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ABSTRACT  

Objectives: Hydrogen sulphide (H2S) has a protective effect against renal ischemia reperfusion injury (I/R), but it is toxic and have the limitation 
for its controlled in-vivo release to the system. However, its metabolite thiosulfate can release low amounts of H2S, is non toxic and clinically 
approved drug for end renal failure, cyanide toxicity and calcific nephrolithiasis, and may possess anti-ischemic reperfusion effect. 

Methods: I/R was induced in LLC PK1 renal tubular epithelial cells by reversibly treatment of cells with glucose oxidase (3 mM/s) and catalase 
(998/s) in a glucose deprived media. STS was administered to the cells as pre-treated, preconditioned or post conditioned drug. 

The objective of 
this study was to determine the anti ischemia reperfusion (I/R) effect of sodium thiosulfate (STS).  

Results: Pre-treatment of LLC PK1 cells with STS protects the cells from I/R injury but not, when the cells were preconditioned or post conditioned 
with STS, examined through cell viability tests like sulforhodamine B, crystal violet and LDH activity. Propargylglycine the endogenous H2S 
biosynthetic inhibitor treatment to the cells did not negate the renal protection mediated by STS pre-treatment indicate the possible release of H2S.  

Conclusion: This study indicates that STS plays a protective role in I/R induced renal injury when they were administered as pre-treated drug by 
modulating H2

Keywords: Renal ischemia reperfusion injury, Sodium thiosulfate, Hydrogen sulfide, DL-Propargyl glycine, Cell viability tests. 

S metabolism. 

 

INTRODUCTION 

Ischemia-reperfusion injury is a complex phenomenon often 
encountered in surgical procedures in different organs like heart [1, 
2], kidney, brain, liver, lungs etc. Kidney transplantation or surgery 
predisposes ischemia reperfusion (I/R) injury, one of the major 
causes of acute renal failure [3], associated with high mortality rates 
of about 50% in the intensive care unit [4]. It is resulted from a 
generalized or localized impairment of oxygen and nutrient delivery 
to the cells of the kidney, manifested by decreased glomerular 
filtration rate and high renal vascular resistance with endothelial 
activation and dysfunction [5].  

Therapeutic approaches like pre/post conditioning have been 
showing promise in preclinical experimental I/R models [6] but 
have not reduced the mortality seen in bed studies associated with 
ARF [7]. Several interesting and promising novel agents and 
research specifications are emerging from the study of I/R injury in 
other organs and tissues. One of the most promising molecules is 
hydrogen sulfide (H2S), known as third gaseotransmitter with 
multiple physiological and pathophysiological actions [8, 9]. 
Recently, it had been shown that H2S can reduce IR injury and 
proved to be cardio-protective against I/R [10-12]. Evidences from 
the previous reports suggest that H2S is protective against renal I/R 
injury when administered as exogenous or endogenous agent [13]. 

However, the progress in this field of research is hampered by the 
unknown exact H2S concentrations in various samples due to the lack 
of suitable, accurate method for gathering such information. Another 
important aspect is the absence of specific inhibitors of H2S synthetic 
pathways and stable H2S donors [14]. This paved the way to search for 
an alternative that has a similar biological efficiency as H2S. 

Sodium thiosulfate, the immediate metabolite of H2S, used as a 
therapeutic agent in different clinical situations. Thiosulfate is 
reported to be a potent free radical scavenger and can chelate calcium 
ions [15]. For cyanide toxicity treatment [16], and in cisplatin based 
cancer therapies, thiosulfate is used as a drug [15]. Thiosulfate has 
multiple application such as preservative, food supplement and even 
as a drug with antifungal medications. Recently Sen and his co-
workers showed that sodium thiosulfate can modulate H2

MATERIALS AND METHODS 

S production 
endogenous and thereby render cardio-protective in chronic heart 

failure [17]. However, its role in preventing/ameliorating renal 
ischemia reperfusion is not being determined. It is well known that 
patho-physiological ischemia environment in heart and kidney are 
different, thus the therapeutic molecule that works better with one 
type organ may/not efficient in another organ system. The present 
study focused to evaluate the efficacy of sodium thiosulfate as a renal 
anti ischemic reperfusion agent. 

Cell culture 

LLC-PK1, derived from the renal epithelial cells of Hampshire pigs 
PK1 (NCCS, Pune, India) was grown in Dulbecco’s modified Eagle’s 
medium (DMEM, Invitrogen, USA) supplemented with 10% fetal calf 
serum, 50µg/ml streptomycin, and 50 U/ml penicillin at 37°C in a 
CO2 incubator (95% air, 5% CO2), and then, 0.5% (w/v) trypsin was 
used to detach the cells from the flasks. The cells were subsequently 
centrifuged, re-suspended in DMEM, and sub-cultured in 75 cm2

Induction of ischemia reperfusion (I/R) in LLC-PK1 

 
culture flasks or 96-well  

I/R was induced in vitro according to the well-studied and 
extensively characterized model [18]. When the cells cultured in 96-
well plates became 80% confluent, ischemia was created by 
changing the culture medium to DMEM without glucose and serum 
and the cells were exposed to the ischemic condition using 
enzymatic GOX/CAT system consisting of glucose oxidase (GOX) and 
catalase (CAT) and 2-deoxyglucose (a non-metabolizable isomer of 
L-glucose). GOX/CAT system was prepared by diluting glucose 
oxidase and catalase at a constant 10:1 ratio in cell culture medium. 
Enzyme activities of stock solutions were 3 mM/s for GOX and 998 s-

1

Experimental protocol 

for CAT. To obtain a defined, stable oxygen concentration of 2% on 
the cell surface, stock solutions were diluted by 1:10, 000 for GOX 
and 1:1, 000 for CAT. The in-vitro reperfusion was achieved by 
incubating cells in glucose-replete complete growth medium. 

The entire experiments comprises of following groups namely: 
control, ischemic control, reperfusion control, sodium thiosulfate 
(STS) treated, NaSH (positive control) and NaCl (negative control) 
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treated: In general, 80% confluent LLC PK1 cells were selected for 
the study. DMEM media were replaced by fresh media in the control 
group alone where as in other groups ischemic media comprises of 
DMEM without glucose + 2-deoxyglucose + GOX/CAT was added and 
incubated for 60 minutes at 37ºC for the induction of ischemia. At the 
end of this stage fresh DMEM was used to replace ischemic medium 
for re-perfusion effect for 3 hrs. STS (1 mM, 10 mM and 20 mM), NaSH 
(1µM) and NaCl (10 mM) respectively were added to the cells one hour 
prior to the induction of ischemia, considered as pre-treated groups; 
just before the induction of ischemia, named as preconditioned groups 
and prior to reperfusion termed as post condition.  

To evaluate the influence of endogenous hydrogen sulfide in STS 
mediated effect and to verify the release of H2

Assay of lactate dehydrogenase leakage 

S from STS, cells were 
pre-incubated with DL propargylglycine (200µM), inhibitor of 
cystathione gamma lyase) for 1hr before the addition of STS and 
followed by ischemia and reperfusion. 

Crystal violet assay 

Crystal Violet assay described by Ishiyama was used to determine 
the cell viability [19] . Cells (grown on 96 well plates with 80% 
confluence) were washed and stained with 0.5% crystal violet in 
methanol for 8–10 min at 22°C, then washed three times with 1X 
phosphate-buffered saline solution. The absorption measured at 550 
nm was used as an index for cell viability. 

Sulforhodamine assay 

The cytotoxicity of the samples was established using the 
sulforhodamine B (SRB) colorimetric assay [20]. Cells (grown on 96 
well plate with 80% confluence) were washed and fixed with by 
means of protein precipitation with 50% trichloroacetic acid at 4ºC 
(final concentration 10%) for 1hr. After five washing with tap water, 
cells were stained for at least 15 minutes with 0.4% SRB dissolved in 
1% acetic acid and subsequently washed four times with 1% acetic 
acid to remove unbound stain. The protein-bound dye is dissolved in 
10 mM Tris base solution for optical density determination at an 
excitation wavelength of 488 and emission wavelength of 585. 

The activity of cytoplasmic lactate dehydrogenase (LDH) leakage into 
culture media was determined as described previously [21]. After the 
experimental protocol, 100 μl of media were collected, and the LDH 
activity was assayed in 2.4 ml of phosphate buffer (0.1 mol/l, pH 7.4) 
with 100 μl of NADH (2.5 mg/ml phosphate buffer). The rate of NADH 
oxidation was determined by following the decrease in absorbance at 
340 nm at 25°C with the use of a spectrophotometer.  

Statistical analysis 

Data are reported as means ± SD. The experimental and control 
groups were compared by one-way analysis of variance (ANOVA) 
with the level of significance set at 5% (P < 0.05). 

RESULTS 

Sodium thiosulfate Toxicity study 

Different concentrations of STS (1 µM, 100 µM, 500µM, 1 mM, 20 
mM, 40 mM, and 100 mM) were added to LLC PK1 cells cultured in 
48 well plate and the results are shown in fig. 1. STS did not show any 
toxicity to LLC PK1 cell except for the higher concentration at 40 mM 
and 100 mM, where both concentrations showed a decrease of 10% 
and 30% viable cells respectively as compared to control with 24hr 
incubation time. On the other hand, at a low incubation time (6 hrs and 
12 hrs) of cells treated with STS did not show any toxicity (fig. 1). 

Induction and standardization of ischemic model 

Absence of an established cell culture model for renal ischemia has 
delayed the mechanistic investigations on ischemic injury. We used 
in-vitro model of hypoxia with modifications to establish ischemia 
mimetic. Fig. 2 shows the standardization of ischemic model by an 
enzymatic method. We identified the extend of ischemic injury in 
LLC PK1 cell lines with GOX/CAT system at different time interval of 
15, 30, 60, 120, 180 minutes respectively and the results are shown 
in fig. 2. The maximum cell injury was observed in cells incubated at 
120 and 180 minutes with GOX/CAT. For the further analysis, we 
used 120 minutes ischemia. 
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Fig. 1: Sodium thiosulfate (STS) toxicity study. Different concentration of STS was incubated with LLC PK1 cells for different time interval. 
Different assays like sulforhodamine B (SRB), crystal violet (CV) and lactate dehydrogenase were used to assess cytotoxicity. Results are 

expressed as mean ± SD of n= 4-6 independent assays (*) P<0.05, statistically different from the control group 

 

 

Fig. 2: Standardization of ischemic control by different time interval. Ischemic time duration for whole experiment was fixed based on the 
results of cell viability assays like sulforhodamine B (SRB) and crystal violet (CV), after incubating LLC PK1 cells with ischemia inducing 

system namely GOX/CAT (glucose oxidase and catalase 10:1) for different time intervals. Results are expressed as mean±SD of n= 4-6 
independent assays (*) P<0.05, statistically different from the control group 

 

LLC PK1 cells were pre-treated and preconditioned with different 
concentration of STS (500µM, 1 mM &10 mM) and the results were 
shown in fig. 3. Cell viability tests like SRB, crystal violet and LDH 
were used to assess the effect of STS as anti ischemic agent. Pre-
treating the cells with 1 mM STS preserve the cells (92% cells are 
viable as compared to 62% in ischemia) from the ischemic injury 
However, preconditioning the cell did not show any significant 
protection from ischemic injury. Furthermore, the results were 
confirmed by sodium chloride, the negative control and sodium 

hydrosulfide (H2S donor). As expected, NaSH showed protection 
against ischemia when it was administered either as a pre treated or 
precondition agent (fig. 3). 

Ischemia reperfusion injury in LLC PK1 cells was created by 
replacing the DMEM media containing GOX/CAT system and 2 
deoxyglucose with normal DMEM medium (Lee and Emala, 2002). 
Reperfusion time was fixed based on the preliminary study data at 
different time interval namely 60, 120, 180 minutes. 
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Fig. 3: Anti ischemia reperfusion injury effect of sodium thiosulfate in LLC PK1 cells,  
After inducing ischemia for 60 minutes with GOX/Cat system, reperfusion was achieved by incubating cells in glucose replete complete 
growth medium. LLC PK1 cells were incubated with STS in three different conditions namely pretreated (one hour prior to ischemia), 

precondition (just before ischemia) and post treated (just before reperfusion). NaCl and NaSH were used as negative and positive controls 
respectively. Results are expressed as mean ± SD of n= 4-6 independent assays (*) P< 0.05, statistically different from the control group 

  

Post conditioning, one of the therapeutic modality for I/R was 
performed in LLC PK1 cells with STS, NaCl and NaSH after 60 
minutes of ischemia followed by 3 hrs of reperfusion. Contrary 
to our expectation, pre treating the LLC PK1 cells with 1 mM STS 
only showed significant protection to the cell to withstand I/R 
injury as compared to normal (fig. 3), while pre and post 
conditioning failed to impart any protection. Compared to NaCl, 
pre treated STS showed 92% viable cells, while NaSH showed 
93% viable cells. In fact, NaSH, H2

Effect of STS as I/R agent in the absence of endogenous H2S 
production 

S donor preserved 90 and 91% 
cells from I/R injured when they were pre and post conditioned 
(fig. 3). 

In order to negate the effect of endogenous H2S mediated I/R protection, 
we use PAG (irreversible inhibitor of the H2S synthesizing enzyme 
cystathionine-γ-lyase). The PAG control group showed the significant 
decline in the cell survival upon I/R induction as indicated in fig. 4. 
However, when LLC PK1 cells were pre- treated with STS before the 
insult of I/R, the cell survival rate was improved, suggested the possible 
release of hydrogen sulfide from thiosulfate as reported by other 
investigators. However, pre or post conditioning the cells with NaSH 
impart protection to cells during I/R even in the presence of PAG. 
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Fig. 4: Anti ischemia reperfusion effect of sodium thiosulfate in presence of propargyl glycine (PAG). 
In order to study the role of hydrogen sulphide released by sodium thiosulftae, endogenous sulphide generating enzymes were inhibited 
by PAG and induce ischemia reperfusion, treated with STS (pre treated, precondition and post condition). Results are expressed as mean 

± SD of n= 4-6 independent assays (*) P< 0.05, statistically different from the control group 

 

DISCUSSION 

The present study has demonstrated the protective role of Na2S2O3 
on renal injury induced by I/R in LLC PK1 cells. H2S, the positive 
control and one of the metabolite of STS also showed improved cell 
survival to I/R, was previously reported to have renal protection 
irrespective of its endogenous or exogenous nature, by stimulating 
KATP channel [22]. However, toxicant nature of H2S and limitation 
of stable H2S donor (NaHS/ Na2S) as it’s released rate varied, 
hamper the progress of H2S as therapeutic drugs. In fact, STS was 
reported to release H2S in slow rate [9] and is a clinically proven 
drug that excreted through the kidney and reported to be non toxic 
even at higher concentrations up to 20 mM range (fig. 1).  

The pathology associated with ischemia and ischemia reperfusion 
believes to be initiated in mitochondria, characterised to have 
reduced ATP synthesis and enhanced ATP hydrolysis associated 
with deranged ionic homeostasis and increased influx of reactive 
oxygen species and pro-apoptotic protein [23]. In general, 
thiosulfate is metabolized in mitochondria, where elementary 
sulphur is released from the oxidation of sulfide in H2S and further 
reduction, results in the formation of persulfide with the help of 
sulfide: quinone oxidoreductase (SQR). One of the persulfide will get 
oxidized by sulfur dioxygenase and the other will transfer from the 
SQR to sulfite by sulfur transferase producing thiosulfate (H2S2O3) 
[24]. Evidences from previous study indicate that H2S mediate 
protection against ischemic neuronal death [25], cardiac ischemia 
reperfusion related abnormalities [10], renal ischemia reperfusion 
injury [26], hepatic ischemia reperfusion injury [27] by improving 
the mitochondrial physiological functions. 

Indeed, studies in the yeast, E. coli and other microorganism showed 
that hydrogen sulfide can be synthesized from thiosulfate. Moreover, 
it had been shown in mammals that hydrogen sulfide can be 
synthesised from thiosulfate through thiosulfate sulfurtransferase 
[28, 29]. Hence, STS mediated renal protection may be due to the 
release of hydrogen sulfide that may be in low concentration as this 
reaction is slow. Further extensive study is needed to confirm the 
stoichiometry and mechanism of release of H2S from thiosulfate in 
kidney cells. 

Interestingly, only pre-treatment for cells with STS mediated renal 
protection to I/R injury and it may be attributed to the self-
protective response of the cell mediated by STS [24] similar to that 
of H2S [30]. Hence, we assumed that, the H2S release from 
thiosulfate is slow and perhaps STS need more time to release H2S 
in sufficient concentration to enable renal protection.  

In kidney cells, H2S is being synthesized through two enzymes 
namely, cystathione β synthase and cystathione γ lyase [24]. 
According to Sen [17], synthesis of endogenous H2S is essential for 
renal function and integrity following ischemia reperfusion injury 

[17]. In support to the early findings, our results showed that H2S 
donor NaSH reduces the renal injury either in the presence or 
absence of PAG, the inhibition of endogenous H2S synthesis. 
However, the renal protections showed by STS pre-treatment were 
negated in the presence of PAG, indicating the need of endogenous 
H2S in renal protection. In fact, our results suggest that STS (1 mM) 
may not be sufficient to impart renal protection in the absence of 
endogenous H2S. 

Based on the above observations, we conclude that STS can be a 
novel therapeutic drug against renal ischemia reperfusion injury. 
Further studies in animal models are required to confirm these 
findings before translated into a clinical scenario as STS is an 
clinically approved drug for other disorders. 
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