SIMULTANEOUS DETERMINATION OF SULFAMETHOXAZOLE AND TRIMETHOPRIM IN PHARMACEUTICAL FORMULATIONS BY SQUARE WAVE VOLTAMMETRY

  • Giselle Nathaly Calaça Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa - PR, Brazil
  • Christiana Andrade Pessoa Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa - PR, Brazil
  • Karen Wohnrath Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa - PR, Brazil
  • Noemi Nagata Departamento de Química, Universidade Federal do Paraná, CP 19081, CEP 81531-990, Curitiba – PR, Brazil.

Abstract

Objective: To develop a simple, fast and low-cost square wave voltammetric (SWV) method for simultaneous determination of sulfamethoxazole (SMX) and trimethoprim (TMP) using a glassy carbon electrode (GCE).

Methods: The SWV parameters were optimized by 2

Results: Two well defined oxidation peaks were obtained at 0.96V (SMX) and 1.12V (TMP) in Britton–Robinson buffer (pH 6.0). Under optimized conditions, SWV measurements showed excellent linear response, ranging from 5.5x10-5 to 3.95x10-4 mol L-1 (R=0.9971) and 1.05x10-5 to 1.04x10-4 mol L-1 (R=0.9974) for SMX and TMP, respectively. The detection limits were found to be 8.52x10-6 mol L-1 for SMX and 9.31x10-7 mol L-1 for TMP.

Conclusion: The proposed method was successfully applied to the determination of these antibiotics in commercial pharmaceutical formulations (tablets, oral suspension and injection), without any sample pretreatment. The obtained results are in good agreement with that obtained by the standard HPLC method at a 95% confidence level.

 

Keywords: Sulfamethoxazole, Trimethoprim, Glassy carbon electrode, Square wave voltammetry, Pharmaceutical formulations.

Downloads

Download data is not yet available.

Author Biographies

Christiana Andrade Pessoa, Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa - PR, Brazil

Department of Chemistry

 

Karen Wohnrath, Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa - PR, Brazil
Department of Chemistry
Noemi Nagata, Departamento de Química, Universidade Federal do Paraná, CP 19081, CEP 81531-990, Curitiba – PR, Brazil.

Department of Chemistry

P.O.Box: 19081

Postal code:81531-990 – Curitiba/PR - Brazil

References

1. Yu W, Liu Z, Gao S, Cui S, Yang X, Qiu W, et al. Determination of sulfonamides in blood using acetonitrile–salt aqueous two-phase extraction coupled with high-performance liquid chromatography and liquid chromatography–tandem mass spectrometry. Anal Methods 2013;5:5983-9. http: //pubs.rsc.org/en/content/articlelanding/2013/AY/c3ay40902c#!divAbstract
2. Nebot C, Regal P, Miranda JM, Fente C, Cepeda A. Rapid method for quantification of nine sulfonamides in bovine milk using HPLC/MS/MS and without using SPE. Food Chem 2013;41:2294-99. http: //www.sciencedirect.com/ science/ article/pii/S0308814613005591.
3. Kotoucek M, Skopalová J, Michalková D. Electroanalytical study of salazosulfapyridine and biseptol components at the mercury electrode. Anal Chim Acta 1997;353:61-9. http: //www. sciencedirect.com/science/article/pii/S0003267097003814.
4. Mistri HN, Jangid AG, Pudage A, Shah A, Shrivastav PS. Simultaneous determination of sulfamethoxazole and trimethoprim in microgram quantities from low plasma volume by liquid chromatography–tandem mass spectrometry. Microchem J 2010;94:130-8. http: //www.sciencedirect.com/ science/article/pii/S0026265X0900143X.
5. Amorim KP, Romualdo LL, Andrade LS. Electrochemical degradation of sulfamethoxazole and trimethoprim at boron-doped diamond electrode: Performance, kinetics and reaction pathway. Sep Purif Technol 2013;120:319-27. http: //www. sciencedirect.com/science/article/pii/S1383586613005947.
6. Rajith L, Kumar KG. Electroanalysis of trimethoprim on metalloporphyrin incorporated glassy carbon electrode. Drug Test Anal 2010;2:436-41. http: //onlinelibrary. wiley.com/ doi/10.1002/dta.161/abstract.
7. Souza CD, Braga OC, Vieira IC, Spinelli A. Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode. Sensors Actuators B 2008;135:66-73. http: //www. sciencedirect.com/science/article/pii/S0925400508005236.
8. Sayar E, Sahin S, Cevheroglu S, Hıncal AA. Development and validation of an HPLC method for simultaneous determination of trimethoprim and sulfamethoxazole in human plasma. Eur J Drug Metab Pharmacokinet 2010;35:41-6. http: //link.springer.com/article/10.1007%2Fs13318-010-0006-9.
9. United States Pharmacopeia 30 National Formulary 25, United States Pharmacopeial Convention, Inc. Rockville: MD; 2007. p. 3247-9.
10. Amini H, Ahmadiani A. Rapid and simultaneous determination of sulfamethoxazole and trimethoprim in human plasma by high-performance liquid chromatography. J Pharm Biomed Anal 2007;43:1146-50. http: //www.sciencedirect.com/ science/article/pii/S0731708506006169.
11. Shewiyo DH, Kaale E, Risha PG, Dejaegher B, Smeyers–Verbeke J, Vander Heyden Y. Development and validation of a normal-phase high-performance thin layer chromatographic method for the analysis of sulfamethoxazole and trimethoprim in co-trimoxazole tablets. J Chromatogr A 2009;1216:7102-7. http: //www.sciencedirect.com/science/article/pii/S0021967309013004.
12. Kulikov AU, Verushkin AG, Loginova LP. Comparison of Micellar and Reversed-Phase Liquid Chromatography for Determination of Sulfamethoxazole and Trimethoprim. Chromatographia 2005;61:455-63. http: //link.springer.com/article/10.1365%2Fs10337-005-0536-5.
13. Cordeiro GA, Peralta-Zamora PG, Nagata N, Pontarollo R. Determination of sulfamethoxazole and trimethoprim mixtures by multivariate electronic spectroscopy. Quim Nova 2008;31:254-60. http: //www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422008000200012.
14. López-Martínez L, López-de-Alba PL, León-Rodríguez LM, Yepez-Murrieta ML. Simultaneous determination of binary mixtures of trimethoprim and sulfamethoxazole or sulphamethoxypyridazine by the bivariate calibration spectrophotometric method. J Pharm Biomed Anal 2002;30:77-85. http: //www.sciencedirect.com/ science/article/ pii/ S0731708502001334.
15. Givianrad MH, Saber-Tehrani M, Aberoomand-Azar P, Mohagheghian M. H-point standard additions method for simultaneous determination of sulfamethoxazole and trimethoprim in pharmaceutical formulations and biological fluids with simultaneous addition of two analytes. Spectrochim Acta Part A 2011;78:1196-200. http: //www.sciencedirect.com/ science/ article/ pii/ S1386142510007079.
16. Medina JR, Miranda M, Hurtado M, Domínguez-Ramírez AM, Ruiz-Segura JC. Simultaneous determination of trimethoprim and sulfamethoxazole in immediate-release oral dosage forms by first order derivative spectroscopy: application to dissolution studies. Int J Pharm Pharm Sci 2003;5:505-10. http: //www.ijppsjournal.com/Vol5Suppl4/8016.pdf.
17. Silva IS, Vidal DTR, Lago CL, Angnes L. Fast simultaneous determination of trimethoprim and sulfamethoxazole by capillary zone electrophoresis with capacitively coupled contactless conductivity detection. J Sep Sci 2013;36:1405-9. http: //onlinelibrary.wiley.com/doi/10.1002/jssc.201201013/abstract.
18. Fan L, Liu L, Chen H, Chen X, Hu Z. Continuous on-line concentration based on dynamic pH junction for trimethoprim and sulfamethoxazole by microfluidic capillary electrophoresis combined with flow injection analysis system. J Chromatogr A 2005;1062:133-7. http: //www.sciencedirect.com/science/ article/pii/S002196730402062X.
19. Teshima D, Otsubo K, Makino K, Itoh Y, Oishi R. Simultaneous determination of sulfamethoxazole and trimethoprim in human plasma by capillary zone electrophoresis. Biomed Chromatogr 2004;18:51-4. http: //onlinelibrary.wiley.com/enhanced/doi/ 10.1002/bmc.291?isReportingDone=true#Survey.
20. Andrade LS, Rocha-Filho RC, Cass QB, Fatibello-Filho O. Simultaneous differential pulse voltammetric determination of sulfamethoxazole and trimethoprim on a boron-doped diamond electrode. Electroanalysis 2009;21:1475-80.http: //onlinelibrary. wiley.com/doi/10.1002/elan.200804551/abstract.
21. Andrade LS, Rocha-Filho RC, Cass QB, Fatibello-Filho O. A novel multicommutation stopped-flow system for the simultaneous determination of sulfamethoxazole and trimethoprim by differential pulse voltammetry on a boron-doped diamond electrode. Anal Methods 2010;2:402-7. http: //pubs.rsc.org/en/content/articlehtml/2010/ay/b9ay00092e.
22. Cesarino I, Cesarino V, Lanza MRV. Carbon nanotubes modified with antimony nanoparticles in a paraffincomposite electrode: Simultaneous determination of sulfamethoxazole and trimethoprim. Sensors Actuators B 2013;188:1293-9. http: //www.sciencedirect.com/science/article/pii/S0925400513009830.
23. Mocak J, Bond A. M, Mitchell S, Scollar G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stnpping techniques. Pure Appl Chem 1997;69:297-328. http: //w3.uniroma1.it/ chemo/ ftp/6902x0297.pdf.
24. Joseph R, Kumar KG. Differential pulse voltammetric determination and catalytic oxidation of sulfamethoxazole using [5,10,15,20-tetrakis(3-methoxy-4-hydroxy phenyl) porphyrinato] Cu (II) modified carbon paste sensor. Drug Test Anal 2010;2:278-83. http: //onlinelibrary.wiley. com/doi/ 10.1002/dta.129/abstract
25. Rajith L, Jissy AK, Kumar KG, Datta A. Mechanistic Study for the Facile Oxidation of Trimethoprim on a Manganese Porphyrin Incorporated Glassy Carbon Electrode. J Phys Chem C 2011;115:21858-64. http: //pubs.acs.org/doi/abs/ 10.1021/ jp208027s.
26. Momberg A, Carrera ME, Baer DV, Bruhn C, Smith MR. The oxidative voltammetric behaviour of some sulphonamides at the glassy carbon electrode. Anal Chim Acta 1984;159:119-27. http: //www.sciencedirect.com/science/article/pii/S0003267000842889.
27. Arvand M, Ansari R, Heydari L. Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamethoxazole using carbon nanotube paste electrode. Mater Sci Eng C 2011;31:1819-25. http: //www.sciencedirect.com/ science/ article/pii/S0928493111002396.
28. Felix FS, Brett CMA, Angnes L. Carbon film resistor electrode for amperometric determination of acetaminophen in pharmaceutical formulations. J Pharm Biomed Anal 2007;43:1622-7. http: //www.sciencedirect.com/science/ article/pii/S0731708506007928.
29. Shabir GA. Validation of high-performance liquid chromatography methods for pharmaceutical analysis Understanding the differences and similarities between validation requirements of the us food and drug administration, the us pharmacopeia and the international conference on harmonization. J Chromatogr A 2003;987:57–66. http: //www.sciencedirect.com/science/ article/ pii/S0021967302015364.
Statistics
1022 Views | 1484 Downloads
How to Cite
Calaça, G. N., C. A. Pessoa, K. Wohnrath, and N. Nagata. “SIMULTANEOUS DETERMINATION OF SULFAMETHOXAZOLE AND TRIMETHOPRIM IN PHARMACEUTICAL FORMULATIONS BY SQUARE WAVE VOLTAMMETRY”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 6, no. 9, 1, pp. 438-42, https://innovareacademics.in/journals/index.php/ijpps/article/view/1222.
Section
Original Article(s)