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ABSTRACT 

Objective: The present study delineates the generation of mutant peptide library from a known anticancer peptide, p21 and in silico evaluation for 
their affinity towards cyclin. A substrate binding groove.  

Methods: Mutant peptide library was created based on their AntiCP score and was docked with cyclin A using ClusPro2.0 web server. The docked 
structures were further simulated into an aqueous environment using Gromacs 4.5.6. Visualization was performed using PyMol software and 
interaction analysis was done using Discovery Studio Visualizer 4.1 Client and LigPlot plus tool. 

Results: A total of 57 mutant peptides were generated; out of which only 3 namely, K3C (Lys3Cys), K3F (Lys3Phe), and K3W (Lys3Trp) had a 
greater affinity for cyclin A than WILD p21 peptide (HSKRRLIFS). Molecular dynamic simulation studies showed that the peptides remained docked 
into the substrate binding groove throughout the run. Among all the peptides, K3C showed a significantly higher negative binding energy with 
cyclin A as compared to WILD.  

Conclusion: The overall results suggested that K3C mutant peptide had ~30 % higher affinity towards cyclin A and thus, could further be explored 
for its anticancer potential. The study also provides an insight into the crucial interactions governing the recognition of substrate binding groove of 
cyclin A for the development of novel peptide-based anticancer therapeutics. 

Advanced Medical and 
Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Pulau Pinang, Malaysia 

Email: tkmaiti@hijli. iitkgp.ernet.in 

Keywords: Target-based cancer therapy, Cyclin A, p21 mutant peptide library, Molecular docking, Molecular dynamic simulation 

© 2019 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) 
DOI: http://dx.doi.org/10.22159/ijpps.2019v11i2.30577 

 

INTRODUCTION 

In the past few decades, cancer has emerged as a leading cause of 
death worldwide. Annually, cancer causes an estimated death of 5.5 
lakh people and ~8 lakh new cases are at its risk [1, 2]. Conventional 
therapies including chemo-and radio-therapies have been associated 
with a series of side-effects [2]. In addition to cancer cells, these 
therapies are also detrimental to the healthy cells and further result 
in many other systemic side-effects. Lack of selectivity of these 
therapies has made researchers focus on the development of target-
based strategies for cancer treatment [3].  

Under normal conditions, DNA damage activates tumor suppressor 
cascade resulting in either repair or growth arrest or apoptosis of 
the damaged cell [4, 5]. DNA damage is generally associated with the 
activation of p53 which in-turn activates a series of other proteins 
including DNA repair proteins, cell proliferation blockers and 
apoptosis-inducing proteins [6, 7]. On the other hand, cancerous 
conditions are associated with the aberrant version of either of 
these transcription factors; making the cell incapable to sense DNA 
damage and/or any deleterious mutation, thus, leading to an 
uncontrolled growth and transformation of the damaged cells. 

The interactions between the biological molecules such as protein-
protein, protein-DNA, and protein-RNA are considered to be very 
specific. Therefore, small drug molecules (both protein and non-protein 
based) and antibody-based therapeutic molecules such as Gleevec, 
Bombesin, Octreotide, Avastin, Herceptin, Iressa, Erbutix, etc., have come 
up in the commercial market for more effective cancer treatment [2, 3]. 
Moreover, small peptide-based drugs have also presented a suitable 
alternative for cancer treatment. The peptides, being smaller in size, 
could easily be internalized by the cells, could specifically bind to their 
target and could either activate or block the targeted signaling cascade 
[8, 9]. Such potency of the peptides has offered a new area for 

exploration of novel peptide-based therapeutics. Present day research 
focuses on identifying bioactive peptide from proteins that are known to 
interact with oncogenic proteins and thereby specifically targeting only 
the cancerous cells. 

In this regard, peptides derived from tumor suppressor proteins such 
as p53, p27, p21, pRB, p107, p130, etc. have proved to be of significant 
importance [10-12]. These proteins have long been known to exert 
tumor suppression by interacting with CDK/cyclin complex. Peptides 
derived from these proteins contain a minimal recognition motif 
which could specifically interact with the substrate binding groove on 
cyclin, thereby preventing recruitment and phosphorylation of CDK 
substrates and thus, blocking the cell cycle progression [10].  

Previously, Zheleva et al. has demonstrated the anticancer potential of 
the p21 C-terminal peptide “HSKRRLIFS” [10]. But there still exists an 
urge to develop a more efficient therapeutics to combat cancer and its 
increasing resistance towards the current therapeutics. In this regard, 
a better strategy would be to modify the pre-existing anti-cancer 
agents instead of investing in the development of new therapeutic 
from scratch. Keeping the aforesaid perspective in mind, herein, we 
present in silico evaluation of p21 based mutant peptides for their 
anticancer potential. Here, we have applied a molecular docking and 
molecular dynamic simulation-based strategies for screening purpose. 

MATERIALS AND METHODS 

Cyclin A structure retrieval and prediction of the peptide 
docking site 

X-ray crystallographic structures of human cyclin A and p21 peptide 
were retrieved from Protein Data Bank (PDB) with Ids–1JSU [13] 
and 1AXC [14] respectively. Both the structures were cleaned using 
Argus Lab software. For peptide, a specific sequence “HSKRRLIFS” 
was isolated for the creating the mutant peptide library and further 
molecular docking evaluations. Substrate binding groove of cyclin A 
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was analyzed by evaluating its interaction with p27 peptide in 1JSU 
PDB file using Discovery Studio Visualizer 4.1 Client. 

Preparation of p21 mutant peptide library and molecular 
docking with cyclin A 

The initial selection of the mutant peptide was carried out based on their 
higher AntiCP score in comparison to the WILD peptide (AntiCP score = 
0.70) generated using AntiCP: Prediction and Designing of Anticancer 
Peptides web server (http://crdd. osdd. net/raghava/anticp/) [15]. 
Selected mutant peptides were generated using mutagenesis module of 
the PyMOL software (DeLano Scientific). Further, docking of the mutant 
peptide library was carried out using the ClusPro 2.0 web server 
(https://cluspro. bu. edu/home. php) in an automated mode [16, 17]. 
Mean and lowest energy of the complex along with their interaction 
profile formed a basis of peptide screening for molecular dynamic 
simulation-based validation. Interaction profile of the peptides was 
analyzed by Discovery Studio Visualizer 4.1 Client. 

Molecular dynamic simulation-based evaluation of cyclin A-
peptide complexes 

Molecular dynamic simulation of screened cyclin A–peptide complex 
was carried out in an aqueous environment with a salt concentration 
of 0.156 M under GROMOS96 53a6 force field using Gromacs 4.5.6 
package following the protocol previously reported elsewhere [1]. 
The simulation was carried out for 20 ns timescale. Analysis of 
protein-peptide binding energy during the simulation run was done 
using MM/PBSA analysis. The work was carried out at the 
computational facility present at Advanced Medical and Dental 
Institute, Universiti Sains Malaysia, Malaysia. Visualization of the 
complexes was carried out using PyMOL software (DeLano 
Scientific) and their interaction profiling was examined by Discovery 
Studio Visualizer 4.1 Client and LigPlot plus tool. 

RESULTS AND DISCUSSION 

Evaluation of cyclin A substrate binding site 

In the previous reports, Zheleva et al. have already demonstrated 
that the peptides derived from the C-terminus of p21 could 

effectively interact with cyclin A through its cyclin groove 
recognition sequence “SKRRLIF” [10]. Such an interaction prevents 
binding and phosphorylation of downstream proteins by 
CDK2/cyclin A complex, thereby, blocking cell cycle progression. 
Moreover, a similar cyclin-groove recognition sequence “ACRNLFG” 
was also present in the p27 peptide structure of the ternary complex 
of CDK2/Cyclin A/p27 (accession number-1JSU). Thus, it was used 
to first analyze the substrate binding groove of cyclin A. The results 
demonstrated that the substrate binding groove was formed by α1, 
α3 and α4 helixes in the N-terminal domain of cyclin A. Amino acid 
residues Met210, Ile213, Trp217, Glu220, Val221, Arg250, Gln254, 
Tyr280, Ile281, Thr282, and Thr285 of cyclin A formed a crucial part 
of the docking site. Arg5 of p27 peptide extended towards α1 helix 
forming hydrogen bonds with Glu220 and Ile281. Leu7 and Phe8 of 
p27 were found buried into the hydrophobic pocket formed by 
Met210, Ile213, and Trp217, thereby extending stabilizing to the 
protein-peptide complex.  

Molecular docking of the WILD p21 peptide was done using ClusPro 
2.0 web server. Previous studies have efficiently exploited the server 
for studying protein-peptide interactions [18, 19]. The results 
revealed that WILD peptide docked into the substrate binding 
groove in a similar orientation as that of the p27 peptide with a 
ClusPro weighted docking score of-805.6. Further, the simulation-
based evaluations of the complex demonstrated WILD peptide to be 
docked into the substrate binding groove throughout the simulation 
run (fig. 1). From the energy decomposition analysis, electrostatic 
energy was found to have a greater contribution to the overall 
binding energy of the peptide. Per-residue energy decomposition 
study further revealed that amino acid residues Met210, Ile213, 
Asp216, Trp217, Glu220, Glu223, Glu224, Arg250, Gln254, Tyr280, 
Ile281, Asp283, and Asp284 of cyclin A were important for its 
interaction with WILD peptide (fig. 1 c). From the analysis, it was 
very evident that the cationic amino acid residues of p21 (Lys3, 
Arg4, and Arg5) interacted with anionic residues of cyclin A 
(Asp216, Glu220, Glu223, Glu224, Asp283, and Asp284); while 
hydrophobic residues, Leu6, and Phe8 of p21 interacted with 
Trp217, Ile213, Leu214, Leu253, and Ile281 of cyclin A. 

 

 

Fig. 1: Docking and simulation analysis of WILD p21 peptide. (a) The binding pose of the p21 peptide after docking (magenta) and 
molecular dynamic simulation (orange). Interacting amino acid residues have been highlighted in yellow. (b) LigPlot plus based 

interaction analysis of cyclin A/WILD peptide complex. (c) Per-residue energy decomposition analysis of cyclin A/WILD peptide complex. 
Amino acid His500–Ser508 of WILD/K3C peptide in the LigPlot plus 2D representation corresponds to His1–Ser9 (in reference to other 

sections of the manuscript) 
 

Generation of mutant peptide library and docking with cyclin A 

Previously, Zheleva et al., through an in vitro alanine mutagenesis 
analysis has demonstrated that amino acid residues Arg4, Leu6, 
and Phe8 of WILD peptide were crucial for effective binding with 
cyclin A [10]. In order to validate our model with these 
experimental results, we first generated a series of alanine 
mutants of the WILD p21 peptide including H1A, S2A, K3A, R4A, 
R5A, L6A, I7A, F8A, and S9A, followed by docking and molecular 
dynamic simulation analysis (Refer supplementary section S1). 
The results obtained suggested that our working model was 
consistent with the previously reported experimental results with 
R4A, L6A and F8A showing a maximum reduction in their binding 

affinity and loss of interaction with cyclin A (refer Supplementary 
table S1–S4 and fig. S1).  

With this analogy, we created mutant p21 peptide library keeping 
amino acid residues Arg4, Leu6, and Phe8 unaltered. Here, we 
further employed AntiCP server to screen and select the efficient 
peptides based on their higher SVM score in comparison to WILD 
peptide (SVM score WILD

15

 = 0.70). AntiCP is a web server which 
applies SVM model based on amino acid composition and binary 
profile features to predict the potential of the peptide as an anti-
cancer agent [ ]. During initial screening, a total of 57 mutant 
peptide sequences with a score>= 0.70 were obtained. Thereafter, 
three-dimensional peptide structure was generated using 
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mutagenesis module of PyMOL software followed by docking with 
cyclin A (refer supplementary table S5–S10). 

The docking results demonstrated that only 11 out of predicted 57 
peptides; had ClusPro weighted docking score higher than WILD 

including S2R, K3C, K3F, K3P, K3W, K3Y, I7C, I7M, S9C, and S9Q 
mutants (table 1). A closer analysis demonstrated that most of the 
peptides interacted with crucial amino acid residues of cyclin A 
including Asp216, Trp217, Glu220, Glu223, Glu224, Arg250, Gln254, 
Tyr280, Ile281, Asp283, and Asp284 (table 2). 

  

Table 1: Cyclin A-selected random mutant’s binding energy 

Peptides Lowest energy Normalized lowest energy 
Wild -805.6 1 
I7C -812.5 1.0086 
I7M -806.5 1.0011 
K3C -857 1.0638 
K3F -860.9 1.0686 
K3P -815.8 1.0127 
K3W -847.7 1.0523 
K3Y -825.6 1.0248 
S2R -838.8 1.0412 
S9C -823.9 1.022 
S9Q -829.4 1.0295 

Number of experiments, n = 1. 
 

Table 2: Cyclin A-selected random mutant’s interaction analysis 

Mutants Interacting amino acids 
I7C Ile213, Trp217, Glu220, Glu224, Arg250, Leu253, Gln254, Tyr280, Ile281, Asp283, Asp284, Thr285  
I7M Trp217, Glu220, Glu224, Arg250, Leu253, Gln254, Tyr280, Ile281, Asp283, Asp284, Thr285 
K3C Ile213, Leu214, Asp216, Trp217, Glu220, Glu224, Arg250, Leu253, Gln254, Tyr280, Ile281, Asp283, Thr285  
K3F Asp216, Trp217, Glu220, Gln254, Tyr280, Ile281, Asp283, Asp284, Thr285, Ser408 
K3P Asp216, Trp217, Glu220, Glu224, Arg250, Leu253, Gln254, Tyr280, Asp283, Thr285, Ser408,  
K3W Asp216, Trp217, Glu220, Arg250, Gln254, sp283, Thr285, Ser408, Lys412  
K3Y Asp216, Trp217, Glu220, Glu224, Gly251, Gln254, Tyr280, Ile281, Asp283, Asp284, Tyr286, Ser408, Glu411 
S2R Met210, Asp216, Trp217, Glu220, Glu224, Arg250, Leu253, Gln254, Ile281, Thr285, Tyr280, Asp83, Asp284 
S9C Met210, Ile213, Leu214, Asp216, Trp217, Glu220, Glu224, Arg250, Gln254, Ile281 
S9Q Ile213, Asp216, Trp217, Glu220, Glu224, Arg250, Leu253, Gln254, Tyr280, Asp283, Asp284, Thr285, Ser408 
 

In the present study, we selected peptides with at least 5 % higher 
ClusPro weighted docking score with a binding orientation similar to 
that of WILD peptide which includes K3C, K3F, and K3W. Weighted 
docking score for the K3C, K3F, and K3W mutant peptides was-857.0,-
860.9, and-847.7 which was higher than that of WILD (-805.6). A close 
insight into the binding pattern of the Lys3 mutant peptides showed 
distinct variations in comparison to the WILD. Substitution of lysine 
with bulky hydrophobic residues (either phenylalanine or tryptophan 
as in K3F and K3W mutants respectively); completely altered the 
binding orientation of the peptides. Both K3F and K3W peptides 
rotated by about an angle of 30ᵒ with respect to the WILD peptide, 
extending over α1 helix instead of docking into substrate binding 
groove. His1 residues of K3F and K3W interacted with α-C terminal 
helix which was absent in the WILD. The bulky amino acid residues, 
Phe3, and Trp3 in K3F and K3W respectively; docked into the 
hydrophobic pocket formed by Trp217, Val221, and Ile281. In 
contrast, peptide K3C docked into the substrate binding groove of 
cyclin A. Substitution of lysine with cysteine residue in K3C peptide 
resulted in slightly greater folding of the peptide which slightly 
affected its interaction pattern with cyclin A. Cys3 residue in K3C 
peptide interacted with Tyr280 of cyclin A. Arg4 in K3C interacted 
with Asp216, Glu220, Gln254, Ile281, Leu270, and Trp217; while it 
interacted with Glu220, Glu224, Gln254, Ile281, Thr282, and Trp217 
in WILD. Arg5 formed hydrogen bond interactions with Asp283 and 
Thr285; while Leu6 interacted with Trp217 and Gln254. These 
interactions were common to both WILD and K3C peptides. In K3C, 
Phe8 established interactions with Arg250, Leu253, Ile213, and 
Leu214 in comparison to Leu253 only in WILD, which may support a 
higher binding affinity of K3C than WILD peptide. Further validation of 
these results was carried out using a molecular dynamics simulation of 
the cyclin A-WILD/K3C complexes. 

Molecular dynamic simulation and MM/PBSA analysis of cyclin 
A/peptide complexes 

Based on the initial docking and interaction profiling, both cyclin A-
WILD/K3C complexes were evaluated for stability of their 

interaction in an aqueous environment using molecular dynamics 
simulation. The study revealed that cyclin A/K3C complex had a 
higher flexibility in comparison to cyclin A/WILD complex. Root 
mean square deviation (RMSD) of cyclin A protein showed higher 
fluctuations in K3C (fig. 2 a). RMSD values of cyclin A in complex 
with WILD and K3C peptides were 0.367 and 0.375 nm respectively 
at the end of the analysis of 20 ns. Root mean square fluctuation 
(RMSF) plot demonstrated that in K3C, the zone of higher deviation 
was mainly restricted to the substrate binding groove and C-
terminal of cyclin A (fig. 2 b). All the substrate binding site residues 
namely, Ser209, Met210, Ile213, Leu214, Asp216, Trp217, Glu220, 
Glu224, Leu253, Gln254, Tyr280, Ile281, Thr282, Asp283, Asp284 
except Glu223, and Arg250 exhibited higher fluctuation in cyclin 
A/K3C complex. At gross, these residues exhibited a greater 
fluctuation in their RMSD profiles in cyclin A/K3C complex in 
comparison to cyclin A/WILD complex throughout the simulation 
run (fig. 2 c). Such fluctuations in the RMSD profile suggest a 
constant rearrangement of the K3C peptide and corresponding 
cyclin A interacting residues to achieve a stable conformation. 
Hydrogen bond plot demonstrated that K3C peptide formed a higher 
number of bonds in comparison to the WILD peptide which supports 
its greater affinity for cyclin A as concluded from docking studies 
(fig. 2 d). The average number of hydrogen bonds formed by WILD 
and K3C were 6.895±1.875 and 9.995±2.216 respectively. All these 
results clearly indicate molecular and structural rearrangements 
induced by K3C in the complex. 

From the trajectory analysis, it was evident that both WILD and K3C 
mutant peptides remained docked into the substrate binding groove 
of cyclin A throughout the simulation run. During this period, C-
terminal of WILD peptide showed adjustment of Leu6 and Phe8 into 
the hydrophobic pocket. Phe8 of WILD peptide moved slightly 
outward from the hydrophobic groove thus, losing its interaction 
with Leu214 and Leu253 at the end of 20 ns. In K3C, the N-terminal 
of peptide rolled into the substrate binding groove. This was further 
validated by a decrease in radius of gyration (Rg) and solvation area 
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(SASA) of the K3C peptide with time (fig. 2 e and f). Such a folding of 
K3C peptide allowed His1 to form interactions with Glu220 and 
Glu224 which were missing from the initial docked structure. 

Moreover, Ser2 formed additional hydrogen bonds with Trp217 and 
Glu224. Formation of these additional interactions further 
supported the initial docking results (table 3, table 4 and fig. 3). 

 

 

Fig. 2: Simulation-based evaluation of the binding interaction of WILD/K3C peptide with cyclin A. (a) RMSD plot of cyclin A protein (black 
and red), WILD (cyan) and K3C peptide (pink). (b) RMSF plot of cyclin A protein. (c) RMSD plot of substrate binding groove residues 

(Ser209, Met210, Ile213, Leu214, Asp216, Trp217, Glu220, Glu223, Glu224, Arg250, Leu253, Gln254, Tyr280, Ile281, Thr282, Asp283 and 
Asp284) of cyclin A. (d) Hydrogen bond plot of protein-peptide complex. (e) Rg plot of the WILD and K3C peptides. (f) SASA plot of the 

WILD and K3C peptides. Black and red lines correspond to WILD and K3C 

 

Table 3: Cyclin A-WILD/K3C peptide interaction analysis during the simulation run 

Mutants Interacting amino acids 
WILD-10 ns Met210, Thr207, Ile213, Trp217, Glu220, Glu224, Arg250, Leu253, Ile281, Thr282, Asp283, Gln407 
WILD-20 ns Ser209, Ile213, Asp216, Trp217, Leu253, Glu224, Glu277, Ile281, Asp283, Asp284 
K3C-10 ns Glu220, Met210, Ile213, Trp217, Glu224, Arg250, Leu253, Gln254, Ile281, Asp283, Asp284  
K3C-20 ns Met210, Ile213, Trp217, Glu220, Glu224, Gly251, Leu253, Gln254, Tyr280, Ile281, Asp283 
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Fig. 3: Interaction analysis of cyclin A-WILD/K3C peptide complexes during simulation. (a) The structure of cyclin A (green) complexed 
with WILD peptide at 0 ns (red), 10 ns (salmon) and 20 ns (ruby). (b) Structure of cyclin A (green) complexed with K3C peptide at 0 ns 

(magenta), 10 ns (hot pink) and 20 ns (violet). (c) LigPlot plus based 2D interaction plot of the WILD peptide at 10 ns (c1) and 20 ns (c2). 
(d) LigPlot plus based 2D interaction plot of the WILD peptide at 10 ns (d1) and 20 ns (d2). Amino acid His500–Ser508 of WILD/K3C 

peptide in the LigPlot plus 2D representation corresponds to His1–Ser9 (in reference to other sections of the manuscript) 

 

Table 4: Per-residue interaction analysis of Cyclin A-WILD/K3C peptide complex during the simulation run 

Cyclin A/WILD peptide 
Peptide residues 10 ns 20 ns 
His1 Glu224, Ile281 Glu277 
Ser2 Glu220 Glu224 
Lys3 Ile281 Ile281, Asp283 
Arg4 Trp217, Glu220, Ile281, Thr282, Asp283, Gln407 Asp216, Ile281, Asp283 
Arg5 Asp283 Asp283, Asp284 
Leu6 Ile213, Trp217 Trp217 
Ile7 - - 
Phe8 Met210, Arg250, Leu253 Ile213, Leu253 
Ser9 Thr207 Ser209 
Cyclin A/K3C peptide 
His1 Glu220, Glu224 Glu220, Glu224 
Ser2 Trp217, Glu224 Trp217, Glu224 
Cys3 Tyr280, Ile281, Tyr280, Ile281, Asp283 
Arg4 Trp217, Gln254, Ile281  Trp217, Glu220, Gln254, Ile281, Asp283  
Arg5 Asp283, Asp284 Gln254, Asp283 
Leu6 Ile213, Trp217, Gln254 Gln254, Ile213 
Ile7 - - 
Phe8 Met210, Arg250, Leu253 Gly251, Met210, Arg250, Leu253 
Ser9 Met210 - 

 

Further, MM/PBSA analysis showed a significantly higher binding 
affinity of the K3C peptide for cyclin A in comparison to WILD. The 
binding energy of WILD and K3C peptide was-464.999±60.379 and-
593.947±73.919 kJ/mol respectively, at the end of the analysis. 
Moreover, the binding energy of K3C was more negative than WILD 
throughout the simulation run. The energy decomposition analysis 
revealed that the replacement of lysine by cysteine at the third 
position resulted in a decrease of polar solvation energy thereby 
increasing the total negative binding energy of the interaction (table 
5). In addition, an insignificant decrease in van der Wall energy, 
electrostatic energy, and SASA energy was also observed. Per-

residue energy decomposition energy also showed that most of the 
substrate binding site residues including Ser209, Met210, Ile213, 
Leu214, Asp216, Trp217, Glu220, Glu224, Arg250, and Leu253 had a 
greater contribution in the K3C peptide (table 6). Here, it is 
important to mention that Glu223, Tyr280, Ile281, Thr282, Asp283, 
and Asp284 had a lower energy contribution for K3C than WILD 
type. This could possibly be due to the initial rolling of the N-
terminal and the absence of Lys3 residue in the K3C mutant peptide. 
These results when taken together clearly suggest a higher affinity 
of K3C mutant over WILD type peptide and thus, it could potential 
application in cancer therapy. 
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Table 5: Energy decomposition analysis of Cyclin A–WILD/K3C peptide complexes 

Peptides Energy (kJ/mol) 
van der Waal energy Electrostatic energy Polar solvation energy SASA energy Binding energy 

WILD -236.402±20.502 -2929.631±186.171 2732.518±150.040 -31.484±2.257 -464.999±60.379 
K3C -212.921±20.182 -2711.249±217.242 2360.062±151.357 -29.840±1.912 -593.947±73.919 

Number of experiments, n = 3; data represented as mean±SD 
 

Table 6: Per-residue energy decomposition analysis of Cyclin A–WILD/K3C peptide complexes 

Amino acid residues Per residue binding energy (kJ/mol) 
WILD K3C 

Ser209 -1.825±0.0721 -14.169±0.4936 
Met210 -5.687±0.1235 -11.068±0.1931 
Ile213 -8.511±0.1464 -16.489±0.1885 
Leu214 -4.761±0.0557 -8.432±0.0731 
Asp216 -20.340±0.3495 -53.983±0.5318 
Trp217 -11.481±0.1533 -14.930±0.2116 
Glu220 -31.491±0.5294 -66.021±0.8461 
Glu223 -20.394±0.2369 -16.704±0.2712 
Glu224 -49.874±0.6252 -53.443±0.57 
Arg250 -10.401±0.569 -18.106±0.4331 
Leu253 -1.929±0.0606 -2.428±0.0796 
Glu254 -9.947±0.1537 -9.531±0.1736 
Tyr280 -19.594±0.2994 -5.927±0.2331 
Ile281 -19.645±0.1586 -14.558±0.1396 
Thr282 -4.884±0.1467 -4.385±0.1253 
Asp283 -46.995±0.6785 -26.798±0.3892 
Asp284 -27.736±0.3462 -13.372±0.1968 

Number of experiments, n = 3; data represented as mean±SD 
 

CONCLUSION 

In the present work, we applied docking and molecular dynamic 
simulation approach to screen novel cyclin A inhibitors derived from 
the p21 peptide for an effective cancer therapy. Our analysis 
establishes that K3C mutant peptide could bind at with cyclin A with 
much higher affinity that WILD peptide. Thus, it could prove to be a 
potential candidate as an anticancer agent. This is a preliminary 
study and further in depth in vitro and in vivo validations are 
required to validate this hypothesis.  
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