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ABSTRACT 

Objective: The objective of this study was to evaluate the uptake and specificity of [11

Methods: [

C]MPC-6827, a MT targeted PET ligand in prostate, 
glioblastoma and breast cancer cells. 

11C]MPC-6827 was synthesized by reacting corresponding desmethyl precursors with [11C]CH3I in a GE-FX2MeI/FX2M radiochemistry 
module. In vitro binding of [11

Results: [

C]MPC-6827 was performed in breast cancer MDA-MB-231, glioblastoma (GBM) patient-derived tumor (GBM-PDX), 
GBM U251 and prostate cancer 3 (PC3) cell lines at 37 °C in quadruplicate at 5, 15, 30, 60, and 90 minute incubation time. The nonspecific bindings 
were determined by incubation with unlabeled microtubule targeting agents MPC-6827, HD-800, colchicine, paclitaxel and docetaxel (5.0 µM).  

11C]MPC-6827 provided the highest binding in the breast cancer cell, MDA-MB-231, among all the cells studied, with 90% specific binding. 
[11C]MPC-6827 binds to glioblastoma PDX and U251 cells with ~50% and 40% specific binding, whereas, prostate cancer cell line, PC3 cells showed 
40% specific binding. [11

Conclusion: These data indicate that [

C]MPC-6827 also exhibits binding to the taxane and colchicine binding sites of MTs, in MDA-MB-231 cells. 

11

Keywords: PET, Microtubule, Radiotracer, Cancer, Cytoskeleton 

C]MPC-6827 can be a promising PET radiotracer for preclinical imaging of the brain and peripheral cancers. 
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INTRODUCTION 

Microtubules (MTs) are one of the major components of cytoskeletal 
polymers, which are found in all eukaryotic cell. They are comprised of 
repeating, non-covalently bound α, and β-tubulin heterodimers [1-4]. 
MTs serve as cellular conveyer belts that ferry vesicles, granules, and 
organelles like mitochondria, and chromosomes throughout the cell. 
Biochemical activities of MTs are regulated by free tubulin dimers, 
microtubule-stabilizing proteins (MSP), microtubule destabilizing or 
depolymerizing proteins, microtubule-associated proteins (MAP), and 
post-translational modification (PTM) of tubulin [5-8]. MTs also 
interact with intracellular transport proteins (e. g., kinesins and 
dyneins) and regulate tumor suppressor protein p53, and prosurvival 
proteins, such as Bcl-2 and survivin [9-11]. Correct alignment of the 
MT and mitotic spindle during cell division is crucial for cell fate 
determination, tissue organization, and normal development. 
Mutations associated with spindle disorientation through an increase 
in MT dynamics lead to an imbalance causing reduced or excessive cell 
proliferation that can result in cancer, birth disorders and brain 
diseases [12-17]. Altered tubulin isotype expression is the most widely 
characterized MT alteration reported in cancer [17]. Among these, β-
isoform overexpression is a prognostic biomarker for poor overall 
survival in the majority of cancers and tumors, which is also correlated 
with drug resistance [18-22]. 

MTs have been among the most successful targets in anticancer 
therapy and therefore, a large number of microtubule targeting 
agents (MTAs) are in various stages of clinical development. Three 
classes of ligands (vinca alkaloids, paclitaxel derivatives and 
colchicine) are in market for the treatment of several malignancies 
and other disorders [23-26]. The application of these drugs has 
shown several limitations, however, such as neurological and bone 
marrow toxicity, and emergence of drug-resistant tumor cells due to 
the overproduction of multi-drug resistance-1 (MDR1), affinity to P-

glycoprotein (p-GP) and breast cancer resistance protein (BCRP), 
and overexpression of different β-tubulins or tubulin mutations. To 
overcome these hurdles, several strategies are being developed to 
identify new MTAs as potential cancer therapeutics [27-32].  

The successful radiotracers reported for MTs to date are [11C] 
paclitaxel, [18F] fluoropaclitaxel and [11C]docetaxel [33]. Among this 
docetaxel and paclitaxel are well-characterized substrates of efflux 
transporters (p-GP, MDR1, BCRP), and therefore, the radiotracers do 
not show much uptake in the brain [33]. In this context, a screen of 
MTAs as positron emission tomography (PET) imaging agents found 
that [11C]MPC-6827 is the first successful brain penetrant PET tracer 
that exhibits high specific binding to MT in rodents [34]. Herein, we 
report the in vitro evaluation of [11

MATERIALS AND METHODS 

C]MPC-6827 in triple-negative 
breast cancer MDA-MB-231, glioblastoma (GBM) patient-derived 
tumor (GBM-PDX), GBM U251 and prostate cancer-3 (PC3) cell lines. 

Materials 

The commercial chemicals and solvents used in the synthesis were 
purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO), Fisher 
Scientific Inc. (Springfield, NJ), or Lancaster (Windham, NH) and 
were used without further purification. MPC-6827, desmethyl-MPC-
6827 and [11C]MPC-6827 were synthesized as reported previously 
[34]. [11C]CO2

Cell uptake experiments 

 was produced from GE PET trace cyclotron. All the 
cancer cell lines were obtained from ATCC (VA, USA).  

All the cell lines were cultured at 1x105 cells per 6 well (Corning, NY, 
USA) for 48 h in 5% CO2 in 10% phosphate buffer culture medium 
(Gibco, Fishersci, VA). Three days before the uptake assays, aliquots 
of 2.5x104 cells suspended in culture media were added to each well 
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of Costar 6-well plates to achieve the log growth phase with 
approximately 70% confluency at the time of the uptake assay. 
Additionally, the cells were incubated for an additional 24 h prior to 
the day of performing the cell assay. The blocking solution of MPC-
6827 [34], HD-800 [35], docetaxel, paclitaxel, and colchicine (Sigma 
Aldrich, MO) at a concentration of 5.0 µM in the same culture media 
was freshly prepared on the same day of cell assay. All assays were 
performed in triplicate at pH 7.4. To demonstrate the blocking 
efficacy, all the blocker solutions were added to the corresponding 
blocking wells 30 min prior to the addition of the radiotracer. The 
assay buffer was formulated with radiotracer by adding 20 µl/ml of 
[11

RESULT AND DISCUSSION 

C]MPC-6827, at a concentration of 74 kBq/ml to each block and 
non-block condition. Three incubation times of 5, 15, 60 min were 
selected to demonstrate the baseline uptake and blocking for PC3, 
GBM-U251 and GBM-PDX cells, whereas, an additional 90-minute 
incubation was performed for MDA-MB-231 cells. The cell uptake 
assays were initiated by rinsing the cells with 2 × 2 ml of the 
phosphate buffer at room temperature [36-38]. Uptake was allowed 
to proceed for selected time periods and then rinsed with 1 ml of the 
ice-cold buffer solution. Residual fluid was removed by pipette, and 
200 µl of 0.1% aqueous sodium dodecyl sulfate lysis buffer solution 
was added to each well. The plate was then agitated at room 
temperature and 1 ml of the lysate was taken from each well for 
counting. Radioactivity was counted using the Wallac 1480 Wizard 
gamma counter (Perkin Elmer, Turku, Finland) [38]. Additional 20 µl 
aliquots were taken in triplicate from each well for protein 
concentration determination using the Pierce bicinchoninic acid 
protein assay kit method (Rockford, IL). The uptake data in each 
sample from each well and the standard counts for each condition 
were expressed as counts per minute (cpm) of activity and was 

decay corrected for elapsed time. The cpm values of each well were 
normalized to the amount of radioactivity added to each well and 
the protein concentration in the well and expressed as percent 
uptake relative to the control condition [36-38]. The data were 
expressed as %ID/mg of protein present in each well with p values 
≤.05 considered statistically significant. 

[11

 

C]MPC-6827 was obtained in 40+5% yield at the end of synthesis 
(EOS) with a molar activity of 75+9.25 GBq/µmol and radiochemical 
purity>99% (fig. 1) [34].  

 

Fig. 1: Chemical structure of [11

 

C] MPC-6827 

The uptake of [11

  

C]MPC-6827 was first determined in prostate 
cancer PC3 cells [39]. The radioligand showed equilibrium binding 
after 60-minute incubation and the highest uptake was found at 30-
minute incubation time with approximately 40% specific binding 
using 5 µmol of unlabeled MPC-6827 as a blocking agent to test non-
specific binding (fig. 2). 

 

Fig. 2: Binding of [11

 

C]MPC-6827 in PC3 cells, values are reported as the mean±SD from three independent experiments 

Subsequently, the binding of [11C]MPC-6827 was determined in 
GBM U251 and GBM-PDX cell lines. The radioligand showed 
uptake in both cells, however, the binding was lower than PC3 
cells up to 30 min incubation time. However, the tracer exhibit 

higher uptake at the 60 min incubation time point than in PC3 
cells. The uptake of [11

 

C]MPC-6827 was partially blocked (40% for 
GBM-U251 and 50% for GBM-PDX) with unlabeled MPC-6827 (fig. 
3 and 4). 

 

Fig. 3: Binding of [11C]MPC-6827 in GBM-U251 cancer cells, values are reported as the mean±SD from three independent experiments 
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Fig. 4: Binding of [11

 

C]MPC-6827 in GBM-PDX cancer cells, values are reported as the mean±SD from three independent experiments 

 

Fig. 5: Binding of [11

 

C]MPC-6827 in MDA-MB-231 cancer cells, values are reported as the mean±SD from three independent experiments 

Next, the binding of [11C]MPC-6827 was determined in MDA-MB-231 
cells [40]. The radiotracer showed equilibrium binding at a 60-minute 
incubation time point (fig. 5). Blocking with unlabeled ligand resulted 
in 90% specific binding. The radiotracer uptake and specific binding 
were highest in MDA-MB-231 cells compared to other tested cells. The 
differences in binding of radiotracer in these cells may be due to its 
variable expression of tubulin. After optimizing the equilibrium tracer 
uptake at 60 min, we performed detailed blocking experiments with a 
series of MT ligands to determine the binding site of [11C]MPC-6827 in 
MDA-MB-231 cells. As is evident from these experiments, [11C]MPC-
6827 showed 88%, 78%, 65%, 95%, and 95% specific binding with 5 
µmol each of docetaxel, paclitaxel, colchicine, MPC-6827 and 

structurally distinct MTA HD-800 [35], respectively. These results are 
consistent with the previous reports of photoaffinity and radioligand 
displacement studies showing MPC-6827 compete with paclitaxel and 
colchicine [41]. MPC-6827 and HD-800 show comparable specific 
binding in MDA-MB-231 cells. This effect was similar to our previous 
in vivo brain PET imaging experiments in mice with MPC-6827 and 
HD-800 indicating similar binding sites for these ligands with MTs [34, 
35]. Although MPC-6827 and HD-800 are known to bind the colchicine 
site of MTs [34, 35, 41], colchicine blocks the least tubulin binding sites 
of [11C]MPC-6827, perhaps due to its low affinity to MT polymerization 
(IC50

  

 = 3.2 µM) [42]. Among the taxanes, docetaxel showed higher 
blocking than paclitaxel. 

 

Fig. 6: Binding site determination of [11C]MPC-6827 in MDA-MB-231 cancer cells. Values are reported as the mean±SD from three 
independent experiments 
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CONCLUSSION 

In summary, we have examined the cell uptake of [11C]MPC-6827 in 
prosteate, GBM and breast cancer cell lines. We found that [11C]MPC-
6827 showed moderate specific binding in PC3, GBM-U251, and 
GBM-PDX cancer cells, whereas, robust specific binding was 
observed in breast cancer MDA-MB-231 cells with excellent specific 
binding. Moreover, cell uptake studies with MDA-MB-231 cells 
showed [11C]MPC-6827 binds to the taxane and colchicine binding 
sites of MTs. These results suggest that [11
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