

Print ISSN: 2656-0097 | Online ISSN: 0975-1491

Vol 13, Issue 2, 2021

Original Article

ANALYSIS OF BIO-ACTIVE COMPOUNDS PRESENT IN THE LEAVES AND STEM OF TRICHOSANTHES ROXB. USING GC-MS TECHNIQUE WITH RESPECT TO ITS ANTI-INFLAMMATORY ACTION

AGHIL SOORYA ARAVINDAKSHAN*, SEKAR THANGAVEL

Department of Botany, Bharathiar University, Coimbatore-46, Tamil Nadu, India *Email: aghilsoorya@gmail.com

Received: 12 Nov 2020, Revised and Accepted: 28 Dec 2020

ABSTRACT

Objective: Structural elucidation studies on *Trichosanthes lobata* ethyl acetate and methanol extracts of leaf and stem parts through Gas Chromatography-Mass Spectrometry (GC-MS) technique with respect to anti-inflammatory potential.

Methods: Extracts obtained with shade dried and powdered samples in successive solvent extraction using ethyl acetate and methanol by Soxhlet apparatus and subjected to GC-MS analysis and interpreted for its anti-inflammatory compounds.

Results: The study revealed that the extraction solvent used was able to recover compound of classes such as organic acid esters and conjugated alkaloids in larger quantities than other classes of compounds and they varied with leaf and stem and also with the polarity of solvents used. In total compounds identified, GC-MS profile of the Ethyl Acetate leaf extract of *T. lobata* contained 41 compounds, stem extract contained 45 compounds which have reported bioassays in PubChem. Whereas GC-MS profile of methanol leaf extract of *T. lobata* contained 66 compounds and stem extract contained 46 compounds having bioassay reports in PubChem. A large number of phytochemical peaks with good area percentage were found in methanolic extract. We were also able to find out potent anti-inflammatory compounds including Octanoic acid, Dodecanoic acid, Octadecane, Enoic acid, Hexanoic acid, Quinazolin-8-one, Ilicic acid, Pentadecanoic acid, Oxaspiro, Benzeneacetic acid, etc. from the extracts.

Conclusion: *T. lobata* contains phytocompounds against inflammation which may serve as a new drug lead of natural products origin in future and make it employable in modern pharmacological practices.

Keywords: Ethyl Acetate, Methanol, Trichosanthes lobata, GC-MS, Phytochemicals, Leaf, Stem

© 2021 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/) DOI: https://dx.doi.org/10.22159/ijpps.2021v13i2.40236. Journal homepage: https://innovareacademics.in/journals/index.php/ijpps.

INTRODUCTION

Basically, nature is the first source of medicinal compounds, from which bigger and accurate molecules are being formed. Since ancient times the natural substrates have been used as a source of various products applied in food, drug, cosmetic, textile and energy [1]. These naturally available products of higher plants serve as traditional medicine, possibly due to scientifically not proven mechanisms of action. The natural compounds exhibit various beneficial biological activities such as antimicrobial, antioxidant, anticancer, antiinflammatory, anti-obesity, anti-angiogenic, neuroprotective activities, etc. Therefore, various phytochemicals isolated from plant sources have attracted much attention in the field of pharmacology [2]. Trichosanthes species belongs to Cucurbitaceae family. Generally, fruits of this species are proved to have good sources of phenolics and antioxidants. also possesses anticancer, antiproliferative, cardioprotective, antioxidant properties, etc. Many research studies have reported that it contains important protein called Ribosome Inactivating Protein which helps in the formulation of anticancer agents. In general, biological components present in plants are considered as a stimulant for its medical properties like antiinflammatory, antidiabetic, antiulcer and cardioprotective activities. Similarly, there are various herbal preparations from Trichosanthes species being prescribed widely for the treatment of inflammatory conditions. One such plant is Trichosanthes lobata Roxb. Commonly called as patolam, kaypanpatolam, kattupatolam and peppatolam. It is a monoecious climber, an indigenous species therapeutically used in the tribes of Idukki hills, Kerala, India. These species have shown the presence of active constituents like flavonoids, phenolics, carotenoids, saponins, triterpenoids, etc. Although the extracts of this plant have been traditionally used in the treatment of inflammations, there is no scientific evidence which supports this therapeutic use. Our earlier research has documented its acute and chronic in vivo antiinflammatory activities. The overall results obtained confirmed that the extracts of *Trichosanthes lobata* contain anti-inflammatory substances.

Inflammation refers to the reaction of living tissues to overcome injury, infection or irritation. Lysosomal enzymes are released during inflammation producing a variety of disorders leading to tissue injury by damaging the macromolecules and lipid peroxidation of membranes. These activities are presumed to be responsible for certain pathological conditions such as heart attacks, septic shocks, rheumatoid arthritis, etc. The extracellular activity of these enzymes is said to be related to acute or chronic inflammation [3]. Thus, there is a need for natural anti-inflammatory agents to achieve increased pharmacological response and less side effects. In this regard, complementary, alternative and traditional medicine play a pivotal role in medication. While proving them through scientific methods gives more authentication to the practices followed. Fulzule et al. [4] studied anti-inflammatory activity of Trichosanthes cucumerina and it was evaluated by use of the carrageenan-induced paw edema model in Wistar rats. Also, the underlying mechanism by which T. cucumerina mediates the anti-inflammatory activity was assessed by determining its effects on membrane stabilizing activity and nitric oxide inhibitory activity. Inhibitions of nitric oxide (NO) production and membrane stabilization activities are probably the mechanisms by which ligand molecules mediate its anti-inflammatory actions. Those findings rationalized the traditional practice of this plant as an antiinflammatory agent. They suspect that membrane stabilizing abilities and the absence of inhibitory action are possible mechanisms through which T. cucumerina arbitrates its anti-inflammatory action.

In this study, we have analysed the chemical profiling of ethyl acetate and methanol leaf and stem extracts of *T. lobata*, with special reference to their anti-inflammatory effects using by Gas Chromatography-Mass Spectrometry (GC-MS). The obtained compounds were checked for its anti-inflammatory properties in PubChem and tried to report the possible effect of plant extracts against inflammation.

MATERIALS AND METHODS

Plant collection and preparation of plant extracts

Fresh, healthy and matured leaves and stem of *Trichosanthes lobata* Roxb. were collected from Vattavada Panchayat (10 °10'38.7"N 77 °15'33."E), Koviloor Post, Idukki District, Kerala state of India. The authenticity of the selected plant species was confirmed from the Botanical Survey of India, Southern Circle, Coimbatore (Vide No: BSI/SRC/5/23/2016/Tech./213). The leaves and stem were cleaned, dried in shade and ground well to a fine powder. About 50 g of dry powders were subjected to successive solvent extraction with ethyl acetate and methanol using Soxhlet apparatus. The filtered and dried extracts were subjected for GC-MS analysis.

Gas chromatography-mass spectrometry (GC-MS) analysis

The GC-MS analysis was carried out using the instrument Thermo GC-Trace Ultra Ver: 5.0, Thermo MS DSQ II with Column: DB 35-MS

Capillary Standard Non-Polar Column possessing Dimension: 30 Mts, ID: 0.25 mm, Film: 0.25 μ m. The initial temperature of the instrument was set to 110 °C and maintained for 2 min. At the end of this period, the oven temperature was raised up to 260 °C, at the rate of an increase of 6 °C/min, and maintained for 9 min. The temperature of injection port was ensured as 250 °C and the flow rate of Helium as 1 ml/min. An injection volume of 1 μ l of sample is considered in the analysis. The ionization voltage was maintained to be 70 eV and samples were injected in split mode in the ratio 10:1. Mass Spectral scan range was set at 45-450 (MHz).

The chemical constituents were identified by GC-MS. The fragmentation patterns obtained from mass spectra were compared and analysed with spectrometer database using National Institute of Standards and Technology Mass Spectral database (NIST-MS). From the relative peak area of each component in the chromatogram the percentage of each component was calculated.

Table 1: Showing the list of compounds having pharmaceutical importance obtained from GC-MS profile of Ethyl acetate leaf extract of
Trichosanthes lobata

S.	RT	Compound nome	Malamlan	Mal	A	Diala giaal a ativitas
5. No.	(min)	Compound name	Molecular formula	Mol. weight (g/Mol)	Area %	Biological activity*
1	14.43	Tetradecanoic acid	C ₁₄ H ₂₈ O ₂	228	70	Antagonistic activity against Escherichia coli
2	14.43	Octanoic acid		228 144	7.84 7.84	Prostaglandin E2 inhibitors, and Cox2
			$C_8H_{16}O_2$			
3	14.43	Dodecanoic acid	$C_{12}H_{24}O_2$	200	7.84	Antimicrobial and anticancer activity
4	14.43	D-Glucuronic acid	C ₆ H ₁₀ O ₇	194	7.84	Apoptotic and cytotoxic activity
5	14.43	Dodecanoic acid	$C_{12}H_{24}O_2$	200	7.84	Blood pressure regulation and vascular inflammation
6	26.8	Trimethylsilyl	C ₁₈ H ₃₄ O ₄ Si ₃	398	4.21	Fungicidal activity
7	26.8	Phenazine, 5,10-dioxide	$C_{12}H_8N_2O_2$	212	4.21	Anti-trypanosomal activity
8	28.8	Docosane	C22H46	310	3.06	Antimicrobial activity
9	28.8	Octadecane	C ₁₈ H ₃₈	254	3.06	Immuno-stimulating properties, Anti-inflammatory activity
10	30.51	Benzoic acid	$C_{16}H_{14}O_3$	254	1.74	Drug metabolism in human liver
11	30.51	Benzopyran-4-One	$C_{16}H_{14}O_3$	254	1.74	Antiestrogenic activity
12	30.51	Fluoroquinazoline	$C_{15}H_{11}FN_2O$	254	1.74	Antifungal activity
13	33.50	Phthalic acid	$C_{23}H_{30}O_4$	370	3.19	Insecticidal, Antibacterial, Gastroprotective and cytotoxic activity
14	33.95	Diphenylpyridine	C23H25N	315	3.98	Antiviral activity, Cytotoxicity
15	33.95	Quinone	$C_{24}H_{14}O_6$	398	3.98	Biomarker for cancer chemoprevention
16	34.28	Dimethylisoquinolin-8-ol	C ₃₁ H ₃₃ NO ₄	483	4.94	Antibacterial activity and Cytotoxicity
17	34.28	Tetramethyl	C ₂₆ H ₂₈ O ₈	468	4.94	Antimalarial activity, cox2 inhibition
18	34.28	Benzothiazin	C11H13NOS	207	4.94	Antitubercular activity
19	34.28	Morphinane	C ₂₂ H ₁₇ F ₆ N ₃ O ₂	469	4.94	Cell protective activity
20	35.09	Benzenepropanoic acid	$C_{11}H_{14}O_3$	194	2.73	Inhibitory activity against platelet aggregation
21	35.09	Tetrafluoroborate	C ₁₈ H ₂₂ BF ₄ N ₂ O ₄ PS	480	2.73	Anti-hemolytic, Antibacterial activity
22	35.93	Milbemycin B	$C_{32}H_{44}CINO_7$	589	2.57	Insecticidal activity
23	35.93	Carboxylate	C ₁₇ H ₂₃ NO ₂	273	2.57	Neuropsychiatric events
24	37.05	Propylamine	$C_{13}H_{18}FN$	207	2.35	Cytotoxicity
25	37.05	Enoic Acid	$C_{11}H_{11}FO_2$	194	2.35	Inhibitors of fatty acid and cyclooxygenase
26	37.05	Butenoic acid	C ₉ H ₇ BrO ₃	242	2.35	Antimicrobial, Effective dose to inhibit
20	37.03	Butenoic aciu	C911/DI O3	242	2.55	gastric acid secretion
27	37.25	Pyridine	$C_{14}H_{11}N_3O$	253	2.20	Drug metabolism
					4.22	
28	37.70	Methyl Ethyl Pyrazine	$C_7H_{10}N_2$	122 181		Cytoprotective activity
29	37.70	Propenoate	C ₉ H ₁₁ NO ₃		4.22	Antiapoptotic, Cardioprotective effect
30	37.70	Pyrimidine	$C_{15}H_{17}FN_2$	244	4.22	Drug metabolism
31	37.70	Glucopyranoside	C33H55NO7	577	4.22	Inhibition of Saccharomyces
32	38.21	Dichloro[tri(trimethylsilyl) methyl]Silane	$C_{10}H_{28}Cl_2Si_4$	330	1.90	Inhibit Cholesterol Biosynthesis, Cytotoxicity
33	38.21	Diazepine	C ₂₀ H ₁₇ N ₃ O	315	1.90	Anticonvulsant activity
34	38.43	Carboxylate	C27H35NO6	469	1.88	Neuropsychiatric events
35	38.43	Naphthalene	$C_{27}H_{23}N_3O_5$	469	1.88	Inhibition of COX1
36	38.43	Phenylimidazole	C26H24N6OS	468	1.88	Cholesterol lowering effect
37	38.43	Isophthalate	$C_{11}H_8F_3IO_7S$	468	1.88	Cancer drug development
38	38.43	Thiophene	C ₂₉ H ₂₄ O ₂ S2	468	1.88	Drug metabolism
39	38.82	Quinazoline	C19H13Br2N3	441	3.87	Antimicrobial activity
40	39.17	Dihydrofuran	C ₁₄ H ₁₂ O	196	1.87	Cytotoxicity Antibacterial activity
41	39.92	Tetrahydroisoquinoline	C ₁₇ H ₂₀ N ₂ O ₂	284	2.45	Drug metabolism

*Source of the Biological activities of the compound is PubChem database.

Identification of compounds

Using the database of National Institute Standard and Technology (NIST) having more than 62,000 patterns the interpretation of mass

spectrum of GC-MS was conducted. The spectrum components of known compounds were compared with unknown components stored in the NIST library. The name, molecular weight and structure of the compounds were ascertained in above said way.

Identification of compounds having biological activity

The obtained list of compounds was checked for having biological properties which are reported in PubChem. All the compounds which are subjected for Bioassay are listed in tables and phytochemicals having anti-inflammatory action is considered as positive hits for our study.

RESULTS AND DISCUSSION

Characterization of secondary metabolites from medicinal plants provides an extensive resource for the isolation and identification of novel therapeutic agents for inflammation. The major non-volatile compounds can be identified by GC-MS analysis. The crude methanolic extract revealed the high peak intensity compound predominant presence of major compounds like pentadecanoic acid, 14-methyl-, methyl esters (RT-14.43) and methyl stearate among other derivatives. Minor compounds such as 10-methyl ester, methyl tetradecanoate, tetradecanoic acid, 12-methyl-methyl ester, 9hexadecenoic acid, hexadecanoic acid, 14-methyl-methyl ester, 10octadecenoic acid and heptadecanoic acid were also identified. These compounds are exhibited activities like antioxidant, cancerpreventive, hypercholesterolemic, nematicide, antifungal and antimicrobial. The advantage of GC-MS is its highest accuracy in the identification of derivatized compounds. The list of compounds from different extracts and plant parts are as tabulated in table 1-4 and the respective spectrum is as shown in fig. 1-4.

Table 2: Showing the list of compounds having pharmaceutical importance obtained from GC-MS profile of Ethyl acetate stem extract of
Trichosanthes lobata

S. No.	RT (min)	Compound name	Molecular formula	Mol. weight (g/Mol)	Area %	Biological activity*
1	13.90	Dimethylbenz Oate	$C_{14}H_{20}O_4$	252	0.33	Drug Metabolism and Pathologic Process
2	13.90	Chloropyridine	C11H8ClNO	205	0.33	Antinociceptive Activity
3	13.90	Tetralone	$C_{13}H_{16}OS_2$	252	0.33	Parkinson's disease and depression
4	13.90	Dihydroisobenzofuran	$C_{13}H_{16}O_3$	220	0.33	Drug-protein interactions at serotonin transporter
5	13.90	Dicarboxylate	$C_{15}H_{13}ClO_6$	324	0.33	Agonist for metabotropic glutamate receptors
6	13.90	Pyrazine	$C_{12}H_{20}N_2Si$	220	0.33	Antimalarial agent
7	14.43	Acetamide	$C_{24}H_{20}BrN_3O_2S_2$	525	0.29	Radioligand for benzodiazepine receptor in brain
8	14.43	Glaucine	$C_{21}H_{25}NO_4$	355	0.29	Antioxidant and Antiviral activity
9	14.43	Quinoline	C ₁₇ H ₁₅ Br ₂ NO	455	0.29	Drug metabolism
10	19.25	Carboxylate	C13H18O5	254	0.37	Neuropsychiatric events in influenza
11	19.25	Hexanoic acid	$C_{19}H_{34}N_4O_6$	414	0.37	Inhibit cyclooxygenase activity
12	23.00	Hexadecanoic acid	C ₁₈ H ₃₆ O ₂	284	0.44	Promote cancer cell death
13	24.92	Glucopyranose	C ₁₅ H ₁₉ D ₃ O ₁₀	362	0.34	Cytotoxicity
14	24.92	Oxodehydroabietate	$C_{21}H_{28}O_3$	328	0.34	Cytotoxicity
15	24.92	Cyclohexanol	$C_{13}H_{24}O_2$	212	0.34	MDR-reversal drug lead
16	26.00	Bromobenzene	C ₁₅ H ₁₃ BrO ₂ S	336	0.44	Anticancer, Antimicrobial Activity
17	26.00	Cyclopropane	C10H12S	164	0.44	Inhibition Assay
18	28.33	Phthalimide	C ₁₉ H ₁₆ ClNO ₂ S	357	0.38	Hypolipidemic activity
19	28.33	Colchicine	$C_{20}H_{23}NO_5$	357	0.38	Binding affinity
20	28.33	Diphenylquinoline	C ₂₀ H ₂₃ NO ₅ C ₂₂ H ₁₇ N	295	0.38	Metabolic stability
20	28.33	Haliclonacyclamine	C ₂₂ H ₁₇ N C ₃₂ H ₅₈ N ₂	470	0.58	Cytotoxicity
21	28.77 29.42			264	0.54	
		Cyanopyridine	$C_{18}H_{20}N_2$			Antimicrobial activity
23	29.42	Ethanone hydrochloride	C ₆ H ₁₁ NOS ₂	177	0.51	Antiproliferative activity
24	29.42	Oxazoline	C ₂₁ H ₂₅ NO ₇	403	0.51	Ovicidal activity
25	29.89	Pyridinedicarboxylic acid	C ₂₁ H ₂₇ NO ₅	373	1.92	Inhibitory against Hepatitis B
26	31.74	Stigmastane	C29H52	400	0.29	Antimicrobial, Effective dose to inhibit
27	31.74	Phenylquinoxaline	$C_{15}H_{10}ClN_3O_2$	299	0.29	gastric acid secretion Binding affinity to beta-amyloid in
	0101	r nonj iquinonanic	015110011302		0.29	Alzheimer's disease
28	31.74	Glucopyranosiduronic acid	C29H56N2O10S	676	0.29	Cytotoxicity
29	32.38	Methyl propyl 6-[3-	$C_{23}H_{26}O_4S_2$	430	0.72	Analgesic activity
		(propylthiocarbonyl)benzyl]benz ene-1-carboxylat	-25 20-1-2			
20	22.07	e-3-carboxythioic S-ester	C. H. N. O	F02	1 22	Inhibitom dauga fon an alein and de et
30 21	32.86	Carbaldehyde	C34H35N5O5	593 277	1.23	Inhibitory drugs for smoking reduction
31	32.86	Oxazolidinone	$C_{20}H_{27}NO_4S$	377	1.23	Antimycobacterial activity
32	32.86	Sanguinarine	C ₂₂ H ₁₉ NO ₅	377	1.23	Antibacterial activity
33	33.31	Oxazoline	C21H25NO7	403	0.27	Ovicidal activity
34	33.31	Tetrahydroisoquinolin-4-ol	$C_{19}H_{20}N_2O_6$	372	0.27	Potentiating and inhibiting activity
35	33.70	Imidazole	C ₁₆ H ₁₀ Br ₂ N ₂ O	404	0.46	Kinase Assay
36	33.70	Oxobutanoic acid	C20H23FN2O5	390	0.46	Stimulated Gastric Acid Secretion
37	34.23	Phenylindole	$C_{16}H_{15}NO_2$	253	1.29	Pro-apoptotic in cancer cells
38	34.23	Azepine	C14H14N2OSi	254	1.29	Antioxidant activity
39	34.64	Acetohydrazide	C24H30N2O6	442	1.08	Inhibition of topoisomerase 2
40	34.64	Physodic acid	$C_{26}H_{30}O_8$	470	1.08	Drug metabolism
41	39.16	ë(2,2')-Bis(1,3-dithio[4,5- c]selenophene)	$C_{10}H_4S_4Se_2$	412	69.34	Antimicrobial activity
42	39.57	Quinolinecarboxylic acid	$C_{10}H_9NO_4$	207	3.56	Gastrointestinal disorder
43	39.57	4-Methylthio-3- quinolinesulfonamide	$C_{10}H_{10}N_2O_2S_2$	254	3.56	Antidepressant activity
44	40.24	4H-1-Benzopyran-4-one	C ₂₈ H ₂₆ O ₁₀	522	5.24	Potent anti-estrogens.
45	40.42	N-Benzyl-2-Bromoaniline	C ₁₃ H ₁₂ BrN	261	1.55	Inhibition of Fibroblast

*Source of the Biological activities of the compound is PubChem database.

Table 3: Showing the list of compounds having pharmaceutical importance obtained from GC-MS profile of Methanol leaf extract of Trichosanthes lobata

S. No.	RT (min)	Compound name	Molecular formula	Mol. weight	Area %	Biological activity*
1	15.51	Monohydroxamic acid	C ₈ H ₇ NO ₄	(g/Mol) 181	2.78	Inhibition Of Leukemia Cells
2	15.51	Piperidine	$C_{11}H_{24}N_2O$	200	2.78	Potential cocaine antagonists.
3	15.51	Serine	C ₃ H ₆ DNO ₃	105	2.78	Inhibit, osteoarthritis, Alzheimer's, age-related macular
						degeneration
4	16.84	Arsine, trimethyl-(CAS)	C ₃ H ₉ As	120	1.24	Decreased heart uptake with alkyl substitution
5	16.84	Pyridine	$C_{11}H_9NO_2$	187	1.24	Hypo-cholesteremic activity
6	19.85	Propanone	C ₂₄ H ₅₁ NO ₅ Si ₅	573	1.11	Antagonist activity
7 8	19.85 19.85	Quinazolin-8-one Trimethylsilyl ester	$C_{20}H_{20}N_2O_5$	368 472	1.11 1.11	Anti-inflammatory activity Antiviral activity and Cytotoxicity
9	21.77	Annulene	C20H40O5Si4 C21H18	270	1.11	Cytotoxicity
10	21.77	Anthraquinone	$C_{15}H_{10}O_3S$	270	1.96	Anti-filarial activity, Cytotoxicity
11	21.77	Isoquinolin	$C_{28}H_{21}NO$	387	1.96	Increase of intracellular drug uptake
12	21.77	Azulene	$C_{20}H_{14}O$	270	1.96	Agonist Activity
13	22.03	Hexadecenoic acid	C ₁₇ H ₃₂ O ₂	268	0.91	Antibacterial activity Anti-plasmodial activity
14	22.03	Hydroxy palmitate	$C_{19}H_{36}O_4$	328	0.91	Antihyperglycemic activity
15	22.87	Benzenedicarboxylic acid	$C_{16}H_{22}O_4$	278	1.09	Antitumor activity
16	22.87	phenylpropionate	$C_{13}H_{17}ClO_2$	240	1.09	Cellular uptake in human PBMC nucleus
17	22.87	Naphthalene	$C_{11}H_{19}NO_3$	213	1.09	Inhibition of HIV1 protease dimerization
18	22.87	Phenylpropan-1-one	$C_{17}H_{18}O_2$	254	1.09	Bio-reduction by bacterial ferredoxin
19	23.97	Methacrylate	C ₂₁ H ₃₂ O ₃	332	0.86	Antiparasitic activity
20	23.97	Butyl acrylate	C ₂₁ H ₃₂ O ₃	332	0.86	Cytotoxicity Antioxidant activity
21 22	23.97 25.60	1,3-Dithiolane Octadecanoic acid	C19H30S2 C19H38O2	322 298	0.86	Detoxification activity Highest toxicity against pathogens
22	25.60	N-phenylnitrone	$C_{19}H_{38}O_2$ $C_{16}H_{21}NO_3$	298	1.33 1.43	Cytoprotective activity
23	28.25	Carboxylic acid	$C_{13}H_{17}NO_3$	235	1.43	Anti-spermatogenic activity, Drug metabolism
25	28.25	Oxoquinoline	$C_{12}H_{12}N_2O_4S_2$	312	1.43	Antimicrobial activity
26	28.25	Methy L Dopamine	C ₁₅ H ₁₀ C ₁₃ F ₆ N	503	1.43	Binding affinity towards human dopamine D4 receptor
27	28.25	Glucopyranosiduronic acid	C ₂₉ H ₅₇ NO ₈ Si ₅	687	1.43	Inhibition of HIV1 protease
28	28.25	Trimethylsilyl ester	C29H57NO8Si5	687	1.43	Antiviral activity, Cytotoxicity
29	28.88	Glutamic acid dimethyl	$C_7H_{12}DNO_4$	175	2.16	Inhibitory Activity Against Leukaemia Cells
		ester				
30	28.88	Dihydropyrrole	$C_{11}H_5F_{16}N$	455	2.16	Mitotic arrest of ovarian carcinoma cells
31	29.73	Azetidinone	C ₂₄ H ₂₅ NO ₆ S	455	2.16	Reduction of liver cholesteryl esters
32	29.73	Quinoxalinone	C27H25N3O4	455	2.39	Cytotoxicity
33	29.73	Methylphenol	C ₂₆ H ₃₅ ClN ₄ O	454	2.39	Antimicrobial activity
34	29.73	Argentatin	$C_{33}H5_4O_4$	514	2.39	Inhibitory towards leukemic cell line
35 36	29.73 31.32	Isopropylamide Montiporyne	C ₃₂ H ₄₁ NO C ₁₅ H ₂₀ O	455 216	2.39 5.25	Inhibitor of beta-galactosidases. Cytotoxicity
37	31.32	Chlorophenol	$C_{12}H_{13}ClO$	208	5.25	Anti-trypanosomal activity
38	31.32	Dimethylindole	$C_{10}H_{10}N_2O_3$	206	5.25	Growth inhibitory activity against pancreatic cancer cells.
39	31.32	Benzimidazole	C ₁₁ H ₁₃ N ₃ S	219	3.65	Reduced blood pressure
40	31.32	Cyclopropane	$C_{20}H_{18}N_2$	286	3.65	Potential targets for anti-tuberculous drugs
41	32.20	Aminocyclohexane	C ₂₅ H ₂₆ BrN ₂ O	512	0.82	Antidiuretic activity
42	32.20	Dimethoxy indole	C33H27N3O3	513	0.82	Antitumor activity
43	32.20	Methylpyrazole	$C_{20}H_{20}Br_2N_2$	510	0.82	Drug metabolism in human liver, osteoporosis
44	32.93	Dimethylcoumarin	$C_{11}H_{10}O_3$	190	0.91	Inhibition of monoamine oxidases
45	33.12	Lupeol	$C_{30}H_{50}O$	426	6.50	Reduce blood glucose, Cytotoxicity
46	33.12	Sclareol	C20H36O2	308	6.50	Cytotoxicity, Induction of apoptosis
47	33.12	Farnesyl bromide	C ₁₅ H ₂₅ Br	284	6.50	Anti-plasmodial activity
48	33.12	Geranylgeraniol	$C_{20}H_{34}O$	290	6.50	Cytotoxicity
49 50	33.42 34.36	Illudinic acid	$C_{15}H_{18}O_4$	262 268	7.32	Antimicrobial activity, antitumor activity Anti-inflammatory activity
50 51	34.36 35.05	Ilicic Acid Dicarboxylic acid	C15H24O4 C27H32O5	436	2.12 10.51	Antagonist activity
51	55.05	dimethyl ester	C271132O5	430	10.51	Antagonist activity
52	35.05	Phthalazin-1(2H)-one	C20H19N5OS	377	10.51	Antibacterial activity
53	35.89	Quinazolinone	$C_{27}H_{22}N_4O_3$	450	2.01	Treatment for neurodegenerative disorders
54	35.89	Dimethoxybenzene	$C_{17}H_{29}BrO_3Si$	388	2.01	Cross allergenicity
55	35.89	Scopadulane	C ₂₄ H ₃₈ O ₄	390	2.01	Cytotoxicity, Antiviral activity
56	36.13	Methylcrinasiadine	$C_{15}H_{11}NO_3$	253	2.31	Cytotoxic alkaloid
57	36.13	Methylpyrrole	$C_{13}H_{19}NO_4$	253	2.31	Antitumor Activity
58	36.84	Undecanolide	$C_{12}H_{20}O_3$	212	1.57	Antimicrobial activity, Cell cycle arrest in HepG2 cells
59	36.84	Galactitol	$C_{18}H_{26}O_{12}$	434	1.57	Antihyperglycemic agent
60	37.56	Aminodiphenylmethane	C22H21NO2	331	0.98	Antimicrobial activity, Antiviral activity
61	37.8	Propargyl ether	$C_{14}H_{20}O_2S$	252	1.21	Antinociceptive tests
62	37.8	Phthalic acid	$C_{22}H_{26}O_4$	354	1.21	Insecticidal activity
63	38.41	Porphine Clucongraposiduronic acid	C ₃₆ H ₄₂ N ₄ O ₄	594 649	10.21	Cytotoxicity
64 65	38.78 38.78	Glucopyranosiduronic acid Hydroxypregnenolone	$C_{27}H_{52}N_2O_{10}S$	648 360	12.27 12.27	Cytotoxic activity, Anti-HIV-1 protease Steroid-producing neurons
65 66	38.78 40.33	Azaanthracene	C23H36O3 C34H24N6	360 516	12.27	Activity against L1210 leukaemia cells
	10.55		GJT1124110	010	1.71	Tearing against 21210 reunacinia cello

*Source of the Biological activities of the compound is PubChem database.

Table 4: Showing the list of compounds having pharmaceutical importance obtained from GC-MS profile of Methanol stem extract of Trichosanthes lobata

RT (min)	Compound name	Molecular formula	Mol. weight (g/Mol)	Area %	Biological activity*
15.51	Dihydroisocoumarin	C ₁₃ H ₁₆ O ₂	204	2.73	Aromatase inhibitor
16.84	Tert-butyldimethylsilyl ether	$C_{14}H_{28}O_5Si$	304	3.19	Antiviral activity, Cytotoxicity
19.44	Iminoisoquinoline	$C_{11}H_{12}N_2$	172	1.32	Inhibitors of nitric oxide synthase
19.44	Hydroxypropanoate	$C_{11}H_{22}O_3$	202	1.32	Antioxidant activity
21.79	Hexadecanoic acid	$C_{17}H_{34}O_2$	270	3.12	Anticancer drug target
21.79	Pentadecanoic acid	$C_{17}H_{34}O_2$	270	3.12	Inhibition of COX1 and prostaglandin biosynthesis
24.76	Oxaspiro	$C_{14}H_{20}O_3$	236	1.26	Acts against cancer and inflammation
25.72	Trimethylsilyl ester	$C_{20}H_{40}O_5Si_4$	404	2.22	Anti-HIV activity
26.80	D-glucopyranose	$C_{8}H_{19}ClO_{6}$	246	1.73	Cytotoxicity
26.80	Octadecanoic acid	$C_{20}H_{40}O_2$	312	1.73	Antimicrobial agent
27.94	Sulfoximine	$C_{23}H_{31}NO_4S_2$	449	1.73	Cytotoxicity
29.45	Benzeneacetic acid	$C_{23}I_{13}I_{10}O_{4}O_{2}$ $C_{10}H_{12}O_{3}$	180	1.60	Anti-inflammatory activity
29.43	Cvanoacetate		377	1.63	Cytotoxicity, Antimicrobial activity
29.92 29.92		$C_{20}H_{15}N_3O_5$	377	1.63	
	Phenylmethanone Ethanamine	C ₂₇ H ₂₃ NO		2.78	Inhibitory Activity on diabetes mellitus
30.36		$C_9H_{13}N$	135	2.78	Antifungal activity
30.36	2-(Chlorovinyl)phenyl sulfide	C ₈ H ₇ ClS	170		Antimalarial design
30.36	Dihydrobenzothiophene	C15H14S	226	2.78	Potential treatment of Parkinson's disease
30.36	Phenylpropan-1-one	C ₁₇ H ₁₈ O ₂	254	1.09	Bioreduction by bacterial ferredoxin
31.44	Tetraol	$C_{27}H_{44}O_4$	432	20.55	Cytotoxicity
31.44	ç-Sitosterol	C29H50O	414	20.55	Antiproliferative activity
32.20	Cycloheptatrien	$C_{10}H_{12}O_2$	164	2.44	Neuroprotective activity
32.52	Isopropylidene	C39H50O4Si2	638	3.17	Antitumor and antiviral activity
33.12	D-Glucopyranosiduronic acid	$C_{29}H_{56}N_2O_{10}S$	676	2.42	Cytotoxicity
33.12	Oxo-acetamide	C24H23N3O3	401	2.42	Highly potent histone deacetylase inhibitors
33.79	Azabicyclo	$C_{14}H_{22}N_2$	218	1.79	Muscarinic receptor antagonists
33.79	Quinazolinone	$C_{19}H_{23}N_3O_2$	325	1.79	Neurodegenerative disorder
34.17	Glucopyranosiduronic acid	C29H57NO8Si5	687	1.43	Inhibition of HIV1 protease
34.17	Porphycene	$C_{31}H_{36}N_4O_4$	528	1.24	Induction of apoptosis in human HeLa
34.17	Spongiadioxin	$C_{13}H_6Br_4O_3$	526	1.24	Cytotoxicity
34.48	Oxazolidinone	$C_{12}H_{15}NO_5$	253	1.42	Antibacterial activity
34.48	Cinnamate	$C_{19}H_{18}O_3S$	326	1.42	Depigmenting activity
34.48	Dimethyluracil	$C_{15}H_{22}N_2O_6$	326	1.42	Antibacterial activity
36.46	Propylpyrimidine	$C_{28}H_{28}N_2O_3$	440	16.55	Binding affinity towards Corticotropin
37.46	Androstane	$C_{21}H_{34}N_2O_2$	346	2.16	Inhibition of reduction of dihydrotestosterone
38.66	Trifluoromethanesulfonate	C9H9F3O5S	286	1.44	Antineoplastic activity
38.66	Benzenecarboximidamide	$C_{15}H_{12}F_3N_3O_3$	339	1.44	Antithrombotic
38.92	Norsesterterpene	C24H38O2	358	1.62	Cytotoxicity
38.92	Methyl pentyl ester	C20H27ClO4	366	1.62	Antiviral agent
39.72	Hydroxycodeinone	$C_{18}H_{19}NO_4$	313	3.97	Antagonistic Activity
39.72	Pyrimidine	C ₂₂ H ₂₂ N ₂	314	3.97	Drug metabolism
39.72	Phenanthroline	$C_{19}H_{11}N_3O_2$	313	3.97	Cytotoxicity
39.72	Indolizine				Inhibition of human EGFR autophosphorylation
39.72					Cancer therapy
40.02					Analgesic activity, Psychotomimetic activity
40.02					Antiviral activity, Drug metabolism
40.27					Cytotoxicity, Antiviral activity
39.7 39.7 40.0 40.2	2 2 2 7	2 Indolizine 2 Nitroanthracene 2 Norbornadiene 7 Phenanthrene	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2 Indolizine C21H15NO2 313 2 Nitroanthracene C19H23NO3 313 2 Norbornadiene C14H13N 195 7 Phenanthrene C28H20Br2 514	2 Indolizine C ₂₁ H ₁₅ NO ₂ 313 3.97 2 Nitroanthracene C ₁₉ H ₂₃ NO ₃ 313 3.97 2 Norbornadiene C ₁₄ H ₁₃ N 195 1.82 7 Phenanthrene C ₂₈ H ₂₀ Br ₂ 514 1.65

*Source of the Biological activities of the compound is PubChem database.

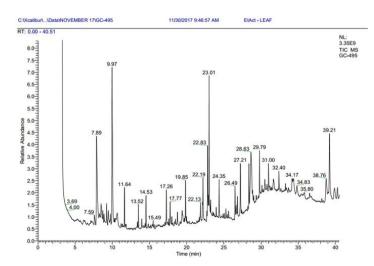


Fig. 1: Showing the GC-MS spectrum of Trichosanthes lobata leaf extracted from Ethyl acetate

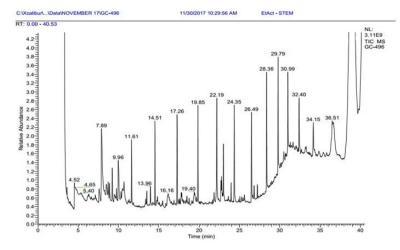


Fig. 2: Showing the GC-MS spectrum of *Trichosanthes lobata* stem extracted from Ethyl acetate

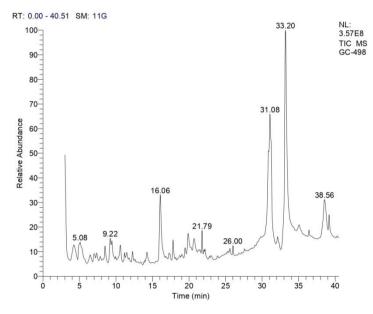


Fig. 3: Showing the GC-MS spectrum of Trichosanthes lobata leaf extracted from Methanol

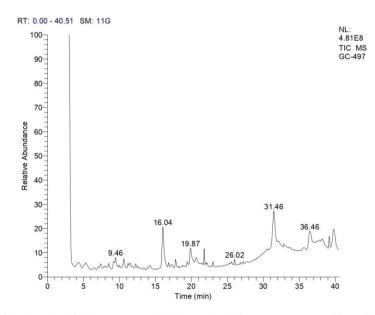


Fig. 4: Showing the GC-MS spectrum of Trichosanthes lobata stem extracted from Methanol

The GC-MS profile of Ethyl acetate leaf extract of Trichosanthes lobata showed the presence of 41 bioactive compounds, whereas its stem extract showed 45 compounds which are reported for various bioassays in PubChem. The GC-MS profile of methanol leaf extract of T. lobata showed 66 compounds which are biologically active and its respective stem extract contained 46 compounds having bioassay reports in PubChem. Overall, a large number of phytochemical compounds with good area percentage were found in methanolic extract, which was followed by ethyl acetate. We could also note that the number of active compounds was found more in leaf than in stem extracts. We were also able to find out potent antiinflammatory compounds such as Octanoic acid, Dodecanoic acid, Octadecane, Tetramethyl, Enoic acid and Napthalene from ethyl acetate leaf extracts; Hexanoic acid and Methyl propyl from ethyl acetate stem extracts. Similarly, anti-inflammatory compounds such as Methylpyrazole, Quinazolin-8-one and Ilicic acid were present in the methanol leaf extract, whereas Pentadecanoic acid, Oxaspiro, Benzeneacetic acid and Norbornadiene were present in the methanol stem extract. With this we conclude that a greater number of bioactive agents against inflammation is found in extracts of leaf generated using ethyl acetate.

Many studies have proven that methanol has higher activities than that of extracts obtained from different solvents. In this case also even though methanolic extract has shown the presence of more number compounds, ethyl acetate leaf extracts stand to be effective against treating inflammation. Based on these examinations the antiinflammatory activity of ethyl acetate and methanol leaf extracts may be attributed towards the presence of very active agents. The thorough quantitative analysis of phytochemicals using GC-MS studies reveals the presence of all components such as flavonoids, sterols, fatty acid and esters in the sample [5]. GC-MS analysis is also helpful in the determination of the chemical composition, area and molecular weight of the samples [6, 7].

In addition to anti-inflammatory activity we could notice that the extracts contain compounds which are responsible for treating other ailments too. It is reported that T. lobata, T. dioica [8, 9] T. cucumerina [10, 11] and T. kirilowii are said to contain carbohydrates, glycosides, flavonoids, tannins, proteins, steroids and saponins. T. lobata is used for malarial fever and liver disorders [12]. The highlighted compounds had been noted earlier for their antiinflammatory potential. Active polyphenols, flavones, phenolic terpenes, fatty acids, sterols, amide, esters, alkaloids, flavonoids, lactones and carotenoids such as Orientin, isoorientin, isovitexin, vitexin, chlorogenic acid, catechin, palmitic, stearic, vanillic acids, vinyl guaiacol, o-Tolylaldehyde, sitotesnone. epicatechin. procyanidins, protocatechuic acid, oleanolic acids, Pomolic acid, α amyrin, β-amyrin and derivatives of stigmasterol, oleic, linoleic, linolenic, limonene, lupeol, phytol, vellaral, cucuminoids, selinene, piperitol, camphor, quercetin, kaempferol, benzoazolinone, tocopherol, eugenol, myricetin, thymol, lutein, carotene, etc. have been proven for their anti-inflammatory potential in varied plant species [13-15]. More number of compounds present in the list are attributed towards cytotoxic activity and hence Trichosanthes lobata can be a potent anti-cancer agent also.

CONCLUSION

The analytical characterization of ethyl acetate and methanol extract of *Trichosanthes lobata* leaf and stem witness the presence of active metabolites. GC-MS reveals that the plant and its extract has valued agents which fulfil the pharmaceutical need. From the present study, it is confirmed that *Trichosanthes lobata* ethyl acetate and methanol leaf extract can be used as potent anti-inflammatory drug. Further, the fractions containing active compounds should be isolated from the extract and has to be examined through *in vivo* experiments. This will confirm their mechanism of action as novel therapeutic agent against inflammation. This research article also emphasizes varied pharmacological properties of *Trichosanthes lobata* in treating various disorders like cancer, neurological disorder, aging, against bacterial infections and its future prospects for improved usage in.

FUNDING

Nil

AUTHORS CONTRIBUTIONS

Both the authors of the research article have sufficiently participated in the intellectual content, conception, design, analysis, interpretation of data and writing the manuscript.

CONFLICT OF INTERESTS

There remains no conflict of interest.

REFERENCES

- 1. Chin YW, Balunas MJ, Chai HB, Kinghorn AD. Drug discovery from natural sources. Am Assoc Pharm Sci J 2006;8:239-53.
- Pangestuti R, Kim SK. Biological activities and health benefit effects of natural pigments derived from marine algae. J Functional Foods 2011;3:255-66.
- Chippada SC, Volluri SS, Bammidi S, Vangalapati M. In vitro anti-inflammatory activity of methanolic extract of *Centella* asiatica by HRBC membrane stabilization. Rasayan J Chem 2011;4:457-60.
- Fulzule SV, Satturwar D, Joshi SB. Studies on anti-inflammatory activity of a poly herbal formulation-JatydiGhrita. Indian Drugs 2001;39:785-7.
- Wang S, Karthickeyan V, Sivakumar E, Lakshmikandan M. Experimental investigation on pumpkin seed oil methyl ester blend in diesel engine with various injection pressure, injection timing and compression ratio. Fuel 2020;264:1-15.
- Ishtiaq S, Hanif U, Shaheen S, Bahadur S, Liaqat I, Awan UF, et al. Antioxidant potential and chemical characterization of bioactive compounds from a medicinal plant *Colebrokea* oppositifolia Sm. An Acad Bras Cienc 2020;92:1-15.
- Rubab S, Rizwani GH, Bahadur S, Shah M, Alsamadany H, Alzahrani Y, *et al.* Neuropharmacological potential of various morphological parts of *Camellia sinensis* L. Saudi J Biol Sci 2020;27:567–73.
- 8. Bhattacharya S, Kanti Halder P. Antibacterial activity of *Trichosanthes diocia* root. Global J Pharmacol 2010;4:122-6.
- Badrul Alam M, Sarowar Hossain M, Sultana Chowdary N, Asadujjaman M, Ronok Zahan, Monirul Islam M, et al. Antioxidant, anti-inflammatory and anti-pyretic activities of *Trichosanthes* diocia Roxb. fruits. J Pharmacol Toxicol 2011;6:440-53.
- Kolte RM, Bisan VV, Jangde CR, Bhalerao AA. Anti-inflammatory activity of root tubers of *Trichosanthes cucumerina* in mouse's hind paw oedema induced by carrageenin. Indian J Indigenous Med 1997;18:117-21.
- 11. Kongtun S, Jiratchariyakul W, Mongkarndi P, Theppeang K, Sethajintanin I, Jaridasem S, *et al.* Cytotoxic properties of root extract and fruit juice of *Tricosanthes cucumerina*. J Phytopharm 1999;6:1-9.
- 12. Karuppusamy S. Medicinal plants used by paliyan tribes of sirumalai hills of South India. Nat Prod Rad 2007;6:436-42.
- Poletto P, Alvarez Rivera G, Torres TMS, Mendiola JA, Ibanez E, Cifuentes A. Review: compressed fluids and phytochemical profiling tools to obtain and characterize antiviral and antiinflammatory compounds from natural sources. Trend Anal Chem 2020;129:115942.
- 14. Maiara Aline Daga, Thais Soprani Ayala, Rafael Andrade Menolli. A review of the anti-inflammatory and antimicrobial activities of the components of the *Cecropia* genus. Asian J Pharm Clin Res 2020;3:13-20.
- Clara dos Reis Nunes, Mariana Barreto Arantes, Silvia Menezes de Faria Pereira, Larissa Leandro da Cruz, Michel de Souza Passos, Luana Pereira de Moraes, *et al.* Plants as sources of anti-inflammatory agents. Molecules 2020;25:1-22.