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ABSTRACT 

In December 2019, Wuhan City, Hubei Province, China, first reported pneumonia like symptoms with unknown aetiology caused by a novel 
coronavirus. The novel coronavirus was renamed as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by Coronaviridae Study 
Group of the International Committee on Taxonomy of Viruses and the disease was termed as Coronavirus Disease 2019 (COVID-19). As of 19 
August, 2022, the infection has reached above 220 countries, areas or territories with a total of 591 683 619 confirmed cases and 6 443 306 deaths, 
as published by the World Health Organization (WHO). SARS-CoV-2 is strongly contagious as it has R0, 2.2-2.6, in comparison to SARS-CoV (<1) and 
Middle East respiratory syndrome coronavirus (MERS-CoV) (1.4-2.5), respectively. SARS-CoV-2 might become less virulent than the SARS-CoV and 
MERS-CoV, with the currently analyzed mortality of COVID-19 is 3.4%. The original SARS-CoV-2 has undergone “virus evolution” with the 
occurrence of numerous variants such as Alpha, Beta, Gamma and Delta etc. Recently, the circulating variant of concern is Omicron subvariants. 
Currently, real-time reverse transcription–polymerase chain reaction-based detection of the viral genome (RNA) is the gold standard for diagnosis 
of SARS-CoV-2 infection. At present, Remdesivir (RDV) and Baricitinib drugs as well as vaccines Pfizer-BioNTech and Moderna have been approved 
for the treatment of COVID-19 by Food and Drug Administration (FDA). In this review, we summarized the existing state of knowledge on approved 
antiviral therapy, combination therapy, blood-derived therapeutics and immunomodulators to treat COVID-19 pandemic. 
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INTRODUCTION 

The novel coronavirus, SARS-CoV-2 belonged to beta-coronavirus 
class, family Coronaviridae and order Nidovirales [1, 2]. SARS-CoV-2 
has been hypothesized to originate from bat CoV, RaTG13 (96% 
whole genome level). Pangolin-CoV was hypothesized to be the 
second closest relative of SARS-CoV-2 (91.02% whole genome level) 
[3, 4]. Poor proofreading capability of the viral RNA polymerase and 
homologous recombination between CoVs might be the probable 
reasons of fast mutational frequency that might contribute to 
“cross‐species” transmission [5, 6]. COVID 19 genome consisted of 

single-stranded RNA composed of about 30 kb nucleotides, 5’-
untranslated region (UTR), a replicase complex (orf1ab) encoding 
non-structural proteins (nsps), a spike protein (S) gene, envelope 
protein (E) gene, a membrane protein (M) gene, a nucleocapsid 
protein (N) gene, 3’-UTR, and several unidentified non-structural 
open reading frames [7, 8]. The global trend of COVID-19 confirmed 
cases and associated deaths from January 04, 2021 to August 22, 
2022 have been reported [9] as shown in fig. 1. The highest 
percentage of COVID-19 confirmed cases as per WHO region was 
reported in Europe while the least has been reported in Africa [10] 
given in fig. 2.

 

 

Fig. 1: Global trend of COVID-19 cases and associated deaths 

 

Whole genome sequencing of WH-Human 1 coronavirus (WHCV) 
was performed [11]. It was reported that enhancement of the 
nuclear localization signals in the nucleocapsid protein and well-
defined inserts in the spike glycoprotein that appeared to be linked 
with a high case fatality rate of CoVs as well as the zoonotic 
transmission to humans were the main genomic features that 
distinguished SARS-CoV-2 from less pathogenic coronaviruses [12]. 
Human angiotensin-converting enzyme 2 (hACE2) has been 
declared to be the functional receptor of SARS-CoV-2 [13]. 

COVID-19 incubation period was 14 d, with a median time of 4-5 d 
from exposure to onset of symptoms [14-16]. The symptoms of 
COVID-19 reported were: fever, cough, fatigue, shortness of breath 
or difficulty breathing, muscle or body aches, headache, loss of taste 
or smell, sore throat, congestion or runny nose, nausea or vomiting 
and diarrhoea [17, 18-22]. The clinical manifestations of COVID-19 
ranged from asymptomatic to severe pneumonia with severe acute 
respiratory distress syndrome (ARDS), septic shock, and ultimately 
multiple organ dysfunction syndrome (MODS) [23].
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Fig. 2: Situation by WHO region showing confirmed cases of COVID-19 till August 24, 2022 

 

The primary mode of infection was human-to-human transmission 
which occurred via respiratory secretions [24], which is why it is 
necessary to keep a distance of more than two meters from a sick 
person. Other modes included infected inanimate objects and it has 
been shown that the virus remains alive on surfaces for possibly up 
to 9 d [25, 26]. Recently, blood group A was correlated with an 
increased risk, whereas blood group O was associated with a 
decreased risk, thus indicating that the ABO blood type is a 
biomarker for differential susceptibility of COVID-19 [27]. In COVID-
19 Janus kinase (JAK)-signal transducer and activator of 
transcription (STAT) pathway is activated by Type I inteferons 
(IFNs), which lead to an antiviral gene expression program [28]. The 
immunopathology of the lung might be the consequence of the 
“cytokine storms” which lead to pneumonitis, ARDS, respiratory 
failure, shock, multiple organ failure and potentially death. Systemic 
and controlled COVID-19 drug development processes are essential 
approaches to combat the current COVID-19 pandemic. 

Source of information 

For obtaining recent quantitative, factual data about SARS-CoV-2 
effects on the worldwide population (cases and deaths), diverse 
organizations’ such as WHO, FDA etc. were explored in depth. In 
addition, various electronic bibliographic databases were 
thoroughly searched. For formatting and presentation of 
information, relevant review articles were referred. Key text words, 
such as “virus evolution”, “therapeutic” published till 2022 were 
utilized in MEDLINE. Furthermore, contemporary research articles 
of published studies with appropriate information on the SARS-CoV-
2 pathogenesis and drug therapies targeted against SARS-CoV-2 
were consulted. For filling in with the fresh knowledge, relevant 
books, conference proceedings and public health organization 
survey reports were collated based on the wider objective of the 
review. This was achieved by looking for databases, including Web 
of Science, SCOPUS, EMBASE, Pubmed, Publon, PMC, Swiss rot, 
Google searches. From this specified methodology, findings were 
identified and summarized in this review. Furthermore, additional 
relevant references were incorporated through searching the 
references cited by the studies performed on the present topic.  

Potential therapeutics under evaluation for the treatment of 
COVID-19 infection 

RDV 

RDV is a broad-spectrum antiviral monophosphoramidate prodrug 
of adenosine analogue with potent in vitro antiviral activity against a 
heterogenous panel of RNA viruses [29-32]. Different studies were 
undertaken out using RDV treatment in COVID-19 patients which 
resulted in clinical improvement [33-37]. RDV is the primary 
therapeutic antiviral treatment with proven potent efficacy against 
COVID-19 in an animal study which reported significant clinical 
benefit, a reduction in pulmonary infiltrates, and a reduction in 
pulmonary pathology. It further suggested that RDV treatment in 
COVID-19 patients should be initiated as early during infection to 
prevent advancement to severe pneumonia and to achieve the 
maximum clinical benefit because another study reported that the 
efficacy of direct-acting antivirals (DAAs) against acute viral 

infections typically decreased with delay in initiation of treatment. 
Adaptive COVID-19 Treatment Trial (ACTT), sponsored by 
the National Institute of Allergy and Infectious Diseases (NIAID), 
part of the National Institutes of Health (NIH) in COVID-19 
hospitalized adults reported that patients who received IV RDV had 
a shorter time to recovery than those who received placebo and 
survival benefit, with a 14 d mortality rate of 7.1 % for the RDV 
treated group versus 11.9 % for the placebo group; although, the 
difference in mortality was not statistically significant. RDV 
treatment along with concomitant use of lopinavir-ritonavir, IFNs, 
and corticosteroids in adult COVID-19 patients and reported that 
RDV was not associated with a difference in time to clinical 
improvement, 28 d mortality, or rate of viral clearance between the 
RDV and the placebo-treated patients [38]. 

Chloroquine (CQ) 

CQ is a 9-aminoquinoline that was synthesized in 1934 as a potent 
substitute for natural quinine used against malaria and was widely 
used to treat various human diseases [39-42]. Antiviral efficacy of CQ 
against COVID-19 might be evident from its past antiviral inhibitor 
roles against SARS-CoV, HCoV-OC43, influenza A H5N1, HCoV-229E, 
and EBOV in various cell line [43-48]. CQ was probably the first 
antiviral drug utilized in China and abroad as the front-line treatment 
against COVID-19 infections [49]. The first human trial conducted with 
chloroquine against COVID-19 reported that CQ reduced symptom 
duration, increased pneumonia, promoted the radiological 
improvement and virus-negative seroconversion without any severe 
adverse effects [50]. Various studies demonstrated no antiviral 
benefits associated with CQ in COVID-19 [51, 52].  

Hydroxychloroquine (HCQ) 

HCQ, an analogue of CQ, was used for the treatment of autoimmune 
diseases, such as systemic lupus erythematous (SLE) and 
rheumatoid arthritis [53]. HCQ differed from CQ by the presence of a 
hydroxyl group at the end of the side chain: the N-ethyl substituent 
is β-hydroxylated-1 [54] which conferred it with lesser risk of 
retinal toxicity as compared to CQ [55]. HCQ offered an immense 
advantage of being employed in high doses for long periods with 
very good tolerance and had a lower potential for drug-drug 
interactions than CQ [56]. A study suggested that incubation time 
might influence the antiviral activity of the drug because it is 
possible that a longer incubation time might provide more time for 
the drug to accumulate in higher intracellular concentrations and 
ultimately exhibit a potent antiviral effect [57]. Another study 
reported that clinical outcomes with HCQ in COVID-19 patients were 
overall survival, survival without ARDS, weaning from oxygen, and 
discharge from the hospital [58]. Diverse studies reported no clinical 
benefit associated with HCQ treatment against SARS-CoV-2 [59-61].  

Combination therapy 

Hydroxychloroquine plus azithromycin (HCQ+AZM) 

Azithromycin (AZM) is utilized to treat a variety of bacterial and 
viral infections [62-64]. Combination treatment of AZM with HCQ 
has been involved in mixed clinical outcomes in COVID-19 [65-67]. 
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Few studies have reported no clinical benefits with combination 
treatment of AZM with HCQ in COVID-19 [68-70].  

Lopinavir/Ritonavir (LPV/RTV) 

LPV, a highly potent, selective [71] and peptidomimetic [72] inhibitor 
of HIV type 1 aspartate protease inhibitor, usually combined with RTV 
to elevate its plasma half-life through the suspension of CYP450 has 
been reported to exhibit in vitro anti-MERS-CoV and anti SARS-CoV 
activity [73-75]. Combination therapy of LPV/RTV with IFN-β against 
MERS-CoV reported clinical benefits [76]. Various studies suggested 
that the administration of LPV/RTV regimen during early COVID-19 
infection was effective in alleviating the viral load and improving 
clinical benefits in patients with mild to moderate disease [77, 78]. 
Numerous studies reported no clinical benefit associated with 
LPV/RTV treatment against SARS-CoV-2 infection [79-81].  

Darunavir/Cobicistat (DRV/c) 

Prophylactic DRV/c approved for the treatment of HIV-1 is a protease 
inhibitor. DRV acted as an inhibitor of the dimerization and of the 
catalytic activity of the HIV-1 protease, whereas c inhibited CYP450 
that increased DRV plasma concentrations [82] Of note, DRV should 
not be administered without a boosting agent (RTV or c) as previous 
studies reported that DRV alone resulted in subtherapeutic drug levels 
and was linked with a higher rate of adverse events [83]. Clinical data 
on the use of treatment of (DRV/c) on COVID-19 is limited. 

Blood derived therapeutics 

Convalescent plasma (CP) 

CP therapy, immunotherapy to achieve immediate short-term 
immunization against infectious agents where the humoral antibody 
(Ab) retrieved from the recovered patient was administered to a 
susceptible patient used to neutralise the pathogen and eventually 
lead to its elimination from the blood circulation [84-86]. Treatment 
with CP dates back to the end of the 19th century, in treatment of 
diphtheria and tetanus patients [87] and over the past decades, CP 
transfusion has proved its specificity and effectiveness as a potential 
treatment in patients with MERS-CoV [88], H1N15 [89], SARS-CoV [90-
92] and cancer therapy which could help ameliorate survival rates in 
patients whose condition deteriorated even with conventional 
treatment. Previous studies of SARS and severe influenza 
recommended transfusion of CP as early as possible because the 
production of endogenous IgM and IgG antibodies summitted at 2 w 
and 4 w after infection, respectively [93]. To employ convalescent 
serum administration for COVID-19 the following six conditions must 
be met: (i) availability of donors (ii) blood banking facilities (iii) 
availability of assays to detect virus in serum and to estimate viral 
neutralization; (iv) virology lab facilities (v) randomized clinical trials 
(vi) regulatory compliance, comprising institutional review board 
approval, which might vary depending on location [94].  

Different studies reported positive clinical outcomes using CP 
treatment in COVID-19 patients with few or no adverse events [95-
99]. Neutralizing antibodies responses to SARS-CoV-2 in COVID-19 
patients and convalescent patients was analyzed and reported that 
COVID-19 patients were seropositivity to SARS-CoV-2 during early 
stages, an evident neutralizing antibody response was observed in 
convalescent patients, and reduced antibody levels in asymptomatic 
or mild patients than moderate or severe patients which were 
consistent with results from previous studies. Another recent 
Chinese descriptive study in Wuhan, conducted in 6 laboratories, 
confirmed COVID-19 patients who received the transfusion of ABO-
compatible CP and the results showed alleviation of symptoms, 
ameliorating radiologic abnormalities and laboratory tests and no 
obvious adverse effects were observed. Of note, this study 
speculated that anti-SARS-CoV-2 IgM and IgG directly neutralized 
the virus, and the anti-inflammatory contents might prevent 
cytokine stores recent study reported no significant clinical benefit 
associated with CP Therapy in severe COVID-19 patients [100]. 

Non-SARS-CoV-2-specific intravenous immune globulin 

Liquid preparations of human immunoglobulin (pH 4) contained IgG 
antibody against a broad spectrum of antiviral, bacterial or other 

pathogens which could rapidly elevate the IgG level in the blood, 
directly neutralized exogenous antigens, and regulated various 
immune functions [101]. IVIG has been extensively utilized in the 
treatment of serious bacterial and viral infections and sepsis with 
positive and negative clinical outcomes [102-105]. A study of IVIG 
treatment in COVID-19 patients reported decreased 28 d mortality, 
minimized inflammatory response, ameliorated organ functions (all 
p<0.05) and 60 d mortality decreased significantly by using IVIG at 
an early stage (admission≤7 d) and with high dose (>15 g/d). 
Another study reported IVIG was associated with significantly 
reduced hypoxia, duration of hospital stays and need of mechanical 
ventilation requirement in COVID-19 patients [106].  

Mesenchymal stem cell (MSC) therapy 

MSCs are multipotent adult stem cells with self-renewable property 
i.e.; they are divided and differentiated into multiple types of tissues. 
MSC therapy was superior to other treatments because of: (i) easily 
accessed and isolated from different tissues (ii) it simply expanded 
to clinical volume in a suitable period of time (iii) could be stored for 
repetitive clinical usage; (iv) clinical trials of MSCs till date hasn’t 
shown adverse effects to allogeneic MSC; (v) safety and effectiveness 
of MSCs in several clinical trials [107]. Leng and colleagues 
demonstrated the safety and efficacy of IV MSC transplantation in 
COVID-19 patients and reported improving pulmonary status, 
reduced C-reactive protein (CRP) levels, and lowered inflammatory 
cytokines whilst IL-10 escalated and hyperactivity cytokine 
secreting immune cells dissipated after a few days [108]. Treatment 
with human umbilical cord mesenchymal stem cells (hUCMSC) in a 
critically ill COVID-19 patient resulted in the return of all measured 
parameters to normal levels and suggested that hUCMSC could be an 
ideal therapeutic option alone or in parallel with other immune 
modulators for acute COVID-19 patients [109]. 

Immunomodulators 

Corticosteroids 

Corticosteroids are systemic anti-inflammatory and classical 
immunosuppressive drugs which terminated or delayed the 
progression of pneumonia and have been shown to be effective 
against the treatment of ARDS [110-112]. Corticosteroids were 
widely used during past CoV outbreaks [113-115], in addition to 
other therapeutics, which reported no significant effect on clinical 
outcomes but increased mortality and requirement of mechanical 
ventilation. It was reported that it was difficult to make a clear 
recommendation to corticosteroid treatment of SARS patients, 
particularly because the drug is immunosuppressive and might 
delay viral clearance if administered before viral replication is 
controlled. The RECOVERY (Randomised Evaluation of COVid-19 
therapy) trial reported that low-cost dexamethasone at a dosage of 6 
mg once daily for up to 10 d alleviated 28 d mortality in COVID-19 
hospitalized patients with severe respiratory complications [116]. 
Different studies reported that early, low-dose and short-term 
application of intravenous methylprednisolone in severe COVID-19 
patients was associated with a rapid improvement of clinical 
symptoms and absorption of lung focus with little or no serious 
complications [117-119]. A retrospective observational study of 
corticosteroids on outcomes of COVID-19 patients revealed that 
treatment within 72 h after the first signs could reasonably reduce 
the risk of disease exacerbation in non-severe patients which were 
consistent for other virus-induced diseases [120]. Several studies 
reported no effective clinical outcomes associated with 
corticosteroid treatment in COVID-19 patients but an increased risk 
of mortality and secondary infections [121-123].  

IFNs 

IFNs are cellular surfaces’ receptor binding proteins which initiated 
JAK-STAT signalling cascades, with transcriptional regulation of 
genes and effective against certain viruses like hepatitis B virus and 
HCV [124]. Several MERS-CoV studies were carried out using 
different combinations of IFNα and IFNβ with ribavirin some of 
which reported an association or no association with reduction in 
mortality [125-127]. Varied types of IFNs belonging to the three 
classes (α, β and γ) reported effective anti-SARS-CoV activities [128, 
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129]. A study was conducted in severe COVID-19 patients with 
subcutaneous administration of IFNβ-1a which reported escalating 
discharge rate on day 14 and alleviated 28 d mortality with 
improved survival during the early course of administration [130]. 
Treatment with nebulized IFN-α2b in adults hospitalized confirmed 
COVID-19 patients reported shortened duration of viral shedding 
and synchronously decreased the markers of acute inflammation 
such as CRP and IL-6 [131]. Triple combination treatment with INF 
β-1b, LPV/RTV, and ribavirin in COVID-19 patients reported that 
therapy was safe and superior to LPV/RTV alone in decreasing 
symptoms and reducing the duration of viral shedding and hospital 
stay [132]. An experimental open-label study suggested that 
recombinant human interferon alpha (rhIFN-α) nasal drops to be a 
promising agent for protecting COVID-19 susceptible healthy people 
[133]. Combination treatment of IFN-α2b and IFN-γ with the 
standard of care in confirmed COVID-19 patients was associated 
with rapid viral elimination, reduced CRP levels and improved 
clinical parameters [134]. 

Interlukin-1 (IL-1)-Anakinra 

Anakinra, a 17-kD recombinant, non-glycosylated antagonist (IL-
1Ra) that only differed from the known IL-1Ra due to the presence 
of an extra methionine residue at the N-terminal end [135, 136]. 
Continuous intravenous anakinra infusion in severely ill adult 
patients with macrophage activation syndrome (MAS) resulted in 
rapid serologic and subsequent clinical improvement [137]. Various 
studies reported positive clinical outcomes associated with anakinra 
treatment in COVID-19 patients with the occurrence of few adverse 
events [138-140]. 

IL-6 Inhibitors (Tocilizumab, Sarilumab, Siltuximab) 

Tocilizumab (TCZ) 

TCZ is a recombinant humanized anti-interleukin-6 receptor (IL-6R). 
TCZ treatment in moderate to severe COVID-19 patients was found 
to be effective and resulted in improved survival and reduced the 
risk of mortality [141-143].  

Siltuximab 

Siltuximab is a human-mouse chimeric IL-6R monoclonal antibody 
[144]. IV siltuximab treatment in COVID-19 patients with 
pneumonia requiring ventilatory support showed reduced serum 
CRP levels, and improved clinical condition with increased 
deterioration in few patients [145]. However, clinical data on the use 
of siltuximab in COVID-19 treatment is limited. 

Sarilumab 

Sarilumab is the recombinant human monoclonal antibody IL-6 
receptor antagonist approved in various countries to treat RA in 
adults. Phase 2/3 adaptive-designed trial of Sarilumab in severe or 
critical COVID-19 patients reported rapidly reduced CRP levels as 
the primary endpoint and “negative trends” for most outcomes in 

severe patients [146]. Clinical data on the use of Sarilumab in 
COVID-19 treatment is limited. 

Bruton’s tyrosine kinase inhibitors (BTK) inhibitors 

Acalabrutinib 

Acalabrutinib, a highly specific covalent BTK inhibitor authorized in 
the U. S for the treatment of lymphoid malignancies [147]. 
Roschewski and colleagues conducted an off-label study using 
acalabrutinib in severe COVID-19 patients and reported improving 
oxygenation and reduced levels of inflammatory markers (CRP and 
IL-6) with no discerning toxicity [148]. However, clinical data on the 
use of acalabrutinib in COVID-19 infection is limited. 

Ibrutinib 

Ibrutinib is a highly potent and covalent BTK inhibitor. A study 
conducted by American Society of Hematology (ASH) suggested that 
ibrutinib might provide protection against pulmonary injury in 
COVID-19 patients [149]. However, clinical data on the use of 
ibrutinib in COVID-19 infection is limited. 

JAK inhibitors  

Baricitinib  

Baricitinib is an oral, reversible, selective and potent JAK inhibitor 
approved by the FDA to treat rheumatoid arthritis and could 
improve the chronic inflammation seen in interferonopathies [150-
153]. It was reported that therapeutic dosage of baricitinib with 
either 2 mg or 4 mg once daily was adequate to reach the plasma 
level of inhibition. In addition, he suggested that this drug could be a 
potential treatment for COVID-19 acute respiratory disease [154]. 
Baricitinib therapy in COVID-19 patients reported significantly 
improved clinical characteristics and none of the patients required 
ICU support, and the majority of the patients were discharged [155].  

Ruxolitinib 

Ruxolitinib is (JAK)1/2 inhibitor that has shown JAK-STAT inhibition 
in COVID-19. Ruxolitinib treatment in COVID-19 patients reported 
escalating clinical improvement, improved chest CT images and 
rapid recovery from lymphopenia and demonstrated the efficacy 
and safety [156]. Another study of ruxolitinib treatment in COVID-19 
patients with severe systemic hyperinflammation reported 
sustaining clinical improvement [157].  

Comprehensive, detailed information about COVID-19 treatment 
options is given in table 1. Recently, RDV has been approved by FDA in 
hospitalized adults and pediatric patients (aged ≥12 y and weighing 
≥40 kg [158]. BTK and JAK inhibitors demonstrated potential anti-
SARS-CoV-2 activity but data is limited. Some of them are showing 
encouraging results with less or no side effects but still need to 
investigate in details and in spite of therapeutic interventions. Other 
strategies like blood-derived products, immuno-modulators etc. are 
also in different stages of clinical trials [159-163].

 

Table 1: List of therapeutic interventions for COVID-19 treatment 

S. No. Drug Route of 
administration 

Mechanism of action in COVID-19 Adverse effects Reference 

Antiviral therapy 
1. RDV IVa • RNAbpolymerase inhibitor with in vitro 

and in vivo anti SARS-CoVc-2 activity at 
low µm concentration (EC50d = 0.77 μM; 
CC50>100 μM; SI>129.87). 

• Pyrexia 
• GIe symptoms 
• Multiple organ-dysfunction 

syndrome 
• Acute kidney injury 
• Hypotension  
• Mortality 

 [35, 37, 38] 

2 CQ Oral • Increases endosomal pH levels and 
suspends virus endosome fusion. 

• In vitro (EC50=5.47 μM) and in vivo 
inhibitory activity against SARS-CoV-2 at 
low µm concentration (EC50 = 1.13 μM). 

• Cough 
• Shortness of breath 
• GI symptoms 
• Death 

 [35, 52, 57, 
164] 

3. HCQ Oral • Similar to the mechanism of action of CQf. 
• Potent anti-SARS-CoV-2 activity in vitro 

• GI symptoms 
• Cardiac arrhythmia  

 [57, 58, 60, 
165] 
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S. No. Drug Route of 
administration 

Mechanism of action in COVID-19 Adverse effects Reference 

(EC50=0.72 μM). • Chronic kidney failure 
• Diabetes 
• Death 

Combination therapy 
4. HCQ+AZM Oral • Induction of IFNg-stimulated genes, 

attenuating viral replication. 
• Immunomodulatory effects 
• Anti-Inflammatory effects  

• GI symptoms 
• Cardiac arrest 
• Diabetes mellitus 
• Chronic kidney disease 
• Death 

 [66, 166, 
167, 168] 

5 HIV Protease 
Inhibitors 
(LPV/RTV and 
DRV/c) 

Oral • Possible inhibitory activity on SARS-CoV-
2 proteases (3CLproh and (PLproi) 
required for replication. 

• In vitro SARS-CoV-2 effect of Lopinavir 
(EC50 at 26.1 μM) in Vero E6 cells. 

• Pyrexia 
• Cough 
• GI symptoms 
• Respiratory failure/ARDSj 
• Biochemical hepatitis 
• Mortality 

 [79, 81, 
132, 169, 
170] 
 

Blood derived therapeutics 
6. CP IV • Passive Antibody therapy. 

 
• TACOk 
• TRALIl 
• Shortness of breath 
• Respiratory failure 
• Cardiac events 
• Death 

 [95, 171] 

7. Non-SARSCoV-2 
Specific IVIGm 

IV • Direct neutralization of exogenous 
antigens and regulation of multiple 
immune functions by human 
immunoglobulin (pH4) containing IgG 
antibody. 

• Bacterial super infections 
• Thrombocytopenia 
• Lymphocytopenia 
• Mortality 

 [101-103, 
106] 

8. MSCs IV • Robust immunomodulatory and anti-
inflammatory activity. 

• Promotion of endogenous repair and 
improvement of the pulmonary 
microenvironment and function. 

• No adverse effect observed 
in COVID-19n. 

 [108] 

Immunomodulators 
Corticosteroids 
9. Dexamethasone Oral 

IV 
• Potent anti-inflammatory and 

immunosuppressive effects. 
• Detrimental effect on angiotensin II 

which played a key role in the 
pathophysiology of SARS-CoV-2. 

• Cardiac arrhythmia  
• Renal replacement 
• Hyperglycaemia  
• Barotrauma  
• Mortality 

 [21, 123, 
172-177] 

10. Methylprednisolone IV • Hyperglycaemia  
• ARDS  
• Mortality 

11. Adjuvant 
corticosteroid 
therapy 
(Hydrocortisone) 

IV • Secondary infections  
• Multiple organ dysfunction  
• Mortality  

IFNs (alpha, beta and gamma) 
12 IFN-alpha Inhalation 

Intramuscular 
(IFN-α2b) 

• The EC50 of IFN-α in SARS-CoV-2 
treatment in Vero cells is 1.35 IU/ml. 

• Reduction of the infection rate of SARS-
CoV-2 by IFNα2b spray. 

• Down regulation of the inflammatory 
biomarker IL-6 °by IFN-α2b. 

• Pyrexia 
• Dry Cough 
• GI symptoms 
• Worsening of the 

respiratory system 
 

 [131] 
 [178] 
[179] 
 

13. IFN-β Subcutaneous 
injection (IFN-
β1b) 
IV injection (IFN-
β1a) 

• The EC50 of IFN-β in SAR-CoV-2 
treatment in Vero cells is 0.76 IU/ml.  

• Upregulation of CD73p, prevention of 
vascular leakage and inhibition of 
leukocyte recruitment by IFN-β-1a. 

• Pyrexia 
• GI symptoms  
• Injection site reactions  
• Renal impairment 
• Hepatic impairment 
• Mortality 

 [130] 
 [178] 
 [180] 
 [181] 
 [182] 

14. IFN‐γ Subcutaneous • Immunomodulatory effects 
• Anti-inflammatory effects 
• Restricts ACE2qexpression. 

• GI symptoms 
• Worsening of respiratory 

symptoms 
• Headache 

 [134] 
 [183] 

IL-1 
15. Anakinra IV 

Subcutaneous 
• Blocks the binding of IL-1αr and IL-1βs to 

IL-1Rt by mirroring the mode of action of 
its endogenous counterpart. 

• Neutralization of SARS-CoV-2 
hyperinflammatory state. 

• Septic shock 
• Bacteremia 
• Acute respiratory failure 
• Multiorgan failure 

 

 [136] 
 [137] 
 [184] 
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S. No. Drug Route of 
administration 

Mechanism of action in COVID-19 Adverse effects Reference 

IL-6 
16. TCZ IV 

Subcutaneous 
• Humanized anti IL-6Ru antibody which 

competitively inhibits both the soluble 
and membrane-bound forms of the IL-6R. 

• Suppression of cytokine storm in 
critically ill COVID-19 patients. 

• Infections  
• Liver failure 
• Injection site reactions. 
• Renal replacement 
• Death  

 [141] 
 [142] 
 [143] 
 [185] 

17. Sarilumab 
 

Intravenous • IL-6R receptor antibody which inhibits 
IL-6-mediated signalling.  

• Reduction of the hyperactive 
inflammatory immune response 
associated with COVID-19. 

• Hypotension 
• Multiple organ dysfunction 
• Mortality 

 [146] 
 [186] 

18. Siltuximab Intravenous • Chimeric antibody against IL-6R that 
binds to and blocks the effect of IL-6. 

• Death 
• Cerebrovascular event 

 [145] 

Kinase inhibitors: BTK inhibitors and JAK inhibitors 
19. Acalabrutinib Oral • Macrophage signaling and activation in 

COVID-19. 
• Inhibition of the BTKv induced 

pathological hyperinflammatory 
response in severe COVID-19. 

• Pyrexia 
• Headache 
• Cardiac arrhythmias 
• Opportunistic infections 
• Upper respiratory tract 

infections  

[148] 

20 Ibrutinib Oral • Protects against pulmonary injury in 
COVID-19. 

 

• Serious bleeding 
• Proarrhythmic 
• Effect. 
• Dyspnea 
• Hypoxia 

[149] 

 
21 
 

Baricitinib 
 

Oral 
 

• JAK-STATwsignalling inhibitor. 
• Interferes with receptor-mediated 

endocytosis and clathrin-mediated 
endocytosis. 

• Upper respiratory tract 
infections. 

 

[18, 151, 
187] 
 

22 Ruxolitinib Oral • Targeted inhibition of cytokine signaling 
in COVID-19. 

• Reduction of systemic inflammation in 
COVID-19. 

• GI symptoms 
• Hematological events  
• Headache 
• Liver dysfunction 

[156] 
[157] 

aIntravenous; bRibonucleic acid; cSevere acute respiratory syndrome; dHalf-maximal effective concentration; eGastrointestinal; fChloroquine; 
gInterferon; h3-chymotrypsin-like protease; iPapain-like protease; jAcute respiratory distress syndrome; lTransfusion-related acute lung injury; 
mIntravenous immunoglobulin; nCoronavirus disease 2019; °Interlukin-6; pCluster of differentiation 73; qAngiotensin-converting enzyme 2; 
rInterleukin-1 alpha; sInterlukin-1 beta; tInterleukin-1 receptor; uInterlukin-6 receptor; vBruton’s tyrosine kinase inhibitor; wJanus kinase inhibitor-
signal transducer and activator of transcription protein. 

CONCLUSION 

RDV has shown to be the most promising agent having potential anti-
SARS-CoV-2 activity. Blood-derived therapeutics such as CP and IVIG 
demonstrated mixed clinical outcomes against SARS-CoV-2 with 
possible side effects. MSCs emerged as a safe and effective treatment of 
COVID-19 because of its increased proliferation rate, lowered invasive 
procedure, free from ethical issue and potential clinical benefits with 
no mortality in COVID-19 disease. Gene expression profiling study of 
transplanted MSCs showed that MSCs are ACE2-or TMPRSS2-indicating 
that MSCs are free from SARS-CoV-2 infection. Potent candidates 
repurposed could save time and cost, especially when vaccine is not 
available commercially. There is a requirement to study future COVID-
19 variants, including their geographical spread, genetic changes and 
phenotypic characteristics to design effective vaccines against them. 
There is a need to increase the availability of diagnostic tests, medical 
devices, personal protective equipment kit and therapeutics for an 
effective COVID-19 response. Social distancing and caution are the 
magical formulas nowadays.  
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