• Rodrigo De Almeida Vaucher Post Graduate Program in Biochemistry and Bioprospecting, Center of Chemistry, Pharmaceutical and Food Science, Federal University of Pelotas (UFPel), Pelotas, 96010-900, Rio Grande do Sul, Brazil
  • Janice Luehring Giongo Laboratory of Microbiological Research, Health Sciences, Franciscan University Center (UNIFRA), Santa Maria, 97010-032, Rio Grande do Sul, Brazil
  • VIRGINIA CIELO RECH Laboratory of Nanotechnology, Post Graduate Program in Nanosciences, Franciscan University Center, Santa Maria, 97010-032, Rio Grande do Sul, Brazil
  • Roberto Christ Vianna Santos Laboratory of Nanotechnology, Post Graduate Program in Nanosciences, Franciscan University Center, Santa Maria, 97010-032, Rio Grande do Sul, Brazil
  • Leonardo Quintana S. Lopes Laboratory of Microbiological Research, Health Sciences, Franciscan University Center (UNIFRA), Santa Maria, 97010-032, Rio Grande do Sul, Brazil
  • MARCIA EBLING Laboratory of Nanotechnology, Post Graduate Program in Nanosciences, Franciscan University Center, Santa Maria, 97010-032, Rio Grande do Sul, Brazil
  • MATHEUS DELAMEA Microbiology and Parasitology Department, Health Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, 97105-900, Rio Grande do Sul, Brazil
  • Aleksandro Schefer Silva Soils Laboratory, State University of Santa Catarina (UDESC), Chapecó, 88330-668, Santa Catarina, Brazil
  • Adriano Brandelli Laboratory of Biochemistry and Applied Microbiology, Institute of Science and Technology of Food, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970, Rio Grande do Sul, Brazil



bacteriocin, Lactic acid bacteria, Listeria monocytogenes, Minas Frescal cheese, Gene expression


Objective: To evaluate whether antimicrobial substances produced by autochthonous lactic acid bacteria (LAB) from Minas Frescal cheese are able to enhance the activity of bacteriocin P34 against Listeria monocytogenes and investigate the influence of P34 in specific gene expression of this bacterium after the inoculation in Minas Frescal cheese.Methods: Bacillus sp. P34 and L. monocytogenes ATCC 7644 were used in this study. The antimicrobial peptide P34 was purified and applied (0, 800 or 6400 AU/ml) to cheese surface before inoculation with L. monocytogenes. Antimicrobial activity and synergism were detected using the agar diffusion technique. Expression levels of D-Alanine-D-alanyl carrier protein ligase (dltA), Putative phospholipid lysinylation (Imo 1695) and EIIABMan of mannose-specific PTS (mptA) mRNAs in bacteriocin-treated L. monocytogenes growing in Minas Frescal cheese were determined using real-time PCR.Results: The peptide P34 showed increased antilisterial activity when combined with culture supernatants of some selected LAB isolated from Minas Frescal cheese. The addition of peptide P34 to cheese caused a decrease of up to 3 log cycles in viable counts of artificially inoculated L. monocytogenes. The influence of peptide P34 on the expression of genes associated with components of the cell surface of L. monocytogenes was investigated by real-time PCR. A significant increase in the expression of the genes dltA, Imo 1695 and mptA was observed after 96 h in the presence of peptide P34.Conclusion: These results suggest that the peptide P34 influences the expression of genes involved in D-alanylation of teichoic acids and lipoteichoic acids and lysination of the cell membrane of phospholipids.


Download data is not yet available.


Twomey D, Ross RP, Ryan M, Meaney B, Hill C. Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie Van Leeuwenhoek 2002;82:165-85.

Deegan LH, Cotter PD, Hill C, Ross P. Bacteriocins: biological tools for biopreservation and shelf-life extension. Int Dairy J 2006;16:1058-71.

Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 2005;3:777-88.

Gálvez A, Abriouel H, López RL, Ben Omar N. Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 2007;120:51-70.

Parret AHA, De Mot R. Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other γ-proteobacteria. Trends Microbiol 2002;10:107-12.

Motta AS, Brandelli A. Properties and antimicrobial activity of the smear surface cheese coryneform bacterium Brevibacterium linens. Eur Food Res Technol 2008;227:1299-306.

Crandall AD, Montville TJ. Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Appl Environ Microbiol 1998;64:231-7.

Naghmouchi K, Kheadr E, Lacroix C, Fliss I. Class I/Class IIa bacteriocin cross-resistance phenomenon in Listeria monocytogenes. Food Microbiol 2007;24:718-27.

Vadyvaloo V, Arous S, Gravesen A, Hechard Y, Chauhan-Haubrock R, Hastings JW, et al. Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology 2004;150:3025-33.

Fischer W, Leopold K. Polar lipids of four Listeria species containing L-lysyl cardiolipin, a novel lipid structure, and other unique phospholipids. Int J Syst Bacteriol 1999;49:653-62.

Bouttefroy A, Millière JB. Nisin-curvaticin 13 combinations for avoiding the regrowth of bacteriocin resistant cells of Listeria monocytogenes ATCC 15313. Int J Food Microbiol 2000;62:65-75.

Gravesen A, Kallipolitis B, Holmstrøm K, Høiby PE, Ramnath M, Knøchel S. pbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression. Appl Environ Microbiol 2004;70:1669-79.

Motta AS, Cannavan FS, Tsai SM, Brandelli A. Characterization of a broad range antibacterial substance from a new Bacillus species isolated from Amazon basin. Arch Microbiol 2007;188:367-75.

Motta AS, Lorenzini DM, Brandelli A. Purification and partial characterization of an antimicrobial peptide produced by a novel Bacillus sp. isolated from the Amazon Basin. Curr Microbiol 2007;54:282-6.

Cogan TM, Barbosa M, Beuvier E, BianchiSalvadori B, Cocconcelli PS, Fernandes I, et al. Characterization of the lactic acid bacteria in artisanal dairy products. J Dairy Res 1197;64:409-21.

Skalka B, Pillich J, Pospisil L. Further observations of Corynebacterium renale as an indicator organism in the detection of the exfoliation-positive strains of Staphylococcus aureus. Zentralbl Bakteriol Mikrobiol Hyg 1983;256:168-74.

Kim SY, Lee YM, Lee SY, Lee YS, Kim JH, Ahn C, et al. Synergistic effect of citric acid and pediocin K1, a bacteriocin produced by Pediococcus sp. K1 on inhibition of Listeria monocytogenes. J Microbiol Biotechnol 2001;11:831-7.

Moon G, Kim W, Kim M. Synergistic effects of bacteriocin-producing Pediococcus acid lactic K10 and organic acids on inhibiting Escherichia coli O157:H7 and applications in ground beef. J Microbiol Biotechnol 2002;12:936-42.

Cleveland J, Montville TJ, Nes IF, Chikindas ML. Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 2001;71:1-20.

Aasen IM, Markussen S, Møretrø T, Katla T, Axelsson L, Naterstad K. Interactions of the bacteriocins sakacin P and nisin with food constituents. Int J Food Microbiol 2003;87:35-42.

Davies E, Bevis H, Delves-Broughton J. The use of the bacteriocin nisin as a preservative in ricotta-type cheese to control the food-borne pathogen Listeria monocytogenes. Lett Appl Microbiol 1997;24:343-6.

Maisnier-Patin S, Deschamps N, Tatini S, Richards J. Inhibition of Listeria monocytogenes in camembert cheese made with a nisin-producing stater. Lait 1992;72:249-63.

Ferreira M, Lund B. The effect of nisin on Listeria monocytogenes in culture medium and long-life cottage cheese. Lett Appl Microbiol 1996;22:433-8.

Senbagam D, Senthilkumar B, Amutha R, Nagarajan G, Kalandar A. Phytotherapeutic control of foodborne pathogens by Jasminum sambac L. flowers. Int J Pharm Pharm Sci 2016;8:188-93.

Mandal B. The inhibitory effects of pediocin 2292 against Listeria monocytogenes and Staphylococcus aureus in tomato sauce. Innovare J Food Sci 2016;4:1-2.

Martínez B, Bravo D, Rodríguez A. Consequences of the development of nisin-resistant Listeria monocytogenes in fermented dairy products. J Food Prot 2005;68:2383-8.

Kaur G, Singh T, Malik R. Antibacterial efficacy of Nisin, pediocin 34 and enterocin FH99 against Listeria monocytogenes and cross-resistance of its bacteriocin resistant variants to common food preservatives. Brazilian J Microbiol 2013;44:63-71.

Bergholz T, Tang S, Wiedmann M, Boor K. Nisin resistance of Listeria monocytogenes is increased by exposure to salt stress and is mediated via LiaR. Appl Environ Microbiol 2013;79:5682-8.

Iancu C, Grainger A, Field D, Cotter P, Hill C, Ross R. Comparison of the potency of the lipid II targeting antimicrobials nisin, lacticin 3147 and vancomycin against gram-positive bacteria. Probiotics Antimicrob Proteins 2012;4:108-15.

Bizani D, Morrissy JAC, Dominguez APM, Brandelli A. Inhibition of Listeria monocytogenes in dairy products using the bacteriocin-like peptide cerein 8A. Int J Food Microbiol 2008;121:229-33.

Sant’Anna V, Quadros DAF, Motta AS, Brandelli A. Antibacterial activity of bacteriocin-like substance P34 on Listeria monocytogenes in chicken sausage. Braz J Microbiol 2013;44 Suppl 4:1163–7.

Gravesen A, Ramnath M, Rechinger KB, Andersen N, Jänsch L, Héchard Y, et al. High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 2002;148:2361-9.

Gravesen A, Warthoe P, Knochel S, Thirstrup K. Restriction fragment differential display of pediocin-resistant Listeria monocytogenes 412 mutants shows consistent overexpression of a putative beta-glucoside-specific PTS system. Microbiology 2000;146:1381-9.

Ramnath M, Beukes M, Tamura K, Hastings J. Absence of a putative in a leucocin A–resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl Environ Microbiol 2000;66:3098-101.

Dalet K, Cenatiempo Y, Cossart P, Héchard Y. A sigma-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 2001;147:3263-9.

Héchard Y, Pelletier C, Cenatiempo Y, Frère J. Analysis of sigma-dependent genes in Enterococcus faecalis: a mannose PTS permease (EII(Man)) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 2001;147:1575-80.

Weidenmaier C, Peschel A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interaction. Nat Rev Microbiol 2008;6:276-87.

Jack R, Tagg J, Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev 1995;59:171-200.

Maisnier-Patin S, Richard J. Cell wall changes in nisin-resistant variants of Listeria innocua grow in the presence of high nisin concentrations. Microbiol Rev 1996;140:29-35.

Vadyvaloo V, Hastings J, Van der Merwe M, Rautenbach MJ. Membranes of class IIa bacteriocin-resistant L. monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol 2002;68:5223-30.

Motta A, Flores F, Souto A, Brandelli A. Antibacterial activity of a bacteriocin-like substance produced by Bacillus sp. P34 that targets the bacterial cell envelope. Antonie Van Leeuwenhoek 2008;93:275-84.

Liu Y, Morgan S, Ream A, Huang L. Gene expression profiling of a nisin-sensitive Listeria monocytogenes scott A ctsR deletion mutant. J Ind Microbiol Biotechnol 2013;40 Suppl 5:495-505.



How to Cite

Vaucher, R. D. A., J. L. Giongo, V. C. RECH, R. C. V. Santos, L. Q. S. Lopes, M. EBLING, M. DELAMEA, A. S. Silva, and A. Brandelli. “ANTIMICROBIAL PEPTIDE P34 INFLUENCES GENE EXPRESSION OF LISTERIA MONOCYTOGENES GROWING IN SOFT CHEESE”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 11, Nov. 2016, pp. 235-9, doi:10.22159/ijpps.2016v8i11.13234.



Original Article(s)

Most read articles by the same author(s)