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ABSTRACT 

Drug disposition connects with the movement of drug molecules inside the body after administration irrespective with the route of administration. 
After entering the system, drug molecule and internal body systems comes under various pharmacokinetic interactions followed by observation of 
suitable biological activity. In this exhaustive process, physicochemical nature of the chemical substance and physiological nature of system makes 
this movement competitive. In this view, pharmacokinetic and toxic properties of the molecule regulates the destination of the molecule. Various 
computational processes are available for in silico pharmacokinetic assessment of drug molecule after absorption through biological membrane, 
distributed throughout the system based on the percent ionization or partition coefficient factors followed by biologically transformed into an 
another entity in presence of microsomal enzymes and finally excrete out from system using various cellular transport systems as well as related 
cellular toxicity behavior. In this chapter, we ensemble all the possible information related with the drug movement and related computational tools 
to understand the possible chemical and pathophysiological changes. Here detailed knowledge on database expedition, establishment of 
pharmacophore model, homology modelling based on sequence similarity, molecular docking study (rigid and flexible docking) and QSAR/QSPR
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study (with detailed process and available softwares) are provided. These diversely united informations actually helps a researcher to understand 
the factual movement of a drug molecule inside the system.  
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INTRODUCTION 

Drug disposition means the change in the position of drug molecules 
after administration into the system [1, 2]. As per the 
pharmacological view: Drug is a substance which can cause positive 
or negative effect to the system. But in actual drug is a chemical 
substance comprised with a definite chemical structure. When a 
chemical substance goes into a system which itself governed by pH-
partition hypothesis [3-5]. The disposition of drug molecule involves 
administration, distribution, metabolism, excretion and toxicity 
(ADMET) [6, 7]. Presence of different transporting proteins, nature 
of absorbing medium, pH, partition coefficient of the molecule, 
nature of microsomal enzyme, structural features of drug molecule, 
stereochemistry of the drug molecule are the directly correlated 
with disposition of the drug molecule [8, 9]. In the chapter, we are 
mainly focus on phases of drug disposition along with different 
computational methods/tools (molecular docking study, assessment 
of different databases, pharmacophore screening, in silico toxicity 
assessment, in silico determination of pharmacokinetic parameter) 
associated with disposition of drug molecule [10].  

Search criteria 

The keywords associated with search criteria of the manuscript were: 
role of ADME on drug disposition, availability of softwares for drug 
metabolism, availability of different active transporters related in drug 
disposition, exploration of different available databases related to drug 
distribution, pharmacophoric features development using different 
softwares, exploration of homology modelling softwares and 
standalone version, molecular docking process and its importance on 
drug receptor interaction and importance of QSAR/QSPR on drug 
disposition in different platforms such as: 
https://pubmed.ncbi.nlm.nih.gov/, https://www.sciencedirect.com/ 
with 10 y of timeline (2010-2020) as well as using different softwares 
such as: https://dtclab.webs.com/software-tools, https://www. 
click2drug.org/ http://zincpharmer.csb.pitt.edu/pharmer.html, , 
http://bioinfo3d.cs.tau.ac.il/pharma/php.php, https://swissmodel. 
expasy.org/, https://blast.ncbi.nlm.nih.gov/Blast. cgi?PROGRAM 
=blastpandPAGE_TYPE=BlastSearchandLINK_LOC=blasthome

Pharmacokinetic parameters associated with drug disposition 

. 

Absorption 

After administration of the drug molecule, system processed the 
molecule through a series of biochemical reactions based on the 
structural features. In most of the cases, drug molecules absorb 
through a biological membrane following first order rate kinetics 
(direct correlation between increase in the drug concentration and 
plasma protein concentration) but when changes of drug 
concentration creates no positive impact on time interval, zero order 
chemical kinetics was followed (in saturated environment, no 
correlation between administrative dose increment and plasma 
protein concentration) [11]. Also stereoselective nature of drug 
molecule (R and S configuration) regulates the plasma protein 
concentration based on intravenous bolus dose [12]. There were two 
types of transporters available for transportation of drug molecules 
through membrane known as efflux and influx transporters, whereas 
efflux transporter systems belongs to ATP binding cassette and influx 
transporters belongs to solute linked carrier family [13]. These carrier 
systems were mainly found in major organs like liver, kidney, brain 
along with gastro-intestinal tract [14]. The permeation of drug 
molecule mainly depends upon solubility of the molecule in a specific 
environment. Initially BCS (Biopharmaceutics Classification System) 
was the preliminary scale to calculate the permeability of orally 
administered drugs (Class-I: High solubility and high permeability; 
Class-II: Low solubility and high permeability; Class-III: High solubility 
and low permeability and Class-IV: Low solubility and low 
permeability) [15]. In the next phase, calculation of MAD (Maximum 
Absorbable Dose) was developed based on solubility (S), volume of 
fluid (Vf), rate constant (Ka) and transition time (Tr

MAD = S×K

).  

a×Vf×Tr 

SLAD = S

--------- (i) 

i×Vf

Based on the calculation of fast state simulated intestinal fluid 
(FaSSIF) and solubility limited absorbable dose (SLAD) values a new 
developability classification system (DCS) was established (Where 
S

×M --------- (ii) 

i= solubility through small intestine and M = permeability factor). 
As per this DCS system, Class-II of BCS (good permeation in poor 
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solubility) was further divided into Class-IIa (dissolution rate 
limiting) and Class-IIb (solubility rate limiting) [16]. In this context, 
solubility of drug molecules through an aqueous medium (Log S) 
was also a critical parameter to establish. Log S is the 10 base 
logarithm value of solubility of a molecule in mol/l unit. As we know 
solubility and solubility product values were performed at 25˚C 
temperature, same was followed in the prediction of Log S value.  

Log S = Log10

As we know, maximum drug molecules were weakly acidic or basic 
in coarse of its pharmacological activities. So for the prediction of 
Log S value, pH of the environment and pKa value of the molecule 
plays an important role [17]. If the molecule was solubilize in a 
solvent at isoelectric point, solubility decrease but same molecule 
tends to from an ionic derivative or zwitterion at a particular pH of 
solvent, solubility increased. This behavior was well observed in 
amino acid (fig. 1). In the prediction of pKa value of a drug molecule 
at a particular pH was predicted using various multiple linear 
regression as well as MoKa like standalone predicting tools 
(

 (S) -------- (iii) 

https://www.moldiscovery.com/software/moka/), CHARMM 
based pKa calculation, H++Poisson-Boltzmann based pKa calculations 
(http://biophysics.cs.vt.edu/), MCCE Multi-Conformation 
Continuum Electrostatics pKa calculation (https://gunnerlab. 
github.io/Stable-MCCE/pkaexample/), PROPKA pKa predictor 
(https://pypi.org/project/propka/) etc.  
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Tyrosine Tyrosine zwitterion  

Fig. 1: Zwitterion formation of tyrosine 

 

According to QSPR (Quantitative Structure Property Relationship) 
prediction of Log S (solubility) of an unknown structure was depend 
upon various descriptors such as molecular weight, melting point 
type of atoms, partial charges on atom, lipophilicity (Log P), molar 
refractivity, number of hydrogen bond acceptor or donor atoms 
including some newer descriptor like electrostatic potential surface 
area value [18]. Among the descriptors, Log P value plays an 
important role. Lipophilicity influenced a series of pharmacokinetic 
behavior including movement through cellular membranes and 
portal systems. Log P directly related with hydrophobic nature of 
unionized portion of the molecule. ALOGP (Atomic Log P), XLOGP (X 
Log P), MLOGP (Moriguchi’s method of Log P) and CLOGP 
(Compound Log P) are different available tools for predicting Log P 
values of small molecules. ALOGP collectively express the 
contributions of each atoms on partition coefficient prediction, 
XLOGP was one step higher version of ALOGP (include both atom 
and its neighboring species), MLOGP observed with prediction of 
Log P value using solvation and molecular dynamics and finally 
CLOGP values showed the prediction of Log P using fragment based 
analysis, electronic nature and orbital nature of the molecule. 
Among these ALOGP and CLOGP are highly acceptable [19, 20]. In 
the other hand, permeation through a biological membrane is 
equally important for drug molecule. In this context, Caco-2 cell line 
(immobilized human colorectal adenocarcinoma), STELLA 
simulation model (considering particle size and diffusion) and 
parallel artificial membrane permeability assay (PAMPA) model 
(considering lipid fused membrane separated between acceptor and 
donor compartments) are the highly used intestinal epithelial 
membrane model to predict permeation characteristics [21]. 
Furthermore, physiologically based pharmacokinetic/ 
biopharmaceutics model considered GastroPlus software is available 
to predict total pharmacokinetic behavior of a drug molecule 
including in vitro-in vivo extrapolation, interactions with transporter 
system, plasma concentration of drug as well as compartmental and 
non-compartmental pharmacokinetic model after intravenous or 
oral administration [22].  

Distribution 

After absorption, then the molecule goes through different lipid 
layer and cellular membranes based on enantioselectivity. 
Enantioselectivity governs both concentration of drug on plasma 
and volume of distribution. As we know molecular structure and 
electronic configuration of the molecule were directly correlated 
with nature of microsomal enzymes (CYP 3A4, CYP 2C9, CYP 2D6, 
CYP 2C19, CYP 1A2), Log PCaCO2 cell permeability. As we know 
volume of distribution (Vd) resembles with the dose of drug present 
in the body and plasma concentration. The distribution of drug 
molecules also observed with greater dependency on extent of 
plasma protein concentration and protein binding nature [23]. Most 
of the drugs were interacted with albumin, α1-acid glycoprotein and 
different lipoproteins. Among them, acidic drugs goes through 
albumin binding whereas basic drugs tends to glycoprotein and 
lipoprotein bound. If the drug molecule present as unionized weak 
acid (HA) form (fig. 2), it can easily cross non-polar cellular 
membrane without entering the aqueous medium but if the 
molecule enters in the system as protonated form (BH+

 

) turns into 
unionized form (B) easily cross the membrane [24].  

Fig. 2: Fate of unionized and ionized weakly acidic drug on lipid 
barrier 

 

 

The distribution of drug molecules consults with crossing various 
plasma membrane and blood brain barrier (BBb) [25]. BBb composed 
of three cellular portions such as endothelial cell, end feet astrocyte 
and pericyte. In this structure tight junction (tj) proteins plays an 
important role in the transportation of ions, water and solutes through 
the paracellular pathway [26]. Blood brain barrier permeation was 
determined by various models like recurrent neural network-BBb 
permeability (RNN-BBb model) [27], human blood-brain barrier 
model and SynBBB 3D blood brain barrier model. Topological polar 
surface area (TPSA), passive permeability factor (Log PS), partition 
coefficient value (Log P) and Log D (distribution coefficient for an 
ionized weakly acidic drug at a particular pH) were the factors 
associated with the permeation of blood brain barrier [28]. 

Permeation through BBb was calculated by three different processes 
using polar surface area (PSA) value of the molecule, calculation of 
Log BB value using the following equation:  

Log BB = (-) 0.0148 PSA+0.152 Log P+0.139 -------- (iv) 

As well as by passive permeability factor (PS) 

Log PS= (-) 2.712+0.312 Log D ------- (v) 

Furthermore, the permeation of drug molecule through BBb 
regulated by the composition and nature of tj proteins such as 
claudin and occluding [29]. Claudin and occludin were both 
tetraspan membrane proteins composed of two extracellular loops 
and domains with one intracellular domain with molecular weight 
of 60 KDa and (20-27) KDa; respectively. OSP/claudin-11, 
PMP22/gas-3 and OAP-1/TSPAN-3 were the most prominent tj 
present in myelin sheath of nerve endings and sertoli cells. The 
assessment of tj protein claudin-5 was identified using in vitro 
formaldehyde cross linking study and outcomes showed five dimer 
played an essential role in trans membrane exchange of ions based 
on leucine residue interaction with extracellular loop of the 
protein. Another pathway (leak pathway) associated with tj 
protein was evolved with time considering the structural 
permeation corresponded with epithelial membrane electrical 
conductance along with membrane dynamics related to bicellular 
opening of strands and tricellular pores [30]. 
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Metabolism 

After proper distribution of drug molecules, biotransformation or 
metabolism in the hepatic and extra hepatic tissues is next crucial 
step to understand. The biotransformation of different xenobiotic 
followed four different transformation techniques such as: eliminate 
without change in structure (structures composed of highly polar 
groups such as carboxylic acid, quaternary amine or it may be 
volatile in nature), retained in system without any chemical 
transformation (molecules comprised of highly lipophilic groups, 
also responsible for redistribution) [31], readily structural 
modification (proper balance in hydrophilic and lipophilic nature of 
the structure, presence of carboxylic acid, hydroxyl, thiol etc groups 
using conjugation reactions (glucoronide or glutathione) or different 
phase-I reactions such as oxidation, reduction, azo-reduction etc) 
[32] and transformation based on enzymatic action 
(biotransformation in presence of microsomal enzyme under 
cytochrome oxidase category). Initially Lipinski Rule of Five 
regulated the total business of drug development. But after the 
development of higher molecular weight (greater than 500 Da) 
molecules, this rule became obsolete; this phase followed by 
development of new age descriptors such as sum of atom-type 
electrotopological state, verage Broto-Moreau autocorrelation 
descriptor related to polarizability, extended topochemical atom 
descriptors, McGowan volume, molecular linear free energy relation 
descriptors etc. (HOMO-LUMO) and other electronic descriptors 
[33]. In the assessment of interactions between drug molecules and 
metabolizing enzymes, pharmacophore modelling, partial least 
square (PLS) coefficient analysis and calculation of ADMET profile 
plays a pivotal role. In the early stages of drug discovery, assessment 
of pharmacokinetic-toxicity profile of a molecule is the most 
important work followed by pharmacophore and QSAR/QSPR model 
generation. Furthermore, assessment of receptor structure was also 
important [34]. The similarity in structures and distance between 
essential groups showcased a new computational possibility in the 
view of biotransformation, as well as PLS discriminant analysis sets 
up a map using possible similarity utilizing presence of hydrogen 
bond donor/acceptor groups, hydrophobic interactive groups and 
presence of positive ions [35]. But if the receptor structure was not 
available then using FASTA (FAST Alignment Tool) sequence of DNA 
(Deoxyribo Nucleic Acid) or nucleotide or protein and BLAST (Basic 
Local Alignment Search Tool) tool, a new full grown protein 

including groves and helix was developed [36-37]. In this view, 
various crystal structures of cytochrome P450 microsomal enzymes 
(5VEU, 5JQV, 2RFB, 2RFC, 6OOW, 6OOX, 6WGW, 6U31, 6U30, 6U3K, 
CPQX, CPQS) were procured from various sources such as Homo 
sapiens, Picrophilus torridus, Rhodopseudomonas palustris HaA2, 
Novosphingobium aromaticivorans, etc available in protein data bank 
(www.rcsb.org). There were lots of computational models available 
for the computation and prediction of drug metabolism factors 
(molecular descriptors) such as: ADMET predictor 
(http://www.simulations-plus.com/software/admet-property-
prediction-qsar, ChemAxon (https://www.chemaxon.com/ 
products/calculator-plugins/), Codessa (http://www.codessa-
pro.com/), Corina Symphony (https://www.mn-
am.com/products/corinasymphony), DRAGON (https://chm.kode-
solutions.net/products_dragon.php), E-Dragon (http://www.vcclab. 
org/lab/edragon/), MOE (http://www.chemcomp.com/MOE-
Cheminformatics_and_QSAR.html), Molconn (http://www.edusoft-
lc.com/molconn/), PaDEL (http://www.yapcwsoft.com/dd/ 
padeldescriptor/), QikProp (https://www.schrodinger.com/ 
qikprop/), ACD Labs (https://www.acdlabs.com/ 
products/percepta/), etc [38]. Most of these softwares were 
commercial but E-Dragon, PaDEL and ACD Labs were free 
standalone softwares. Furthermore in the automated 
pharmacophore model generation category: Catalyst, DISCO (based 
on distance comparison) and GASP (based on genetic algorithmic 
search) techniques were widely used. Catalyst system of automation 
was divided into HipHop and HypoGen. HipHop was the 
pharmacophore model generation using similarity index between 
molecules whereas HyoGen model consulted with the quantitative 
property data of the active structures [39]. In both the cases, 
hydrogen bond acceptor/donor groups, hydrophobic portions and 
positive/negative ions were used as parameters. In case of DISCO 
pharmacophore automation model generation, ligand and site both were 
important (fig. 3). Ligands include same features as catalyst whereas 
presence of interactive space, heavy atoms and flexibility in receptor 
dominate the pharmacophore development. Further in case of GASP, 
molecules were considered as single entity with frequent randomized 
orientations and finally chosen molecule must have least number of 
pharmacophoric features [40]. Also, a group of scientist developed a new 
generation pharmacophore model (truly focused pharmacophore 
model) using macromolecular interactive forces and clustering 
techniques based on density based algorithmic searches [41]. 

  

 

Fig. 3: Stages of QSAR model generation [33] 
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Excretion 

Biliary and renal excretions were the primary routes of excretion of 
drug molecules after proper metabolism [42]. In this process, polar 
compounds were excreted more efficiently than lipophilic molecules 
involving kidney and liver as major organs. Excretion and 
reabsorption were linked with other as two side of coins, both were 
pH dependent and weakly acidic or basic environment of the 
molecules [43]. In the process of computation and prediction of drug 
molecules, partial least square analysis was applied to database 
consisted of 754 molecules correlated with biotransformation. This 
process was validated with enhanced leave analog structural, 
therapeutic, ionization class out and geometric mean fold error 
metrics. The positive factor of the model was prediction of neutral 
compound excretions near about pH 7.5. Another model was 
developed using support vector machine and a group of molecules 
(141), followed by mining of metabolism like descriptors 
(CPathPred, SVM descriptor). These SVM descriptors created a 
positive impact of elimination of xenobiotic. Furthermore, a new 
model was established with a large number of data focusing on 
unchanged eliminated drug in urine and renal clearance data with 
greater productivity for drug excretion prediction [44].  

Active transport 

Active transport (up-hill transport) of drug molecules plays an 
essential role in transportation of molecules against the concentration 
gradient and natural thermodynamic fluidity. As this was an energy 
regulated step, so some suitable inorganic ions, enzymes, proteins acts 
as support system [45]. As earlier discussed, adenosine triphosphate 
dependent binding cassette and solute carrier system were the main 
types of active transporter system. The energy dependent system was 
used energy for enhanced permeation of membrane whereas other 
system was depend upon energy dependent sodium potassium ion 
gated proton pump system [46]. P-glycoprotein, BCRp (breast cancer 
resistance protein), nucleoside transporters, hPEPt1 (human peptide 
transporter-1), ASBt (apical sodium-dependent bile acid transporter), 
OCt (organic cation transporter), OATP (organic-anion-transporting 
polypeptides), BBb-Choline (blood brain barrier choline system) were 
some important carrier systems related to biomolecules [47].  

P-glycoprotein (P-Gp) 

P-Gp was primarily belongs to energy dependent cassette related to 
multi drug resistant system, mainly available in gastrointestinal 
tract, blood, brain, testes and placenta and it had a prominent role in 
movement of drug molecules in system [48]. In the movement of 
drug molecules from systemic circulation to brain stem as well as 
from lumen to epithelial cell, cellular uptake was always try to 
decrease the systemic concentration, P-Gp created a barrier in this 
format. The experimental correlation data between in vitro and in 
vivo P-Gp related experiments showed that noticeable relation was 
observed during data extrapolation. Furthermore, P-Gp was also 
impacted on drug-drug interactions by interacting with cytochrome 
P450 (3A4) microsomal enzyme. Bioavailability of drugs was also 
effected by P-Gp (inducer or inhibitor) as rifampicin (P-Gp inducer) 
minimized bioavailability whereas verapamil (P-Gp inhibitor) 
increase bioavailability of related drugs [49].  

BCRp (Breast cancer resistance protein) 

Breast cancer resistance protein (BCRp) composed of 655 amino acids 
and widely distributed in stem cells, cancerous cells, liver, intestine 
and placenta. BCRp was worked as high gradient transporting system 
with greater specification for molecules with negative or positive 
charge, organic anion and conjugated sulfates. This system effectively 
worked for fetus protection, biliary elimination, and decrease in 
reabsorption through kidney as well as protection of stem cells. In this 
fashion, anticancer drugs, toxins, endogenous substances were behave 
as substrate whereas multidrug resistant modulators were the 
inhibitors of this transporting system. In this text, Fumitremorgin-C 
was the chemical substance which can reversed the drug resistance 
due to BRCp activity [50].  

Nucleoside transporter 

Nucleoside transporters were responsible for the transportation of 
nucleosides (deoxyribo/ribo nucleic acid synthesis starting 

material) as well as regulate the energy dependent neuronal 
modulation especially transportation of blood to retina. This system 
was classified into sodium ion dependent and independent 
transporting systems [51]. These drugs were mainly prodrug in 
nature, so travelling from administration to destination, these 
transporter systems showed a positive impact. Nucleoside 
transporter system was further divided into concentrative (CNT1-3), 
carrier (solute) (28A1-3) and equilibrium oriented (ENT1-2, SLC29A1-

2). CNT1-3 system located in renal epithelium and both ENT1-2, 
SLC29A1-2

hPEPt1 (human peptide transporter-1) 

 were available in basolateral membrane [52]. 

Human peptide transporter belongs to peptide transporter (solute 
carrier-15A1 system), which was mainly used for transport of 
oligopeptide with the exchange of sodium and hydrogen ions, 
associated with transportation of antibiotics, antiviral and 
antihypertensive agents as well as movement of nitrogen 
throughout the body [53]. This system mainly located in apical 
membrane of small intestine. In this context oral hypoglycemic 
agents (sulfonylureas, biguanides and others) inhibited the 
transporting system [54]. 

ASBt (apical sodium-dependent bile acid transporter) 

ASBt belongs to solute carrier (10A2) transporting system and 
mainly located in chromosome 13q33 genes with 22.8 kilobyte 
deoxyribonucleic acid. This carrier system observed with presence 
of 348 amino acids with 38 kilo dalton of molecular weight. The 
system comprised two glycosylation sites at N10 and N328

OCt (organic cation transporter) 

. ASBt was 
responsible for transportation and reabsorption of bile acids from 
gut lumen as well as active against liver disease, hyperglycemia and 
hyperlipoproteinemia [55]. 

OCt system responsible for movement of organic cations (dopamine, 
quinine) at physiological pH. OCt system comprised of (550-560) 
amino acids with three subtypes (OCt1-3

OAtp (organic-anion-transporting polypeptides) 

) with 12 transmembrane 
alpha helices (intracellular loop) and large extracellular loop with 
proper glycosylation factors [56]. This transporting system directly 
related to uptake of hydrophilic compounds.  

OAtp system belongs to solute sodium ion dependent carrier 
superfamily responsible for transportation of amphipathic 
endogenous, exogenous organic compounds and intestinal 
absorption of drugs. It has four subtypes as OAtp1B1, OAtp1B3, 
OAtp2B1 and OAtp1A2. This family mainly located in liver, intestine, 
kidney, brain and placenta. The first two types were responsible for 
hepatocellular drug uptake and later two were related to intestinal 
absorption [57].  

BBb-Choline transporter (blood brain barrier choline system) 

After entering body, choline reached brain through semi-permeable 
blood brain barrier using sodium ion dependent and passive 
diffusion processes. This transporting system was also belongs 
solute carrier system, responsible for biosynthesis of acetylcholine 
from choline. This transporting system has two subtypes as choline 
transporter (Cht) 1 and 2; among them Cht2 was responsible for 
oxidation of choline in mitochondria [58] whereas Cht1 was 
responsible for choline from extracellular system. Hemicholinium 
blocks the activity profile of Cht 1 and 2 [59].  

Computational models associated with drug-transporter 
interactions 

In the computation and prediction of drug-transporter interaction, 
exploration of database, generation of pharmacophore model, 
homology modelling, molecular docking study and QSAR/QSPR

Exploration of database 

 
model generation are the most important models.  

There are lots of database available related with structural features 
of drug molecules and pharmacological activities. Databases are 
mainly helpful for the exploration of molecules based on their 
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properties, disease types and toxicity profile [60]. These collective 
information helps a researcher or student for the development of 
newer molecules with greater activity and lesser toxicity. 
Experimental pKa, Phys-chem EPISUITE, ADME database, 
Bioconcentration NITE, ZINC and Pubchem are some database 
related with drug disposition and toxicity. 

Experimental pKa database 

This database represents the pKa values (dissociation constant of 
acid or bases in aqueous environment) procured from 5647 and 
8060 organic acids and bases, respectively [61].  

Phys-chem EPISUITE database 

This database belongs to estimation program interface under 
environment protection agency and associated with calculation of 
physicochemical properties using values of octanol-water partition 
coefficient, gas phase rate of reactions associated with various 
oxidants, value of henry law constant value using air-water partition 
coefficient, calculation of boiling point, melting point and vapor 
pressure, percentage of degradation of substance in absence or 
presence of oxygen. This database was constituted with more than 
forty thousand molecules [62].  

ADME database 

This database directly reflects the detailed information about 
molecules (induce or inhibit a system) and role of metabolic 
enzymes with other biotransformation factors. In this context, role 
of cytochrome P450 microsomal enzyme, uridine diphosphate 
glucuronyltransferase, glutathione-S-transferase and flavin 
monooxygenase on biotransformation of a drug molecule as well as 
clinical trial data with pharmacological factors (maximum 
concentration need for activity with time response) are assessed and 
tabulated for researchers.  

Bioconcentration NITE database 

Bioconcentration factor is directly related with accumulation of 
organic or inorganic contaminants inside a biological system in 
dissolved form [63]. The accumulation depends upon absorption of 
the molecule via active or passive transport, interaction with living 

system via dipole-dipole or Van der Waal force followed by reaction 
and accumulation. This database contained with huge number of 
chemical structures with bioconcentration factor in relation with 
toxicity. In the calculation of bioaccumulation factor, partition 
coefficient, solubility are the key factors [64]. 

ZINC database 

This database is mainly a collection hub of more than thirty five million 
commercially available drugs with their possible physicochemical and 
pharmacophoric features. This database also sense a correlation 
between molecules and their probable biological activity [65].  

Pubchem database 

This database represent a collection of drug molecules along with its 
biological assay results, mainly obtained from various commercial 
database vendors (more than eighty). The database is maintained by 
National Centre Biotechnological Information. Here chemical 
structure, nomenclature, partition coefficient data and other 
physicochemical parameters are included [66].  

Pharmacophore model generation 

Pharmacophore is the three dimensional similarity between a group 
of similar to very diversely structured molecular group in respect of 
the biological activity. Pharmacophore model represents the 
structural points and distance between most important structural 
features, in this context biological activity plays an essential role. In 
the pharmacophore model generation, Drug Discovery studio, 
Ligandscout, ZINC Pharmer and Pharmagist are the mostly used 
softwares. Among them, Drug Discovery studio and Ligandscout are 
the commercial softwares whereas ZINC Pharmer and Pharmagist 
are freely available softwares. In the assessment of pharmacophoric 
features, structures are input in Sybl mol2 format. In the fig. 4, the 
pharmacophoric features of aspirin and acetaminophen showed that 
presence of two hydrophobic regions (green color), one aromatic 
region (purple color), one negative ion group (red color), four 
hydrogen bond acceptor regions (yellow color) and one aromatic 
group (purple color), two hydrophobic regions (green color), two 
hydrogen bond donor atoms (white color) and two hydrogen bond 
acceptor atoms (yellow color) [67]. 

  

 

Fig. 4: Pharmacophoric features of aspirin and acetaminophen [67] 

 

But when collectively submit a group of substances (similar to 
diverse group) in PharmaGist server panel (minimum 5 and 
maximum 30 structures at a time), then it not only search the 
similarity between the structures as well as calculate the possible 
bond distance between the features using Drug Discovery studio 
visualizer software. Here we put in an example with a bunch of 
molecules (aspirin, acetaminophen, ibuprofen, indomethacin and 
naproxen) to create a model using PharmaGist. The outcomes 
showed that only four spatial features are responsible for activity 
(one aromatic center, one negative ion center and two hydrogen 
bond acceptor points) (fig. 5) with proper distance measurements in 
angstrom [68]. 

 

Fig. 5: Common structural features between five anti-
inflammatory agents [68] 
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Homology modelling  

In some cases, receptor or protein structure is not available then 
using FASTA or UniProt sequence and swiss pdb viewer 
(https://swissmodel.expasy.org/interactive) [69]. FASTA sequence 
was obtained from Protein Similarity Search 
(https://www.ebi.ac.uk/Tools/sss/fasta/) and UniProt sequence 

was obtained from https://www.uniprot.org/. Finally, a new protein 
was developed using similarity index and BLAST. In the example, we 
use FASTA sequence of alpha amylase (P0DUB6 source Homo 
sapiens) followed by searching of relative templates and finally 
based on GMQE (Global Model Quality Estimation), QMEAN (Global 
Model Quality Estimation) and sequence similarity, a new protein 
model was developed (fig. 6) [70]. 

  

 

Fig. 6: Development of homology model [69, 70] 
 

Molecular docking study 

Molecular docking study is the process to identify the molecular 
interactions between drug molecule and receptor, which 
corresponds with the biological activity. As we know, small molecule 
and receptor (protein or enzyme) or two proteins were docked to 
affirm the pose of interactions. Molecular docking study was divided 
into rigid and flexible docking. This study plays a pivotal role in 
terms of pharmacokinetic behavior and biological activity. There are 
ample of softwares available to study the docking interactions. Rigid 
molecular docking study showed the favored conformations with free 
energy assessment and electrostatic interactions between chemical 
structure and receptor. In this process, fast Fourier transformation 
and spherical harmony of the three dimensional structure of the 
receptor plays the most important role. This knowledge was utilized in 
FRODOCK (software), whereas desolvation energy and grid based 
knowledge were used in ZDOCK and MEGADOCK softwares, 
respectively. The science of translation and rotation of chemical 
structure were considered in Cell-Dock whereas resolution per grid 
volume was used in FTDock platform [71].  

In case of flexible docking, the three dimensional movements of 
ligands were considered with (6+N) special orientations as per 
Monte Carlo simulation process. Flexible docking process was 
studied using four different strategies such as Monte Carlo 
molecular dynamic simulation, in-site combinatorial searching, 
building of ligand molecules and site assessment with 

fragmentation. In this docking process, grid space volume, relative 
mean standard deviation and receptor active pocket analysis are the 
important factors. AutoDocK Vina (free version) is the most useful 
software in this process, several other softwares such as GLIDE, 
GOLD, MedusaDock etc are also available (commercial standalone 
version). In this context, we focused on the process of molecular 
docking using AUTODOCK Vina software interface. The methodology 
of molecular docking study involves preparation of receptor, 
preparation of ligand molecule, grid measurement followed by drug-
receptor interaction and visualization of the docking pose using 
Pymol console [72].  

In the preparation of receptor portion, initially receptors were 
procured from www. rcsb. org (Protein Data Bank) or generation of 
resemble protein structure using homology modelling. Then all the 
water molecules and co-crystallized ligands were removed from the 
receptor followed by addition of gasteiger charges and saved in. pdbqt 
format. In case of ligand preparation, addition of rotation and charges 
were the necessary added effects in the ligand and saved in. pdbqt 
format. Finally based on the interactive residues, grid space volume 
and exhaustiveness were set and performed the iterated interactions. 
In the fig. 7, the molecular docking pose diagram showed the possible 
interaction between the nearby amino acids (ARG 817) and some part 
of the ligand within the receptor voxel. Finally a tabulated energy data 
(Kcal/mole) with relative mean standard deviation value were 
obtained [73]. Then we perform the same process with standard 
molecule and compare the score and interaction. 

 

 

Fig. 7: Molecular docking interaction [71, 72] 

https://swissmodel.expasy.org/interactive�
https://www.ebi.ac.uk/Tools/sss/fasta/�
https://www.uniprot.org/�
http://www.rcsb.org/�
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Quantitative structure activity/property relationship 
(QSAR/QSPR

QSA

) 

R/QSPR is basically a statistical approach between 
activity/property (physicochemical) and structural features 
including CoMFA (Comparative Molecular Field Analysis) and 
CoMSIA (Comparative Molecular Structural Indices Analysis) using 
multiple linear regression, partial least square or principal 
component analysis methods. This technique has several types such 
as 0D QSAR (possible descriptors are molecular weight and types of 
atoms present),  1D QSAR (consists of molecular fragmentation 
descriptors such as functional groups, number of rings, bonds, 
substituent etc), 2D QSAR (consist of bonding information), 3D QSAR 
(consist of three dimensional molecular information such as shape, 
steric factors), 4D QSAR (previous all descriptors with possibility of 
conformer generation and grid factors), 5D QSAR (information of 
molecular dynamics are also included), 6D QSAR (information of 
solvation theorem are also introduced), 7D QSAR (real and virtual 
target analysis along with all information are include) and hologram 
QSAR (where molecular fragments and cyclic redundancy check 
algorithm are used to develop the hologram of the structure 
followed by correlated with activity) [74]. In this techniques, types 
of descriptors also plays an important role. Here, fragment based 
descriptor, total molecule descriptor, topological descriptor (Wiener 
index, Randic index, EHOMO and ELUMO

Future scope 

), geometric descriptor (Van 
der Waal volume, molecular surface area) and constitutional 
descriptors (molar volume, Kier-Hall index, Balaban index, kappa 
shape index, E-state, Moran/Geary autocorrelation descriptor, 
Ghose-Crippen molar refractivity) are mainly counted in study [75-
76]. The process of model generation involves a series of data 
processing such as: i. Preparation of dataset (using database or 
experimental data), ii. Calculations of descriptors (using DRAGON, E-
Dragon, PADEL softwares), iii. Normalization of data volume 
(minimize data exhaustiveness and remove near about data) [77-
78], iv. Checking of MODelability index (threshold value 0.65 for 
model generation), v. Data pretreatment and dataset division into 
training and test set using Euclidean distance, Kennard-stone 
process, vi. Model preparation using multiple linear regression 
process [79], vii. Validation of generated model using Golbraikh-
Tropsha acceptance criteria, k-fold cross validation, leave one out, 
viii. Applicability domain analysis using Euclidean distance and 
Mahalanobis distance [80-81].  

The collective information from all sources helps a researcher to 
visualize the possible movement of a drug molecule inside the body 
system. So in future if we approach the in silico behavior of a drug-
drug or drug-receptor interactions along with other relative tools for 
drug discovery, then the process become more robust and 
reproducible as well as every step will statistically justified, so the 
chances of error or false claim will less, which will produce a 
molecule or formulation more fruitful for mankind. 

CONCLUSION  

This chapter mainly focused on the journey of a drug molecule 
inside the body. In this intriguing viewing process, various 
pathophysiological aspects help us to know or visualize the path of a 
drug molecule in achieving the ultimate goal. When a drug molecule 
enters our system, system treat the substance as foreign material, so 
it always try to expel out the substance and in this expelling process 
both molecule and body system comes under an iterative process 
and finally some positive or negative effect is observed by the 
system. In this fate determining process, physicochemical nature of 
the chemical substance and physiological environment 
(composition) of system makes this movement more interesting. In 
this context, pharmacokinetic features along with toxicity profile of 
the drug substance regulate the ultimate fate of the molecule. 
Nowadays various computational processes are considered such as 
in silico assessment of drug molecule after absorption through 
biological membrane, distribute throughout the system based on the 
percent ionization or partition coefficient factors followed by 
biologically transformed into an another entity in presence of 
microsomal enzymes and finally excrete out from system using 
various cellular transport systems. In some cases, based on the 

chemical nature and nature of interactions triggered the toxic 
behavior of the substance. In this chapter, we discussed all the 
possible factors related with the movement of a drug molecule as 
well as positioned on various computational tools to assess the 
chemical changes of the drug molecule. So we focused on detailed 
computational studies related to drug disposition behavior such as 
database mining, pharmacophore model generation, homology 
modelling, molecular docking study and QSAR/QSPR
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