ISSN- 0975-1491

Vol 7, Issue 5, 2015

**Original Article** 

## DETERMINATION OF ETILEFRINE HYDROCHLORIDE, FENOTEROL HYDROBROMIDE, SALBUTAMOL SULPHATE AND ESTRADIOL VALERATE USING SURFACE PLASMON RESONANCE BAND OF SILVER NANOPARTICLES

## MAGDA M. AYAD\*, HISHAM E. ABDELLATEF, MERVAT M. HOSNY, YASSMIN A. SHARAF

Analytical chemistry department, Faculty of pharmacy, Zagazig University, Zagazig, Egypt Email: Mermaka89@yahoo.com

## Received: 13 Dec 2014 Revised and Accepted: 10 Jan 2015

## ABSTRACT

**Objective:** The aim of this work was to evaluate a simple, sensitive, effective and validated procedure for the determination of etilefrine hydrochloride, fenoterol hydrobromide, salbutamol sulphate and estradiol valerate.

**Methods:** In this study the method based on the ability of the cited drugs to reduce Ag<sup>+</sup>ions to silver nanoparticles (Ag-NPs) in the presence of polyvinyl pyrrolidone (PVP) as a stabilizing agent producing very intense surface plasmon resonance peak of Ag-NPs ( $\lambda_{max}$  = 417-425 nm). The plasmon absorbance of the Ag-NPs allows the quantitative spectrophotometric detection of the cited drugs.

**Results:** The calibration curves were linear with concentrations range of 0.4-0.8, 0.1-0.9, 0.8-2 and 1.6-9.6 µg/ml for the cited drugs. Apparent molar absorptivity, detection and quantitative limits were calculated.

Applications of the proposed methods to representative pharmaceutical formulations are successfully presented; also the proposed method was applied for the determination of estradiol valerate in human urine samples.

**Conclusion:** The extracellular synthesis of nanoparticles was fast and eco-friendly; moreover, the method doesn't require various elaborate treatments and tedious extraction procedures.

Keywords: Silver nanoparticles, Etilefrine hydrochloride, Fenoterol hydrobromide, Salbutamol sulphate, Estradiol valerate.

## INTRODUCTION

Etilefrine hydrochloride [2-Ethylamino-1-(3-hydroxyphenyl) ethanol hydrochloride] [1], is a direct-acting sympathomimetic with beta1agonist properties, and some alpha-and beta2-agonist actions. It is used for the treatment of hypotensive states [2]. Different techniques were reported for the determination of etilefrine hydrochloride including: spectrophotometry [3-6], spectro flourimetry [7], automated sequential injection spectro photometry [8], Flow-injection spectrophotometry [9], flow-injection chemiluminometric assay [10] and HPLC [11].

Fenoterol hydrobromide [[1RS]-1-[3, 5-dihydoxyphenyl]-2- [ [[1RS] -2-(4-hydroxyphenyl]-1-methylethyl]amino]ethanol hydrobromide] [1], is direct-acting sympathomimetic with beta-adrenoceptor stimulant activity largely selective for beta2 receptors (a beta2 agonist). It is used as a bronchodilator in the management of reversible airways obstruction, as occurs in asthma and in some patients with chronic obstructive pulmonary disease [2]. Various analytical methods were applied for the determination of fenoterol hydrobromide in raw material, pharmaceuticals and biological fluids. These methods include liquid chromatography [12, 13], HPLC [14], gas chromatography [15], voltammetry [16], electrophoresis [17], spectrophotometry [18, 19] and spectroflourimetry [20].

Salbutamol sulphate [Bis [(1RS)-2- [(1, 1-dimethylethyl) amino]-1-[4-hydroxy-3-(hydroxmethyl) phenyl] ethanol] sulphate] [1], is a direct-acting sympathomimetic with mainly beta-adrenergic activity and a selective action on beta2 receptors (a beta<sub>2</sub> agonist. It is used as bronchodilators in the management of reversible airways obstruction, as in asthma and in some patients with chronic obstructive pulmonary disease. It also decreases uterine contractility and may be given as the sulfate to arrest premature labour [2]. Different methods were reported for determination of salbutamol sulphate including spectrophotometry [21-26], HPLC [27, 28], liquid chromatography [29], thin layer chromatography [30], capillary electrophoresis [31] and voltammetry [32].

Estradiol valerate [3-Hydroxyestra-1, 3, 5(10)-trien-17b-yl pentanoate] [1], is the most active of the naturally occurring

oestrogens. Estradiol is primarily used as menopausal hormone replacement therapy and may also be used as replacement therapy for female hypogonadism or primary ovarian failure. Several analytical methods were reported for the determination of estradiol valerate including spectrophotometric [33-36], gas chromatography [37], capillary electrophoresis [38], liquid chromatography [39], flow injection chemiluminescence [40] and electrochemical methods [41].

Nanoparticles are one of the novel drug delivery systems, which can be of potential use in controlling and targeting drug delivery as well as in cosmetics textiles and paints. Nanoparticles have many advantages; it can be administrated by parenteral, oral, nasal, ocular routes, by attaching specific ligands on to their surfaces, nanoparticles can be used for directing the drugs to specific target cells, improving the stability and therapeutics index and reduce toxic effects. Nanoparticles have many applications e. g. cancer therapy, intra cellular targeting, vaccine adjuvant, DNA delivery, ocular delivery.

Nanoparticles made of silver and gold have been the focus of research for many decades as a result of their intriguing optical properties. When dispersed in liquid media, these nanoparticles exhibit a strong UV-visible extinction band that is not present in the spectrum of the bulk metal. Recently silver nanoparticles were developed for sensitive and selective detection of nebivolol [42], fexofenadine [43] and some catecholamines [44, 45].

In this work nanoparticles were used in quantitative determination of drugs; a simple, sensitive, effective and validated procedure for the determination of etilefrine hydrochloride, fenoterol hydrobromide, salbutamol sulphate and estradiol valerate was developed.

#### MATERIALS AND METHODS

#### Instrumentation

A Shimadzu UV and visible recording spectrophotometer (UV 260) with matched 10 mm quartz cell was employed for all absorbance measurements.

A JEOL-1010 Transmission Electron Microscope at 80 KV, Japan was employed for Transmission Electron Microscopy (TEM) examination at Regional Center for Mycology and Biotechnology (RCMB) at Al-Azhar University.

#### Materials and reagents

Chemicals used were of the highest purity; Etilefrine hydrochloride (obtained from Chemical Industrial Development (Cid). Fenoterol hydrobromide (obtained from Sigma Pharmaceutical Industries). Salbutamol sulphate (obtained from Pharco Pharmaceuticals). Estradiol valerate (obtained from Chemical Industrial Development (Cid)). Silver nitrate, 0.02M aqueous solution, polyvinylpyrrolidone (PVP), 0.14% aqueous solution, Sodium hydroxide, 0.0025M aqueous solution.

#### **Pharmaceutical preparations**

Effortil® tablets containing 5 mg etilefrine hydrochloride per tablet (obtained from Chemical Industrial Development (Cid) under the licence of Boehringer Ingelheim, Germany).

Effortil® Drops containing 7.5 mg etilefrine hydrochloride per gm solution (obtained from Chemical Industrial Development (Cid) under the licence of Boehringer Ingelheim, Germany).

Pronotrol® Syrup containing 2.5 mg fenoterol hydrobromide per 5 ml (obtained from Sigma Pharmaceutical Industries).

Salbovent Fotre® tablets containing 4.8 mg salbutamol sulphate per tablet (obtained from Alex. Co. for Pharmaceuticals and Chemical Industries

Farcolin® respiratory solution containing 0.121 g Salbutamol sulphate per 20 ml solution (obtained from Pharco Pharmaceuticals).

Ventolin® Syrup containing 2 mg salbutamol sulphate per 5 ml (obtained from Galaxosmithkline).

Cyclo-progynova® white tablets containing 2 mg estradiol valerate per tablet and brown tablets containing 2 mg estadiolvalerate+0.5 mg norgestrel per tablets (obtained from Bayer Schering Pharma, Germany).

Standard solutions

- Solutions of 100 μg/ml of etilefrine hydrochloride, fenoterol hydrobromide and salbutamol sulphate were prepared by dissolving 10 mg of the pure drug in bidistilled water then further dilution to 5, 5, 10 μg/ml for etilefrine hydrochloride, fenoterol hydrobromide and salbutamol sulphate respectively.
- Solution of 100 μg/ml of estradiol valerate was prepared by dissolving 10 mg of the pure drug in acetonitrile then further dilution to 20 μg/ml.

#### **General procedure**

In 5 ml volumetric flask, appropriate amounts of silver nitrate, PVP, different concentrations of the cited drugs and appropriate amounts of NaOH were added, completed to 5 ml with bidistilled water, and then heated in the water bath at 90 °C for appropriate times. Absorbance was measured at the suitable wavelength against reagent blank treated similarly. (table 1).

# Table1: Analytical parameters for determination of etilefrine HCl, fenoterol HBr, salbutamol sulphate and estradiol valerate through silver nanoparticles formation

| Parameter                         | Etilefrine HCl | Fenoterol HBr | Salbutamol sulphate | Estradiol valerate |
|-----------------------------------|----------------|---------------|---------------------|--------------------|
| $\lambda_{max}$ (nm)              | 417            | 417           | 419                 | 425                |
| Volume of Silver nitrate (0.02 M) | 0.5 ml         | 0.7 ml        | 0.7 ml              | 1 ml               |
| Volume of PVP (0.14 %)            | 1 ml           | 0.5 ml        | 0.7 ml              | 0.5 ml             |
| Volume of NaOH (0.0025M)          | 0.7 ml         | 1 ml          | 0.7 ml              | 0.7 ml             |
| Temperature                       | 90°C           | 90°C          | 90°C                | 90°C               |
| Time of reaction                  | 35 min.        | 20 min.       | 20 min.             | 30 min.            |
| Beer's law limits (µg/ml)         | 0.4-0.8        | 0.1-0.9       | 0.8-2               | 1.6-9.6            |

## Assay of pharmaceutical preparations

### A-Assay of tablets

1. for Effortil tablets: Ten tablets were weighed, pulverized into fine powder, specific quantity of powdered drugs equivalent to 10 mg pure drug were dissolved in distilled water, solutions were filtered and diluted to 100 ml with distilled water then further dilution to 5  $\mu$ g/ml. Procedures were completed as in general procedures.

2. for salbutamol tablets: Ten tablets were weighed, pulverized into fine powder, specific quantity of powdered drugs equivalent to 10 mg pure drug were dissolved in distilled water, solutions were filtered and diluted to 100 ml with distilled water then further dilution to  $10\mu$ g/ml. Procedures were completed as in general procedures applying standard addition technique.

2. for cycloprogynova tablets (white and brown): Ten tablets were weighed, coat removed, and pulverized into the fine powder. Specific quantity of powdered tablets equivalent to 10 mg pure drug was dissolved in acetonitrile. Solutions were filtered and diluted to 100 ml with acetonitrile then further dilution to 20  $\mu$ g/ml. Procedures were completed as in general procedures applying standard addition technique.

#### **B-Assay of syrup 1**

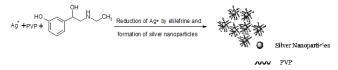
For bronotrol syrup: in 125 ml separating funnel, 5 ml of syrup and 5 ml of saturated NaOH was placed and extracted with 30 ml methylene chloride. The organic layer was collected in the beaker and allowed to evaporate till dryness. The residue was dissolved in 1

ml methanol and diluted to 25 ml bidistilled water then further dilution to 5  $\mu$ g/ml. Procedures were completed as in general procedures applying standard addition technique.

2. for salbutamol syrup: 2 ml syrup was placed in 100 ml volumetric flask and diluted to 100 ml with distilled water then further dilution to 10  $\mu$ g/ml. Procedures were completed as in general procedures applying standard addition technique.

#### C-Assay of drops

Specific volumes of drops solutions equivalent to 10 mg pure drug were placed in 100 ml volumetric flask and diluted to 100 ml with distilled water then further dilution to 5 and 10  $\mu$ g/ml for etilefrine HCl and salbutamol sulphate respectively. Procedures were completed as in general procedures.


## D-Assay of estradiol in Urine samples

Freshly voided urine samples were obtained from four healthy volunteers. Each sample was filtered through a 0.2-mm membrane to remove particulate matter. 0.5 ml estradiol valerate standard solution ( $50\mu g$ ) was spiked in 50 ml urine sample.

In 250 ml separating funnel the urine sample and 5 ml saturated NaOH were placed and extracted with 150 ml methylene chloride. The organic layer was collected in the beaker, allowed to evaporate till dryness and residue was dissolved in 10 ml acetonitrile. Procedures were completed as in general procedures applying standard addition technique.

## **RESULTS ANDDISCUSSION**

Nanoparticles made of silver and gold have been the focus of research for many decades due to their intriguing optical properties. The systems in this study consist of an aqueous  $AgNO_3$  solution that includes polyvinylpyrrolidone (PVP), as stabilizer, at an alkaline medium. Etilefrine hydrochloride, fenoterol hydrobromide, salbutamol sulphate and estradiol valerate act as effective reducing agents for the reduction of silver metal salt ( $Ag^+$ ) to the Ag-NPs without added any seeds (Scheme 1).



Scheme 1: Reduction of silver ions by etilefrine HCl

In the absence of reducing agents, there is no absorption peak in visible region (380-700 nm). Upon addition of cited drugs which act as reducing agent silver ions reduced to silver nanoparticles and then the absorbance characteristic to the plasmon of the Ag-NPs is observed (417-425 nm). (fig. 1)

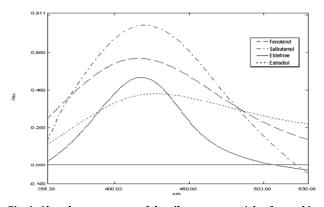



Fig. 1: Absorbance spectra of the silver nanoparticles formed in the presence of: -0.5 μg ml<sup>-1</sup> etilefrine HCl, -0.5 μg ml<sup>-1</sup> fenoterol HBr, -1.6 μg ml<sup>-1</sup> salbutamol sulphate.-4 μg ml<sup>-1</sup>estradiol valerate

Formation of silver nanoparticles was confirmed by TEM image which indicate nanopaticles formation in size of 11±2.57 nm. (fig 2)



Fig. 2: TEM image for silver nanoparticles Optimum conditions affecting the reaction were studied

## Effect of NaOH concentration

The influence of pH on Ag+reduction by the cited drugs is expected since they have a hydroxyphenyl group which can lose H+during oxidation and o-quinone formation process (Scheme 1). Because buffered condition failed to obtain silver nanoparticles we added NaOH for provide enough alkalinity. By addition of NaOH, absorbance increases up to a known concentration of NaOH then decreases with the formation of black precipitate which might be due to the Ag2O formation. Thus, 0.7 ml of 0.0025M NaOH was selected as the optimum NaOH concentration for etilefrine hydrochloride, salbutamol sulphate and estradiol valerate. While 1 ml of 0.0025M NaOH was sufficient for fenoterol hydrobromide

## Effect of Silver nitrate concentration

Maximum absorbance values were obtained using 0.5, 0.7, 0.7 and 1 ml of 0.02M silver nitrate for Etilefrine hydrochloride, fenoterol hydrobromide, salbutamol sulphate and estradiol valerate respectively.

#### Effect of Stabilizer type and concentration

An important issue in the preparation of metal nanoparticles is the choice of the capping agent used to protect or stabilize the nanoparticle colloidal metals from agglomeration. Size and morphologies of nanoparticles are depending significantly on capping materials. Nanoparticles stabilization is achieved according to the two basic modes: electrostatic and steric stabilization [46]. Electrostatic stabilization is caused by the columbic repulsion between particles, caused by the electrical double layer formed by ions adsorbed at the particle surface (e.g., sodium citrate) and the corresponding counter ions. Steric stabilization is achieved because of the coordination of steric ally demanding organic molecules and polymers that act as protective shields on the metallic surface (e.g., PVP). In this study PVP and sodium citrate were selected as the stabilizer for preventing of silver nanoparticles agglomeration in which the PVP was better used in compare to sodium citrate. 1, 0.7, 0.7, 0.5 ml of 0.14% PVP were optimum for etilefrine hydrochloride, fenoterol hydrobromide, salbutamol sulphate and estradiol valerate.

#### Effect of temperature and time of heating

Heating in water bath at 90 °C for 35, 20, 20 and 30 min was sufficient to produce maximum color intensities for etilefrine hydrochloride, fenoterol hydrobromide, salbutamol sulphate and estradiol valerate.

#### Method validation

#### Linearity

Under the described experimental conditions standard calibration curves with good linearity for silver nanoparticles formed using etilefrine hydrochloride, fenoterol hydrobromide, salbutamol sulphate and estradiol valerate were constructed by plotting absorbance against concentration.

A linear correlation was found. The concentration ranges, molar absorptivity, correlation coefficient, intercept and slope for the calibration curve were calculated. Also relative standard deviation, analytical standard error, detection and quantification limits were calculated and listed in tables (2, 3).

The validity of the proposed method was assessed by its application to the determination of the cited drugs in their pharmaceutical preparations, and in urine samples for estradiol valerate tables (4, 5, 6).

Student's t-test and F-test(at 95% confidence level) were applied to the results obtained compared with that obtained from official methods.(1) Results showed that there are no significant differences between the proposed and official methods. Results of different statistical treatment of the data are shown in table (7).

#### Accuracy and precision

Accuracy and precision were carried out by six determinations at two different concentrations of the four drugs in the same day (intra-day), and in six different days (inter-day). Percentage relative standard deviation (R. S. D.%) as precision and percentage relative error (Er%) as accuracy of the suggested method was calculated. The percentage relative error calculated using the following equation:

## $Er\% = [(founded - added)/added] \times 100$

The results of accuracy and precision [table (8)] show that the proposed methods have good repeatability and reproducibility

# Table 2: Spectral data for determination of etilefrine HCl, fenoterol HBr, salbutamol sulphate and estradiol valerate through silver nanoparticles formation

| Parameter                                                          | Etilefrine HCl        | Fenoterol HBr | Salbutamol sulphate   | Estradiol valerate    |
|--------------------------------------------------------------------|-----------------------|---------------|-----------------------|-----------------------|
| Linearity range (µg/ml)                                            | 0.4-0.8               | 0.1-0.9       | 0.8-2                 | 1.6-9.6               |
| Apparent molar absorptivity* (mol <sup>-1</sup> cm <sup>-1</sup> ) | 2.23 ×105             | 4.62×105      | 2.72×10 <sup>5</sup>  | 3.33×10 <sup>4</sup>  |
| Sandell's sensitivity                                              | 1.02×10 <sup>-1</sup> | 1.20×10-1     | 4.72×10 <sup>-2</sup> | 9.33×10 <sup>-3</sup> |
| (mg/ml per 0001A)                                                  |                       |               |                       |                       |
| Limit of detection LOD                                             | 0.105                 | 0.032         | 0.255                 | 0.502                 |
| (µg/ml)                                                            |                       |               |                       |                       |
| Limit of quantification LOQ (µg/ml)                                | 0.319                 | 0.098         | 0.771                 | 1.522                 |
| Regression equation**:                                             |                       |               |                       |                       |
| Slope (b)                                                          | 1.7732                | 1.0418        | 0.4082                | 0.0908                |
| Intercept (a)                                                      | -0.4209               | 0.0651        | 0.0842                | 0.0107                |
| Correlation coefficient (r)                                        | 0.9994                | 0.9998        | 0.9998                | 0.9999                |

\*Calculated on the basis of the molecular weight of the drug, \*\* A=a+bc

# Table 3: Determination of etilefrine HCl, fenoterol HBr, salbutamol sulphate and estradiol valerate through silver nanoparticles formation

| Statistics | Etilefrine HCl |            | Fenoterol HB       | r          | Salbutamol su      | Iphate     | Estradiol valerate |            |
|------------|----------------|------------|--------------------|------------|--------------------|------------|--------------------|------------|
|            | Takenµg/ml     | Recovery*% | Takenµg/ml         | Recovery*% | Takenµg/ml         | Recovery*% | Takenµg/ml         | Recovery*% |
|            | 0.4            | 98.27      | 0.1                | 99.73      | 0.8                | 99.15      | 1.6                | 99.33      |
|            | 0.45           | 101.14     | 0.2                | 100.73     | 1                  | 101.62     | 3.2                | 99.22      |
|            | 0.5            | 100.05     | 0.3                | 101.08     | 1.2                | 99.58      | 3.6                | 100.13     |
|            | 0.55           | 100.79     | 0.4                | 99.08      | 1.4                | 99.36      | 4.8                | 101.68     |
|            | 0.6            | 100.85     | 0.5                | 98.27      | 1.6                | 100.10     | 5.2                | 100.56     |
|            | 0.65           | 99.08      | 0.6                | 100.77     | 1.8                | 100.28     | 5.6                | 99.40      |
|            | 0.7            | 99.50      | 0.7                | 100.77     | 2                  | 99.93      | 6                  | 100.09     |
|            | 0.8            | 100.17     | 0.8                | 100.06     |                    |            | 9.6                | 100.07     |
|            |                |            | 0.9                | 99.71      |                    |            |                    |            |
| Mean*±SD   | 99.98±0.983    |            | $100.02 \pm 0.927$ |            | $100.00 \pm 0.818$ |            | 100.01±0.773       |            |
| Ν          | 8              |            | 9                  |            | 7                  |            | 8                  |            |
| V          | 0.967          |            | 0.859              |            | 0.668              |            | 0.597              |            |
| S. D.      | 0.983          |            | 0.927              |            | 0.818              |            | 0.773              |            |
| R. S. D.   | 0.984          |            | 0.927              |            | 0.817              |            | 0.773              |            |
| S. E.      | 0.348          |            | 0.309              |            | 0.308              |            | 0.258              |            |

\* Mean of three different experiments

## Table 4: Determination of etilefrine HCl and fenterol HBr in their pharmaceutical formulations

| Effortil tablets (Et | ilefrine HCl) | Effortil drops (Ef | tilefrine HCl) | Syı        | rup (Fenoterol | HBr)        |
|----------------------|---------------|--------------------|----------------|------------|----------------|-------------|
| Taken µg/ml          | Recovery* %   | Taken µg/ml        | Recovery* %    | Taken      | Added          | Recovery* % |
|                      | -             |                    | -              | μg/ml      |                |             |
| 0.4                  | 98.41         | 0.4                | 99.96          | 0.2        | -              | 103.62      |
| 0.55                 | 100.69        | 0.5                | 101.40         |            | 0.2            | 100.74      |
| 0.6                  | 99.26         | 0.55               | 100.38         |            | 0.3            | 102.03      |
| 0.7                  | 100.54        | 0.6                | 100.76         |            | 0.4            | 101.72      |
| 0.75                 | 99.41         | 0.7                | 98.53          |            | 0.5            | 102.68      |
| 0.8                  | 100.95        |                    |                |            | 0.6            | 99.97       |
|                      |               |                    |                |            | 0.7            | 100.63      |
| Mean*±SD             | 99.88±1.002   | 100.21±1.076       |                | 101.30±1.0 | 16             |             |
| Ν                    | 6             | 5                  |                | 6          |                |             |
| V                    | 1.003         | 1.157              |                | 1.033      |                |             |
| S. D.                | 1.002         | 1.076              |                | 1.016      |                |             |
| S. E.                | 0.409         | 0.481              |                | 0.415      |                |             |

\* Mean of three different experiments

### Table 5: Application of standard addition technique for determination of Salbutamol sulphate in its pharmaceutical formulations

| Tablets |       |             | Drops |       |             | Syrup |       |             |
|---------|-------|-------------|-------|-------|-------------|-------|-------|-------------|
| Taken   | Added | Recovery* % | Taken | Added | Recovery* % | Taken | Added | Recovery* % |
| µg/ml   |       |             | μg/ml |       |             | μg/ml |       |             |
| 0.8     | -     | 101.60      | 0.8   | -     | 98.24       | 0.8   | -     | 102.52.94   |
|         | 0.8   | 99.46       |       | 0.8   | 99.15       |       | 0.8   | 98.85       |
|         | 0.9   | 101.20      |       | 0.9   | 101.48      |       | 0.9   | 98.48       |

|          | 1       | 99.17  | 1            | 101.37 | 1           | 99.66  |
|----------|---------|--------|--------------|--------|-------------|--------|
|          | 1.1     | 101.29 | 1.1          | 99.95  | 1.1         | 101.06 |
|          | 1.2     | 99.99  | 1.2          | 101.22 | 1.2         | 99.18  |
| Mean*±SD | 100.22± | 0.980  | 100.63±1.030 |        | 99.45±1.003 |        |
| Ν        | 5       |        | 5            |        | 5           |        |
| V        | 0.961   |        | 1.062        |        | 1.006       |        |
| S. D.    | 0.980   |        | 1.030        |        | 1.003       |        |
| S. E.    | 0.438   |        | 0.461        |        | 0.449       |        |

\* Mean of three different experiments

# Table 6: Application of standard addition technique for determination of Estradiol valerate in its pharmaceutical formulations and in urine samples

| White tablets |          |             | Brown ta | ablets |             | Urine sai | mple  |             |  |
|---------------|----------|-------------|----------|--------|-------------|-----------|-------|-------------|--|
| Taken         | Added    | Recovery* % | Taken    | Added  | Recovery* % | Taken     | Added | Recovery* % |  |
| µg/ml         |          |             | µg/ml    |        |             | μg/ml     |       |             |  |
| 0.8           | -        | 101.60      | 0.8      | -      | 98.24       | 0.8       | -     | 102.52.94   |  |
|               | 0.8      | 99.46       |          | 0.8    | 99.15       |           | 0.8   | 98.85       |  |
|               | 0.9      | 101.20      |          | 0.9    | 101.48      |           | 0.9   | 98.48       |  |
|               | 1        | 99.17       |          | 1      | 101.37      |           | 1     | 99.66       |  |
|               | 1.1      | 101.29      |          | 1.1    | 99.95       |           | 1.1   | 101.06      |  |
|               | 1.2      | 99.99       |          | 1.2    | 101.22      |           | 1.2   | 99.18       |  |
| Mean*±SD      | 100.22±0 | .980        | 100.63±1 | .030   |             | 99.45±1.( | 003   |             |  |
| N             | 5        |             | 5        |        |             | 5         |       |             |  |
| V             | 0.961    |             | 1.062    |        |             | 1.006     |       |             |  |
| S. D.         | 0.980    |             | 1.030    |        |             | 1.003     |       |             |  |
| S. E.         | 0.438    |             | 0.461    |        |             | 0.449     |       |             |  |

\* Mean of three different experiments

## Table 7: Statistical data for determination of etilefrine HCl, fenoterol HBr, salbutamol sulphate and estradiol valerate through silver nanoparticles formation

| Item     | Etilefrine HCl |             | Fenoterol HB | r                  | Salbutamol s | ulphate            | Estradiol valerate |                |  |
|----------|----------------|-------------|--------------|--------------------|--------------|--------------------|--------------------|----------------|--|
|          | Official       | Reported    | Official     | Reported           | Official     | Reported           | Official           | Reported       |  |
|          | Method         | method      | Method       | method             | Method       | method             | method             | method         |  |
| Mean*±SD | 100.06±0.655   | 99.98±0.983 | 99.08±1.209  | $100.02 \pm 0.927$ | 99.71±1.116  | $100.00 \pm 0.818$ | 99.93±1.017        | 100.01±0.773   |  |
| Ν        | 6              | 9           | 4            | 9                  | 4            | 7                  | 5                  | 8              |  |
| V        | 0.429          | 0.967       | 1.460        | 0.859              | 1.245        | 0.668              | 1.034              | 0.597          |  |
| S. D.    | 0.655          | 0.983       | 1.209        | 0.927              | 1.116        | 0.818              | 1.017              | 0.773          |  |
| t        |                | 0.180       |              | 0.066 (2.201)*     |              | 0.499 (2.262)*     |                    | 0.161 (2.201)* |  |
|          |                | (2.160)*    |              |                    |              |                    |                    |                |  |
| F        |                | 2.254       |              | 1.700 (4.070)*     |              | 1.864 (4.760)*     |                    | 1.732 (4.120)* |  |
|          |                | (3.690)*    |              |                    |              |                    |                    |                |  |

\*Theoretical values of t and F at p = 0.05

#### Table 8: The intra-day and inter-day accuracy and precision data for determination of etilefrine HCl, fenoterol HBr, salbutamol sulphate and estradiol valerate through silver nanoparticles formation

|                    | Intra-day |        |            |       | Inter-day |        |        |           |       |       |
|--------------------|-----------|--------|------------|-------|-----------|--------|--------|-----------|-------|-------|
|                    | Taken,    | Found, | Recovery*, | RSD,  | Er, %     | Taken, | Found, | Recovery* | RSD,  | Er    |
|                    | µg/ml     | µg/ml  | %          | %     |           | μg/ml  | µg/ml  | %         | %     | %     |
| Etilefrine HCl     | 0.7       | 0.696  | 99.48      | 0.794 | -0.52     | 0.7    | 0.695  | 99.23     | 1.006 | -0.77 |
|                    | 0.8       | 0.801  | 100.18     | 0.582 | 0.18      | 0.8    | 0.802  | 100.21    | 0.961 | 0.21  |
| Fenoterol HBr      | 0.8       | 0.802  | 100.22     | 0.842 | 0.22      | 0.8    | 0.804  | 100.46    | 1.062 | 0.46  |
|                    | 0.9       | 0.897  | 99.71      | 0.756 | -0.29     | 0.9    | 0.894  | 99.37     | 1.035 | -0.63 |
| Salbutamol         | 1.82      | 1.806  | 100.32     | 0.899 | 0.32      | 1.8    | 1.806  | 100.35    | 1.118 | 0.34  |
| sulphate           | 16        | 1.999  | 99.93      | 0.867 | -0.07     | 2      | 1.998  | 99.91     | 1.100 | -0.09 |
| Estradiol valerate | 5.6       | 5.576  | 99.59      | 1.131 | -0.43     | 5.6    | 5.561  | 99.31     | 1.206 | -0.69 |
|                    | 6         | 5.998  | 99.97      | 0.955 | -0.03     | 6      | 5.991  | 99.85     | 1.063 | -0.15 |

\* Mean of six different experiments.

## CONCLUSION

Application of silver nanoparticles as chromogenic agent has been demonstrated in this work for optical detection of the cited drugs based on the seedless production of Ag-NPs. The proposed method is simple, sensitive, and inexpensive for their determination. This analytical protocol may be important green method for monitoring and optical detection of etilefrine hydrochloride, fenoterol hydrobromide and salbutamol sulphate in pure and pharmaceutical dosage forms. It can be used for routine analysis of estradiol valerate in pure, pharmaceutical dosage forms and in urine samples.

## CONFLICT OF INTERESTS

Declared None

#### REFERENCES

- 1. The British Pharmacopoeia. Vol. II, III. Her Majesty's Stationery Office: London, UK; 2009.
- 2. Sweetman SC. Martindale-the complete drug reference. 35 ed. London: The Pharmaceutical Press; 2007.
- Ragab GH, Elmasry MS, Kheir AA. Spectrophotometric determination of some phenolic drugs in pure form and in their pharmaceutical preparations. Jordan J Pharm Sci 2009;2:66-75.
- 4. Mohsen AM, Badawey AM, Shehata MA, El Khateeb SZ. Development and validation of smart spectrophotometricchemometric methods for the simultaneous determination of chlorpheniramine maleate and etilefrine hydrochloride in bulk powder and in dosage form combination. Int J Pharm Pharm Sci 2014;6:595-03.
- Bakry RS, El-Walily AFM, Belal SF. Spectrophotometric determination of some phenolic sympathomimetic drugs through reaction with 2, 6-dihaloquinone chlorimides. Mikrochim Acta 1997;127:89-93.
- Bakry RS, El-Walily AFM, Belal SF. Spectrophotometric determination of etilefrine, ritodrine, isoxsuprine and salbutamol by nitration and subsequent Meisenheimer complex formation. Anal Lett 1995;28:2503-19.
- Osso BQ, Rodriguez FC, Domingo JJM, Gonzalez MCC, Gomez JT. Flourecence quenching of etilefrine by acetate anion. Spectrochim Acta Part A 1999;55:279-88.
- 8. Negussie WB, Jacobus FS, Raluca IS. Sequential injection spectrophotometric determination of etilefrinehydrochloride. Farmaco 2004;59:1005-10.
- 9. El-Gendy AE. Flow injection analysis of some phenolic sympathomimetic drugs. Anal Lett 2000;33:2927-38.
- Aly FA, Al-Tamimi SA, Alwarthan AA. Determination of phenolic sympathomimetic drugs in pharmaceutical samples and biological fluids by flow-injection chemiluminescence. JAOAC Int 2000;83:1299-05.
- 11. Kojima K, Yamanaka M, Nakanishi Y, Arakawa S. Highperformance liquid-chromatographic determination of etilefrine in human plasma using combined solid-phase and organic-solvent extraction and electrochemical detection. J Chromatogr Biomed Appl 1990;525:210-7.
- 12. Sanghvi M, Ramamoorthy A, Strait J, Wainer IW, Moaddel R. Development and validation of a sensitive LC-MS/MS method for the determination of fenoterol in human plasma and urine samples. J Chromatogr B2013;933:37-43.
- 13. Siluk D, Kim HS, Cole T, Wainer IW. HPLC-electrospray mass spectrometric assay for the determination of (R, R)-fenoterol in rat plasma. J Pharm Biomed Anal 2008;48:960-4.
- 14. Jacobson GA, Peterson GM. High-performance liquid chromatographic assay for the simultaneous determination of ipratropium bromide, fenoterol, salbutamol and terbutaline in nebulizer solution. J Pharm Biomed Anal 1994;12:825-32.
- 15. Henze MK, Opfermann G, Spahn-Langguth H, Schänzer W. Screening of  $\beta$ -2 agonists and confirmation of fenoterol, orciprenaline, reproterol and terbutaline with gas chromatography-mass spectrometry as tetrahydroisoquinoline derivatives. J Chromatogr B 2001;751:93-05.
- 16. Belal F, AL-Malaq HA, AL-Majed AA. Voltammetric determination of isoxsuprine and fenoterol in dosage forms and biological fluids through nitrosation. J Pharm Biomed Anal 2000;23:1005-15.
- 17. Ullrich T, Wesenberg D, Bleuel C, Krauss G, Schmid MG, Weiss M, *et al.* Chiral separation of the  $\beta$ 2-sympathomimetic fenoterol by HPLC and capillary zone electrophoresis for pharmacokinetic studies. Biomed Chromatogr 2010;24:1125-9.
- El-Shabrawy Y, Belal F, Sharaf El-Din M, Shalan S. Spectrophotometric determination of fenoterol hydrobromide in pure form and dosage forms. Fármaco 2003;58:1033-8.

- Shalaby A, Salem H, Kheir AA. Spectro photometric derermination of some sympathomimetic drugs by coupling with diazotized o-nitroaniline or p-aminobenzoic acid. Sci Pharm 1997;65:143-54.
- 20. Eid M. Spectrofluorimetric determination of fenoterol in pharmaceuticals. J Chin Chem Soc 2007;54:613-7.
- 21. Singh SV, Kabra P, Kimbahune R, Ghale S, Karwa P, Nargund LVG. Spectrophotometric estimation of Ketotifen and Salbutamol by validated analytical method from tablet dosage form. J Chem Pharm Res 2013;5:123-7.
- 22. Sharma D, Singh G, Singh M, Kuma D, Rathore MS. Development and validation of spectrophotometric method for the simultaneous estimation of Salbutamol Sulphate and Cetirizine Hydrochloride in combined dosage form. Int Res J Pharm 2012;3:292-6.
- 23. Eswarudu MM, Sushma M, Sushmitha M, Yamini K. Validated spectrophotmetric method for the determination of Salbutamol sulphate in bulk and pharmaceutical dosage forms. Int Res J Pharm 2012;3:423-5.
- 24. Dhahir SA. New azo coupling reactions for visible spectrophotometric determination of salbutamol in bulk and pharmaceutical preparations. Dirasat: Pure Sci 2011;38:153-60.
- 25. Patel PA, Dole MN, Shedpure PS, Sawant SD. Spectrophotometric simultaneous estimation of salbutamol and ambroxol in bulk and formulation. Asian J Pharm Clin Res 2011;4:42-5.
- 26. Nagaraja P, Shrestha AK, Shivakumar A, Gowda AK. Use of N, Ndiethyl-p-phenylenediamine sulphate for the spectrophotometric determination of some phenolic and amine drugs. Acta Pharm 2010;60:217-27.
- 27. Venkata NT, Gopinath B, Vijay BV. Development and validation of UHPLC method for simultaneous estimation of salbutamol sulphate and beclomethasone dipropionate. Int J Pharm Biol Sci 2012;2:254-68.
- 28. Elvis AM, Deepali MG. Reverse phase isocratic HPLC method for simultaneous estimation of salbutamol sulphate and beclomethasone dipropionate in rotacaps formulation dosage forms. Int J Pharm Pharm Sci 2011;3:64-7.
- 29. El-Gindy A, Emara S, Shaaban H. Development and validation of chemometrics-assisted spectrophotometric and liquid chromatographic methods for the simultaneous determination of two multicomponent mixtures containing bronchodilator drugs. J Pharm Biomed Anal 2007;43:973-82.
- 30. Dave HN, Mashru RC, Patel AK. Thin layer chromatographic method for the determination of ternary mixture containing Salbutamol sulphate, Ambroxol hydrochloride and Theophylline. Int J Pharm Sci 2010;2:390-4.
- 31. Chen C, Li H, Fan Y. Determination of salbutamol sulfate in medicaments by capillary electrophoresis with contactless conductivity detection. Sepu 2011;29:137-40.
- 32. Attaran AM, Javanbakht M, Fathollahi F, Enhessari M. Determination of salbutamol in pharmaceutical and serum samples by adsorptive stripping voltammetry on a carbon paste electrode modified by iron titanate nanopowders. Electroanalysis 2012;24:2013-20.
- 33. Caglayan MG, Palabiyik IM, Onur F. Development and validation of spectrophotometric and high-performance column liquid chromatographic methods for the simultaneous determination of dienogest and estradiol valerate in pharmaceutical preparations. JAOAC Int 2010;93:862-8.
- 34. Yilmaz B. Determination of estradiol valerate in pharmaceutical preparation by zero-and first-order derivative spectrophotometric methods. Int J Pharm Sci Rev Res 2010;1:112-6.
- 35. Mendez ASL, Deconto L, Garcia CV. UV derivative spectrophotometric method for determination of estradiol valerate in tablets. Quim Nova 2010;33:981-3.
- 36. Dinc E, Yuecesoy C, Palabiyik IM, Uestuendag O, Onur F. Simultaneous spectrophotometric determination of cyproterone acetate and estradiol valerate in pharmaceutical preparations by ratio spectra derivative and chemometric methods. J Pharm Biomed Anal 2003;32:539-47.
- 37. Zhou Y, Zhou J, Xu Y, Zha J, Ma M, Wang Z. An alternative method for the determination of estrogens in surface water and

wastewater treatment plant effluent using pre-column trimethylsilyl derivatization and gas chromatography/mass spectrometry. Environ Monit Assess 2009;158:35-49.

- 38. Du B, Song S, Shi X, Zhang Z. Analysis of steroids by nonaqueous capillary electrophoresis. J Anal Chem 2009;64:59-64.
- 39. Zhao YG, Chen XH, Pan SD, Zhu H, Shen HY, Jin MC. Simultaneous analysis of eight phenolic environmental estrogens in blood using dispersive micro-solid-phase extraction combined with ultra fast liquid chromatographytandem mass spectrometry. Talanta 2013;115:787-97.
- Liu W, Xie L, Liu H, Xu S, Hu B, Cao W. Determination of estradiol valerate in pharmaceutical preparations and human serum by flow injection chemiluminescence. Luminescence 2013;28:407-11.
- Batista IV, Lanza MRV, Dias ILT, Tanaka SMCN, Tanaka AA, Sotomayor MDPT. Electrochemical sensor highly selective for estrafiolvalerate determination based on a modified carbon paste with iron tetrapyridinoporphyrazine. Analyst 2008;133:1692-9.

- 42. El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 2001;34:257-64.
- 43. Rahman MM, Khan SB, Asiri AM, Alamry KA, Al-Youbi AO. Detection of nebivolol drug based on as-grown un-doped silver oxide nanoparticles prepared by a wet-chemical method. Int J Electrochem Sci 2013;8:323-35.
- 44. Rahnama MR. Determination of fexofenadine using silver nanoparticles by spectrophotometric method. Int J Chem Tech Res 2013;5:2508-12.
- 45. Tashkhourian J, Nezhad MRH, Khodaveisi J. Application of silver nanoparticles and principal component-artificial neural network models for simultaneous determination of levodopa and benserazide hydrochloride by a kinetic spectro photometric method. Spectrochim Acta Part A 2011;82:25-30.
- 46. Bradley JS, Bradley JS, Weinheim VCH. In "Clusters and Colloids". G Schmid. Ed. 1994. p. 469.