), L. plantarum, S. pyogenes, S. epidermis, C. albicans, P. aeruginosa, and T. rubrum. In this test four extract of the leaf has been examined where chloroform extract showed the highest activity against all microbes (except S. epidermis and L. plantarum).
Three extracts, ethanol, methanol and aqueous of leaf, stem, and root of the plant has used for the activity. The cube-plate method used to detect the efficiency of the plant against the eleven bacterial strains *Escherichia coli*, *Bacillus*, *magnetium*, *Lactobacillus plantarum*, *Salmonella paratyphi* B, *Shigella* *dyentroeke*, *Streptococcus mutans*, *Klebsiella pneumoniae*, *Aspergillus flavus*, *Staphylococcus albus*, and *Lactobacillus acidophilus* and one fungus *C. albicans*. Ethanol and methanol extract showed more or less same activity and methanol extract indicated significantly more effective than the aqueous extract. Maximum zone of inhibition noticed on aqueous extract of root and methanol extract of the leaf as 17 mm against the same bacterium, *S. albus* [26].

Rao et al. [65] examined the antimicrobial activity of methanol, ethanol, and ethyl acetate extracts of flower, seed, leaf, and root of the plant by the well-diffusion method. Microbes like *Vibrio harveyi*, *Aeromonas hydrophila*, and *E. coli* were taken for the test, results direct the highest activity observed on ethyl acetate seed extract against *V. harveyi*. Dey et al. [27] observed the antibacterial activity of a methanolic crude extract of the plant by ten gram-negative and sixgram positive bacteria, unfortunately, no activity was witnessed for the crude methanol extract.

Anticancer activity

Smitha et al. [61] studied the anticancer activity of ethyl acetate extract of leaf and root extract of the plant on two cell lines, MCF-7 and PA-1. The plant is more effective on PA-1 and the result has recommended that at 50 μg/ml ratio is adequate to inhibit the cancer cells. Moreover, the result has also unveiled that the extract is slightly cytotoxic to both of the cell lines. The antimicrobial and antioxidant activity of *A. ilicifolius* is depicted in table 3.

Table 3: Antimicrobial and antioxidant activity of Acanthus ilicifolius

<table>
<thead>
<tr>
<th>Plant parts</th>
<th>Solvent used for extraction/isolated compound</th>
<th>Activity against</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf and root</td>
<td>Hexane, chloroform, and methanol</td>
<td>Antibacterial, antifungal</td>
<td>[66]</td>
</tr>
<tr>
<td>Leaf and root</td>
<td>Benzene and phenylethanol derivatives</td>
<td>Antimicrobial</td>
<td>[67]</td>
</tr>
<tr>
<td>Leaf and root</td>
<td>2-Benzoxazolinone 4 and benzoxazinium derivatives</td>
<td>Antimicrobial, antifungal and insecticidal</td>
<td>[22, 43, 68]</td>
</tr>
<tr>
<td>Leaf and root</td>
<td>Methanol</td>
<td>Antibacterial</td>
<td>[27]</td>
</tr>
<tr>
<td>Flower</td>
<td>Acetone and methanol</td>
<td>DPPH</td>
<td>[55]</td>
</tr>
</tbody>
</table>

CONCLUSION

The plants from the genus *Acanthus* are broadly scattered in the tropical and subtropical regions of the world. The systematic pharmacological studies on the genus have given remarkable recognition to their ethnomedical uses in health care management. The phytochemical studies of the genus *Acanthus* revealed, isolation of a total of 21 bioactive compounds from *A. ilicifolius* and were identified with their structures and their respective PubChem ID’s were mentioned in this review. Hence, the existence of these bioactive compounds may be explored from other sister species and their different pharmacological properties may also be compared. Numerous pharmacological studies using different types of extracts or pure phytochemicals of *Acanthus* species well justified their practice as an ethnomedicine; for example, antioxidant, antimicrobial, cytotoxic and anticancer activities besides its well-known antinociceptive, hepatoprotective, leishmanicidal and osteoblastic properties. Furthermore, scanty and limited toxicity reports on the animal model are presently available, which suggests that detailed toxicological evaluation is needed for different extracts from the various species. Correspondingly, the biological effectiveness should be carried out for the isolated secondary phytochemicals as well, which would definitely authenticate the medicinal claims of the *Acanthus* genus.

ACKNOWLEDGMENT

RB is thankful to Assam University, Silchar for institutional fellowship support.

CONFLICTS OF INTERESTS

All authors have no conflicts of interest to declare.

REFERENCES

30. Das AK, Dutta BK, Sharma GD. Medicinal plants used by different tribes of Cachar district, Assam. Indian J Traditional Knowledge 2008;7:446-54.
44. Asha KK, Mathew S, Lakshmanan PT. Flavonoids and phenolic compounds in two mangrove species and their antioxidant property. Indian J Mar Sci 2012;41:259-64.