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ABSTRACT 

Saponins are the potential bioactive compounds secreted by plants, endophytic fungi and marine organisms. Saponins are the glycosides containing 
non sugar portion, aglycone (sapogenin) attached to sugar moiety by glycosidic linkage. Depending on the chemical nature of aglycone, saponins are 
of triterpenoid and steroid saponins. The present review gives an overview of the biosynthesis pathway of triterpenoid saponins and mechanism of 
the biosynthesis. The review discusses the biomedical and pharmaceutical importance of triterpenoid saponins as they possess different activities 
including antimicrobial, haemolytic, hypolipidemic, immunomodulating and cytotoxic activities. The review also focuses on the mechanism of their 
action towards various activities. 
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INTRODUCTION 

Saponins are a diverse group of natural active compounds widely 
occur in the plant kingdom and they are active constituents of more 
than 100 families including endophytic fungi of terrestrial and 
marine origin [1]. Structurally saponins containing a triterpene or 
steroid aglycone called sapogenin and one or more sugar chains 
attached to it. Steroidal saponins are mainly found in 
monocotyledons while triterpenoid saponins are found in 
dicotyledons. Due to the presence of hydrophobic aglycone and 
hydrophilic sugar chain(s) in their structure (amphiphilic nature), 
saponins possess emulsifying, foaming and detergenic properties 
[2]. Based on the number of sugar chains attached to aglycone, 
saponins are categorized into mono, di and tridesmosidic. In 
monodesmosidic saponins sugar chain is usually attached to C-3, 
and in bidesmosidic saponins along with C-3 sugar, the other sugar 
chain is attached through an ester linkage at C-28 (Triterpenoid 
saponins) or through an ether linkage at C-26 (Frustanol saponins). 
D- glucose (GIc), D-glucuronic acid (GIcA), D-galactose (Gal), D- 
galacturonic acid (GaIA), D- xylose (XyI), D-fucose (Fuc) L-rhamnose 
(Rha) and L-arabinose (Ara), are the most common 
monosaccharides attached to aglycone. The nature and the 
functional groups on the aglycone backbone vary greatly as well as 
nature and number of sugars can vary greatly and resulting in 
diverse group of saponins [2,3]. The structural complexity in the 
saponins reflected in their diversity of physicochemical, 
pharmacological and biological properties and led to the saponins as 
commercially important and potential compounds with wide variety 
of applications in food, cosmetics and pharmaceutical/health 
sectors. 

Mechanism of biosynthesis of triterpenoid saponins 

Triterpenoid saponins refers to the attachment of various sugar 
molecules to the aglycone triterpene unit(C30H48). These sugar 
molecules will be cleaved off in the gut by gut microbes and allowing 
the aglycone (triterpene) to be absorbed. This allows them insert in 
cell membrane and changes the composition, impact the fluidity or 
plasticity of membrane and affecting signaling by many ligands. 
Structurally triterpene consists six isoprene (2-methyl 1,3-
butadiene) units(C5H8

The synthesis of triterpenoids exclusively occurs in the cytosol 
utilizing IPP and its isomer DMAPP derived from acetyl coA via 
cytosolic mevalonic acid pathway. One molecule of IPP (5C) 
condensed with its isomer DMAPP (5C) to form a monoterpene 
called Geranyl pyrophosphate (GPP, 10C) by the enzyme prenyl 
transferase. GPP condensed with one more IPP to form a 
sesquiterpene called Farnesyl pyrophosphate (FPP, 15C) by the 
enzyme prenyl transferase. In the both of the above reactions prenyl 
transferases catalyses the head to tail condensations. Each 
condensation reaction involves a carbocation formed as ppi and it is 
eliminated. Then two molecules of FPP condensed to form a 
triterpene Squalene (30C) by the enzyme squalene synthase. This 
condensation is a dimerisation reaction in which one molecule of 
NADPH is involved and it is eliminated as NADP

). IPP (3-isopentenyl pyrophosphate) and its 
isomer DMAP (Dimethylallyl pyrophosphate) are the bioactive 
forms of isoprene unit. The pathway of the triterpenoid saponin 
synthesis shared some common part with the synthesis of steroid 
saponins and phytosterols.  

+ along with two 
pyrophosphate molecules. Squalene is then converted to 2,3-
oxidosqualene by squalene epoxygenase, involves one molecule of 
NADPH and O2 

 

molecule. It was reported that from acetyl coA to 2,3-
oxidosqualene all the steps are same for the biosynthesis of steroid 
saponins and phytosterols. 2,3-oxidosqualene was the last common 
precursor and the major branch point as well as its cyclization is the 
first committed step in the biosynthesis of triterpenoid saponins, 
steroid saponins and phytosterols.  

 

Fig. 1: Biosynthesis of 2,3 oxidosqualene, a common precursor 
and major branch point in the synthesis of phytosterols, steroid 

and triterpenoid saponins 
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Cyclization of 2,3-oxidosqualene leads to sapogenins heterogenecity. 
Cyclizations of 2,3-oxidosqualene into different 4C, 5C, 6C carbon 
skeletons of triterpenoid saponins by different oxidosqualene 
cyclases (OSCs; EC 5.4.99. x) were very complex and the most 
fascinating reactions and engrossed much attention from the view of 
chemical reaction mechanisms. It was reported that cyclizations of 
2,3-oxidosqualene by different OSCs into more than 100 different 
triterpene skeletons [4] was found in nature. Based on the 
conformational isomers 2,3-oxidosqualene formed into different 
final products. In one pathway the regulator enzyme folds the 2,3-
oxidosqualene into the chair-boat-chair confirmation which leads to 
the formation many 6-membered rings viz phytosterols, aglycones 
of steroidal saponins, steroidal glycoalkaloids, where as in another 
pathway the regulator enzyme folds the 2,3-oxidosqualene into the 
chair-chair-chair confirmation which leads to the formation of many 
5-membered rings viz aglycones of triterpenoid saponins, 

 

 

Fig. 2: Cyclization cascades of 2,3 oxidosqualene into three 
important pentacyclic skeletons of triterpenoid saponins 

 

Cyclization mechanism of 2,3-Oxidosqualene into different 
triterpenoid aglycone skeletons follows the electrophilic 
rearrangement mechanism called Wagner- Meerwein 
rearrangement which involves the formation of many 
carbocation/carbonium ion intermediates in which intramolecular 
rearrangement of a 1,2-shift occurs by a hydride shift or an alkyl 
shift or an aryl shift. Increasing the stability of carbonium ion 
(30>20>10) intermediate is not only the factor that leads to molecular 
rearrangement but the strains like angle strain, torsional strain and 
steric strains also leads to the molecular rearrangement. One unique 
and distinct feature of Wagner- Meerwein rearrangement is that it 
provides a ring expansion as well as ring closure, this property is 
very unique and having very valuable synthetic interest. But the 
above two factors might be diverted in the synthesis of many 
aglycones of triterpenoid saponins. It is the paradox that 2,3-
oxidosqualene converted to Dammarenyl cation (30 Carbonium ion), 
a stable carbocation and leads to the formation of Dammarenes. But 
in the synthesis of lupanes and oleananes, the stable dammarenyl 
cation converted into 20 carbonium ion baccharenyl cation by 
Wagner- Meerwein 1,2-alkyl shift, baccharenyl cation is then 
converted into lupanyl cation (30 Carbonium ion) and leads to the 
formation of lupanes. This lupanyl cation converted into oleanyl 
cation(20

Applications  

carbocation), which is then converted into oleananes by 
Wagner- Meerwein 1,2-hydride shift. 

Nutraceutical importance 

Saponins generally considered as “antinutritional factors” [5] but 
they have their limited usage due to bitter taste [6]. Hence most of 
the earlier investigation on saponins processing targeted their 
removal to facilitate human consumption. But both food and non-
food sources of saponins come into major focus in recent years due 
to mounting evidence of their health benefits such as inhibition of 
glucose absorption, cholesterol reducing and anticancer properties 
[7, 8]. Escins are the triterpenoid saponins from the seeds of 
Japanese horse chest nut (Aesculus turbinata) having inhibitory 
activity on glucose and ethanol absorption [9]. Medicagenic acid and 
Zanhic acid are the triterpenoid saponins from Medicago sativa and 
Medicago truncatula respectively, these saponins found to reduce 
cholesterolemea. The sugar molecules of triterpenoid saponins will 
be digested in the gut by gut microbes and allowing the aglycone 
(triterpene) to be absorbed. This property allows them insert in cell 
membrane and it modifies the membrane composition and influence 
the fluidity of membranes.  

Natural surfactants 

Because of their surface active properties, saponins are used as 
natural surfactants in cleansing products in the personal care sector 
such as foam baths, bath/shower detergents, shower gels, liquid 
soaps, shampoos, hair conditioners, lotions, baby care products, 
mouth washes, and toothpastes [10-12]. Juazarine, from the 
Zizyphus joazeiro tree bark extract [13] and horse chestnut saponins 
[10] have been applied in many cosmetic preparations. Saponins and 
sapogenins are also formulated in bioactive ingredients in cosmetic 
markets with claims to delay the aging process of the skin [14]. 
Quillaja triterpenoid saponins prevent acne and sebum 
manifestation [15].  

Antimicrobial and haemolytic activity 

The insecticidal, antihelminthic, molluscicidal, anti bacterial, anti 
fungal and anti viral activities of saponins are very well documented 
[16-18]. The invitro hemolytic activity of the saponins is also 
reported. However, this property is dependent on the type of 
aglycone and nature and number of sugar chains attached to it [19]. 
It is also been reported that toxicity of saponins dependant on 
concentration, composition and source of the saponins [20]. Many 
researchers have been reported about the effect of saponins on 
human erythrocytes [21]. This hemolytic property of saponins is due 
to the interaction between saponins and sterols in the erythrocyte 
membrane. As a result, the membrane is perturbed which leads to 
increase in its permeability and the consequent loss of hemoglobin.  

Hypolipidemic activity 

The cholesterol reducing activity of dietary saponins was supported 
by Chapman and his colleagues [22] in their studies on Batemi and 
Maasai populations of East Africa. Despite a saturated 
fat/cholesterol diet. The low prevalence of heart diseases in these 
populations is due to use of plant additives containing dietary 
saponins. It has been reported that saponins have cholesterol-
lowering activity either by inhibiting the absorption of cholesterol 
from the small intestine or by the reabsorption of bile acids [23]. 

 Animal feeds containing purified saponins or concentrated saponin 
extracts greatly helpful in lowering the liver and plasma cholesterol 
concentrations [24, 25]. The saponin rich fraction from the leaf 
extract of Gymnema sylvestre reduced high fat diet induced obesity 
[26]. Saponin extracts of Achyranthes aspera prevents high fat diet 
induced obesity and oxidative stress [27].  

Immunomodulating activity 

Saponins can greatly impact the immune system due to their ability 
to act as adjuvant by stimulating immunological response against 
antigen and their oral administration facilitates the absorption of 
large complex molecules [28]. Saponin based adjuvants and 
immunomodulatory potential via cytokine interplay were reported 
by many researchers [29]. Saponins as vaccine adjuvants were also 
reported [30]. Due to their structural complexity and toxicity, 
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saponins have been limited their use in human vaccines, but the 
evolution of new processing and purification techniques yields 
different fractions with optimal immunological adjuvant activity and 
with minimal toxicity and hemolytic activity [31] consequently, 
there is a significant progress in the development of saponins as new 
generation vaccines.  

Cytotoxic activity 

Cytotoxic activity has been reported for numerous saponins against 
various cell lines which including HeLa, Hep-G2, HT1080, HL-60. 
Saponins isolated from sea cucumber were first reported to possess 
antitumor activity [32,33]. It is also evaluated that synthestic 
derivatives of β-hederin showed anticytotoxic properties against 
major human cell lines [34]. The saponins isolated from Acacia 
victoriae were reported to inhibit growth of several tumor cell lines 
[35]. Saponins induced cell cycle arrest of human breast cancer cell 
line (MDA-MB-453) and apoptosis of MDA-MB-435 and Jurkat (T cell 
leukemia). These saponins also causes mitochondrial perturbation, 
chemoprevention [36-38]. Terpenoid saponins from Quillaja 
saponaria were reported as anticancer agents [32]. The triterpenoid 
saponins saxifragifolin B and saxifragifolin D from Androsace 
umbellate reported to inhibit the growth of cancer cells and induced 
apoptosis [39]. There were reports on the correlation between 
saponins structure and their cytotoxic activity. The amide 
substitution at C-28 results in high cytotoxic activity. Anti tumor 
selectivity of β-hederin is due to amide substitution at C-28. There 
were many reports on the structure-activity relationships of lupane 
type and oleanane type deriviatives [40]. It is reported by many 
researchers that monodesmosidic saponins are more haemolytic 
and more cytotoxic than bidesmosidic saponins [41,42]. 

Most of the saponins containing pharmaceutical preparations have 
been patented for the treatment of various conditions such as 
cardiovascular and cerebrovascular diseases [43,44], inflammation 
[45] gastric ulcers [46] prophylaxis and dementia [47] ultraviolet 
damage including cataract, carcinoma[48], pre- and post- 
menopausal symptoms [49]. 

Asiaticoside, a triterpenoid saponin from Centella asiatica reported 
to have wound healing activity due to enhancing the collagen 
formation and angiogenesis [50, 51]. 

Oleanolic acid, one of the most common aglycone of triterpenoid 
saponins, has been reported to possess hypoglycemic, 
hepatoprotective, anti- inflammatory, antibacterial, anti-HIV, anti-
ulcer and anticarcinogenic activities [52]. 

Betulinic acid is also reported to possess hypoglycemic, 
hepatoprotective, anti- inflammatory, antibacterial, anti-HIV, anti-
ulcer, and anticarcinogenic activities [53]. 

Mechanism of action of saponins 

The main function of secondary metabolites of the plants was 
providing defense against many pathogens and herbivores. In other 
words, plants secrete secondary metabolites as their defensive 
system. As saponins are one of the categories of secondary 
metabolites, their main function is to provide protection to the 
plants against many pathogens and herbivores. The various 
activities of saponins such as antimicrobial, antifungal, antiviral, 
antihelminthic, insecticidal, larvicidal and molluscicidal activities 
were very well documented. But the molecular and biochemical 
mechanisms of various activities of different saponins were not well 
elucidated. Dourmashkin et al. [54] first reported based on their 
experiments, saponins cause membrane perturbation by the 
formation of pores on the membrane. Based on their observation on 
formation of pores or pits on the membrane, Bangham and Horne 
[55] and Glauert et al. [56] concurrently reported that the presence 
of cholesterol on the target membrane is essential for the saponins 
to induce pore formation. According to their reports, saponins and 
cholesterol associated spontaneously into a micelle-like complex 
and the hydrophilic sugar moieties are thought to be located in the 
central of the complex and leads to the development of aqueous 
pores. Such pores can increase the permeability of membrane and 
enabling the macromolecules and ions to pass through the 
membrane bilayer. There after many scientists elucidated the 

molecular basis of the membrane penetration activity by saponins 
and confirmed the impact of membrane composition on the ability of 
saponins to cause membrane perturbation. These results supported 
directly or indirectly by many reports on the membrane 
composition as several researchers found that cholesterol is a major 
lipid of membranes and cholesterol is known as membrane 
moderator/membrane plasticizer. Kruijff [57, 58] studies on 
cholesterol as a target for toxins reported that the specific 
orientation of cholesterol within the membrane facilitates channel 
formation by polyene antibiotics, bacterial protein toxins and 
various sterols, inspired the many researchers to further elucidate 
the molecular mechanism of saponins action. Kenji and augustin 
[59,60] reported the molecular basis of the saponins activity which 
supported and expand the initial hypothesis and reported that 
saponins incorporation into the membranes occurs spontaneously 
and it is due to the lipophilic/hydrophobic character of aglycone 
portion and interactions between the sugar chains of the 
incorporated saponins responsible for the phase-separation 
phenomena. These accumulations finally leads to the membrane 
curvature, which may be due to either formation of pores (fig. 3a) 
within these plaqus/matrices or due to hemitubular alterations as 
protuberances leads to vesiculation (fig. 3b) or they caused 
membrane domain disruption (fig. 3c). The pores provide the 
explanation for the changes in ion conductivity and the movement of 
macromolecules upto proteins through the membrane [61]. Keukens 
et al. [57, 58] and Dourmashkin et al. [54] were also reported the 
absence of pore-like structures when some steroidal saponins 
targeted the membranes. Dourmashkin et al. [54] also revealed that 
these steroid saponins even prevent the formation of pores on the 
subsequent exposure by pore-forming saponins. Finally 
computational studies by Lin and Wang [62] revealed that both pore 
formation and hemitubular vesiculation may exist parallel and the 
chemical properties(type of aglycone portion and sugar chains) of 
the saponins determines the predominate perturbation type. 
Krawczyk et al [61] demonstrated the diversity of the different 
saponins on their ability to cause membrane perturbation. Lin and 
Wang [62] developed an alternative model based on molecular 
dynamic simulations, according to this model saponins migrate into 
lipid rafts (membrane domains enriched with cholesterol and 
sphingomyelin) and forms complexes with cholesterols and leads to 
lipid raft disruption [63] and leads to membrane alterations in terms 
of their structural and permeable properties.  

 

 

Fig. 3: Represents molecular mechanism of saponin action [60]. 
Aglycone (hydrophobic part) integrate with membrane sterols 
and causes sterical hindrances leads to formation of pores on 
the membrane (fig. 3a), hemitubular protuberances resulting 
vesiculation (fig. 3b), sterical hinderances leads to membrane 

domain disruption (fig. 3c). 

 

There are only few reports on the subcellular storage and 
intracellular transport of saponins as well as how plants can 
maintain the integrity of endogenous membranes. Kesselmeier and 
Urban [64] reported based on their cell fractionation studies that the 
vacuole is the subcellular storage for saponins. There is a little is 
known about that how the plants can prevent disruption of their 
own cell membranes as most of the saponins are stored in their 
active forms. Morant et al [65] reported that plants might have 
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developed different strategies to protect themselves from their own 
saponins activity which are yet to be elucidated. Based on their 
studies on the steroid saponins producing plants, Steel and Drysdale 
[66] reported that reduced levels of sterols in the cell membranes 
with low affinity to steroid saponins protects them from their own 
steroid saponins action.  

CONCLUSION 

Triterpenoid saponins are a diverse group of bioactive compounds 
possessing lot of biomedical and pharmaceutical importance. The 
various activities including antimicrobial, cell membrane perturbing, 
hemolytic and cell cytotoxicity are mainly due to hydrophobic 
aglycone moiety, nature of sugar portion, substitutions at C-28 
position. Saponins hold a lot of neutraceutical importance as the 
glycosidic linkage is easily cleaved and the derivatives are easily 
absorbed by gut secretions. Based on the above all studies, it can be 
concluded that the wide variety of applications of triterpenoid 
saponins could be attributed to the biological and structural 
diversity with high clinical values. 
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