AN OVERVIEW OF RECOMBINANT VACCINE TECHNOLOGY, ADJUVANTS AND VACCINE DELIVERY METHODS

  • Shuaibu Abdullahi Hudu Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, 840232 Sokoto State, Nigeria
  • Saadatu Haruna Shinkafi Department of Microbiology and Parasitology, Usmanu Danfodiyo University Teaching Hospital Sokoto, 80002 Sokoto State Nigeria
  • Shuaibu Umar Department of Microbiology and Parasitology, Usmanu Danfodiyo University Teaching Hospital Sokoto, 80002 Sokoto State Nigeria

Abstract

Development of an effective vaccine is of paramount important in disease prevention and control. As such, recombinant technology can serve as a gateway for the development of safe and effective vaccines that can be delivered effectively with an appropriate adjuvant. Therefore, this paper aimed to review the role of recombinant vaccine technology, new adjuvants and the challenge of vaccine delivery. Related peer-reviewed journal article searches were conducted using a subscribed database at the Universiti Putra Malaysia library, involving areas of Health Sciences and Medicine via Medline, SCOPUS and Google Scholar. New generation vaccines include highly purified synthetic or recombinant antigens that stimulate effective cell-mediated immune and mucosal immunity. In order to enhance their efficacy, a number of adjuvants are used. Efforts have also been made to explore the usage of non-invasive routes of administration, devices and equipment for optimized antigen and immune-potentiator delivery of the immune system. Recombinant vaccine technology is rapid, compared to the traditional method of vaccine development and does not require the handling of live viruses. It is, therefore, a promising technology for developing a future vaccine to curb emerging and re-emerging viral infections that may be life-threatening or teratogenic.

Keywords: Vaccine adjuvant, Vaccine delivery, Immunity, Recombinant vaccine

Downloads

Download data is not yet available.

References

1. Pasteur L, Joubert J, Chamberland C. The germ theory of disease. Cr hebd Seanc Acad Sci 1878;86:1037-52.
2. Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO Mol Med 2014;6:708-20.
3. Singh S, Arora S, Singla Y. An overview of the multifaceted significance of eudragit polymers in drug delivery systems. Asian J Pharm Clin Res 2015;8:1-6.
4. Cape S, Rebits L, Sievers R. Needle-free inhalable dry powder aerosol measles vaccine developed for pulmonary delivery with a puff haler dpi. Am J Respir Crit Care Med 2015;191:A4284.
5. McAllister L, Anderson J, Werth K, Cho I, Copeland K, Bouveret NLC, et al. Needle-free jet injection for the administration of influenza vaccine: a randomized non-inferiority trial. Lancet 2014;384:674-81.
6. Mittal A, Schulze K, Ebensen T, Weißmann S, Hansen S, Lehr CM, et al. Efficient nanoparticle-mediated needle-free transcutaneous vaccination via hair follicles requires adjuvant action. Nanomedicine: Nanotech Biol Med 2015;11:147-54.
7. Pearson FE, Muller DA, Roalfe L, Zancolli M, Goldblatt D, Kendall MA. Functional anti-polysaccharide IgG titres induced by a unadjuvanted pneumococcal conjugate vaccine when delivered by micro projection-based skin patch. Vaccine 2015;33:6675-83.
8. Arntzen C. Plant‐made pharmaceuticals: from ‘Edible Vaccines’ to Ebola therapeutics. Plant Biotech J 2015;13:1013-6.
9. Willis N. Edward jenner and the eradication of smallpox. Scott Med J 1997;42:118-21.
10. Wang D, Suhrbier A, Penn-Nicholson A, Woraratanadharm J, Gardner J, Luo M, et al. A complex adenovirus vaccine against chikungunya virus provides complete protection against viraemia and arthritis. Vaccine 2011;29:2803-9.
11. Fiore A, Bridges C, Cox N. Seasonal influenza vaccines. Curr Top Microbiol Immunol 2008;333:43-82.
12. Krugman S, Giles JP, Jacobs AM, Friedman H. Studies with a further attenuated live measles virus vaccine. Pediatrics 1963;31:919-28.
13. Hilleman MR, Buynak EB, Weibel RE, Stokes Jr J. Live, attenuated mumps-virus vaccine. N Engl J Med 1968;278:227-32.
14. Dick G, Dane D, McAlister J, Briggs M, Nelson R, Field C. Vaccination against Poliomyelitis with live virus vaccines-7. Br Med J 1961;2:266.
15. Bernstein DI, Sack DA, Rothstein E, Reisinger K, Smith VE, O'Sullivan D, et al. Efficacy of live, attenuated, human rotavirus vaccine 89–12 in infants: a randomized placebo-controlled trial. Lancet 1999;354:287-90.
16. Clark HF, Offit PA, Plotkin SA, Heaton PM. The new pentavalent rotavirus vaccine composed of bovine (strain WC3)-human rotavirus reassortants. Pediatric Infectious Disease J Impact Description 2006;25:577-83.
17. Plotkin SA, Farquhar JD, Ogra PL. Immunologic properties of RA27/3 rubella virus vaccine: a comparison with strains presently licensed in the United States. JAMA 1973;225:585-90.
18. Krause PR, Klinman DM. Efficacy, immunogenicity, safety and use of live attenuated chickenpox vaccine. J Pediatr 1995;127:518-25.
19. Hearn H, Soper W, Miller W. Loss in virulence of yellow fever virus serially passed in HeLa cells. Exp Biol Med 1965;119:319-22.
20. Clemens R, Safary A, Hepburn A, Roche C, Stanbury WJ, André FE. Clinical experience with an inactivated hepatitis A vaccine. J Infect Dis 1995;171:S44-S9.
21. Krugman S. The newly licensed hepatitis B vaccine: characteristics and indications for use. JAMA 1982;247:2012-5.
22. Maassab HF, Bryant ML. The development of live attenuated cold-adapted influenza virus vaccine for humans. Rev Med Virol 1999;9:237-44.
23. Monath T, Soike K, Levenbook I, Zhang ZX, Arroyo J, Delagrave S, et al. Recombinant, chimaeric live, attenuated vaccine (ChimeriVaxâ„¢) incorporating the envelope genes of Japanese encephalitis (SA14-14-2) virus and the capsid and nonstructural genes of yellow fever (17D) virus is safe, immunogenic and protective in non-human primates. Vaccine 1999;17:1869-82.
24. Scheele LA, Shannon JA. Public health implications in a program of vaccination against poliomyelitis. JAMA 1955;158:1249-58.
25. Hilleman M. Yeast-recombinant hepatitis B vaccine. Infection 1987;15:3-7.
26. Slade BA, Leidel L, Vellozzi C, Woo EJ, Hua W, Sutherland A, et al. Postlicensure safety surveillance for quadrivalent human papillomavirus recombinant vaccine. JAMA 2009;302:750-7.
27. Girard MP, Tam JS, Pervikov Y, Katz JM. Report on the first WHO integrated meeting on development and clinical trials of influenza vaccines that induce broadly protective and long-lasting immune responses: Hong Kong SAR, China. Vaccine 2013;31:3766-71.
28. Kaufmann SH, Gengenbacher M. Recombinant live vaccine candidates against tuberculosis. Curr Opin Biotechnol 2012;23:900-7.
29. Kantele A, Pakkanen SH, Siitonen A, Karttunen R, Kantele JM. Live oral typhoid vaccine Salmonella Typhi Ty21a–A surrogate vaccine against non-typhoid salmonella? Vaccine 2012;30:7238-45.
30. Robbins J, Schneerson R, Szu S. Hypothesis: how licensed vaccines confer protective immunity. Adv Exp Med Biol 1995;397:169-82.
31. Finne J, Leinonen M, Mäkelä PH. Antigenic similarities between brain components and bacteria causing meningitis: implications for vaccine development and pathogenesis. Lancet 1983;322:355-7.
32. Mekalanos JJ, Swartz DJ, Pearson G, Harford N, Groyne F, de Wilde M. Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature 1982;306:551-7.
33. Mortimer EA. Immunization against infectious disease. Science 1978;200:902-7.
34. Williams JE, Altieri PL, Berman S, Lowenthal JP, Cavanaugh DC. The potency of killed plague vaccines prepared from avirulent Yersinia pestis. Bull WHO 1980;58:753.
35. Wiktor T, Plotkin S, Koprowski H. Development and clinical trials of the new human rabies vaccine of tissue culture (human diploid cell) origin. Dev Biol Stand 1977;40:3-9.
36. Nagel J, Svec D, Waters T, Fireman P. IgE synthesis in man I. Development of specific IgE antibodies after immunization with tetanus-diphtheria (TD) toxoids. Turk J Immunol 1977;118:334-41.
37. Newell K, Lehmann AD, LeBlanc D, Osorio NG. The use of toxoid for the prevention of tetanus neonatorum: final report of a double-blind controlled field trial. Bull WHO 1966;35:863.
38. Jacobs Jr W, Snapper S, Lugosi L, Bloom B. Development of BCG as a recombinant vaccine vehicle. Curr Top Microbiol Immunol 1989;155:153-60.
39. Cooper B, DeTora L, Stoddard J. Menveo®): a novel quadrivalent meningococcal CRM197 conjugate vaccine against serogroups A, C, W-135 and Y. Expert Rev Vaccines 2011;10:21-33.
40. Gruber WC, Scott DA, Emini EA. Development and clinical evaluation of Prevnar 13, a 13‐valent pneumocococcal CRM197 conjugate vaccine. Ann N Y Acad Sci 2012;1263:15-26.
41. Ramsauer K, Schwameis M, Firbas C, Müllner M, Putnak RJ, Thomas SJ, et al. Immunogenicity, safety, and tolerability of a recombinant measles-virus-based chikungunya vaccine: a randomised, double-blind, placebo-controlled, active-comparator, first-in-man trial. Lancet Infect Dis 2015;15:519-27.
42. Bottai D, Frigui W, Clark S, Rayner E, Zelmer A, Andreu N, et al. Increased protective efficacy of recombinant BCG strains expressing virulence-neutral proteins of the ESX-1 secretion system. Vaccine 2015;33:2710-8.
43. Adams JR, Mallapragada SK. Enhancing the immune response through next generation polymeric vaccine adjuvants. Technology 2014;2:1-12.
44. Watarai S, Iwase T, Tajima T, Yuba E, Kono K. Efficiency of pH-sensitive fusogenic polymer-modified liposomes as a vaccine carrier. Sci World J 2012. http://dx.doi.org/ 10.1155/2013/ 903234
45. Shakya A, Nandakumar K. Applications of polymeric adjuvants in studying autoimmune responses and vaccination against infectious diseases. J R Soc Interface 2013;10. Doi:10.1098/rsif.2012.0536.
46. Sipoli CC, Radaic A, Santana N, de Jesus MB, de la Torre LG. Chitosan nanoparticles produced with the gradual temperature decrease technique for sustained gene delivery. Biochem Eng J 2015;103:114-21.
47. Patel DP, Singh S. Chitosan: a multi-facet polymer. Int J Curr Pharm Res 2015;7:21-8.
48. Charles RC, Hilaire IJ, Mayo-Smith LM, Teng JE, Jerome JG, Franke MF, et al. Immunogenicity of a killed bivalent (O1 and O139) whole cell oral cholera Vaccine, Shanchol, in Haiti. PLoS Negl Trop Dis 2014;8:e2828.
49. Tm CR, Lakshmikanth G, Agastian P. Evaluating the efficacy of aluminum phosphate formulated l2 based human papilloma virus vaccine. Asian J Pharm Clin Res 2015;8:199-201.
50. Rerks-Ngarm S, Pitisuttithum P, Dtmh Sn, Kaewkungwal J, Chiu J, Paris R, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 Infection in Thailand. N Engl J Med 2009;361:2209-20.
51. Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman W, Galon J, et al. Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology 2012;1:1111-34.
52. Paludan SR, Bowie AG. Immune sensing of DNA. Immunity 2013;38:870-80.
53. Shi X, Lu W, Wang Z, Pan L, Cui G, Xu J, et al. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy. Nanotechnology 2014;25:075602.
54. Okuda K, Wada Y, Shimada M. Recent developments in preclinical DNA vaccination. Vaccines 2014;2:89-106.
55. Bins A, Van Den Berg J, Oosterhuis K, Haanen J, Besseling J, Hovingh G, et al. Recent advances towards the clinical application of DNA vaccines. Neth J Med 2013;71:109-17.
56. L Dudek N, Perlmutter P, Aguilar I, P Croft N, W Purcell A. Epitope discovery and their use in peptide-based vaccines. Curr Pharm Des 2010;16:3149-57.
57. Chakraborty S. Ebola vaccine: multiple peptide-epitope loaded vaccine formulation from proteome using reverse vaccinology approach. Int J Pharm Pharm Sci 2014;6:407-12.
58. Robinson HL, Amara RR. T cell vaccines for microbial infections. Nat Med 2005;11:S25-S32.
59. Wohlbold TJ, Krammer F. In the shadow of hemagglutinin: a growing interest in influenza viral neuraminidase and its role as a vaccine antigen. Viruses 2014;6:2465-94.
60. Kaushik V, Chauhan G, Singh J. In silico peptide-based vaccine design against non-structural protein 5 of Hepatitis C Virus. Int J Pharm Pharm Sci 2014;6:80-2.
61. Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol 2009;30:23-32.
62. Hagan DTO. Recent developments in vaccine delivery systems. Curr Drug Targets Infect Disord 2001;1:273-86.
63. Yuen CT, Asokanathan C, Cook S, Lin N, Xing D. Effect of different detoxification procedures on the residual pertussis toxin activities in vaccines. Vaccine 2016;34:2129-34.
64. Rana R, Dalal J, Singh D, Kumar N, Hanif S, Joshi N, et al. Development and characterization of Haemophilus influenzae type b conjugate vaccine prepared using different polysaccharide chain lengths. Vaccine 2015;33:2646-54.
65. Flamand V, Sornasse T, Thielemans K, Demanet C, Bakkus M, Bazin H, et al. Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo. Eur J Immunol 1994;24:605-10.
66. Inaba K, Metlay JP, Crowley MT, Steinman RM. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J Exp Med 1990;172:631-40.
67. Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle F, Enk A, Bröcker EB, et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Annu Oncol 2006;17:563-70.
68. Antrobus RD, Berthoud TK, Mullarkey CE, Hoschler K, Coughlan L, Zambon M, et al. Coadministration of seasonal influenza vaccine and MVA-NP+M1 simultaneously achieves potent humoral and cell-mediated responses. Mol Ther 2014;22:233-8.
69. Altenburg AF, Kreijtz JH, de Vries RD, Song F, Fux R, Rimmelzwaan GF, et al. Modified vaccinia virus ankara (MVA) as a production platform for vaccines against influenza and other viral respiratory diseases. Viruses 2014;6:2735-61.
70. Buckland BC. The process development challenges for a new vaccine. Nat Med 2005;11:S16-S9.
71. Eisenstein M. Vaccines: a moving target. Nature 2011;474:S16-S7.
72. Buynak EB, Roehm RR, Tytell AA, Bertland AU, Lampson GP, Hilleman MR. A vaccine against human hepatitis B. JAMA 1976;235:2832-4.
73. Gupta RK, Siber GR. Adjuvants for human vaccines-current status, problems and future prospects. Vaccine 1995;13:1263-76.
74. Lee S, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases. Immune Net 2015;15:51-7.
75. Lindblad EB. Aluminium compounds for use in vaccines. Immunol Cell Biol 2004;82:497-505.
76. Glenny A, Pope C, Waddington H, Wallace U. Immunological notes. xvii–xxiv. J Pathol Bacteriol 1926;29:31-40.
77. Clements C, Griffiths E. The global impact of vaccines containing aluminium adjuvants. Vaccine 2002;20:S24-S33.
78. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 2010;33:492-503.
79. Gumperz JE, Brenner MB. CD1-specific T cells in microbial immunity. Curr Opin Immunol 2001;13:471-8.
80. Duthie MS, Windish HP, Fox CB, Reed SG. Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 2011;239:178-96.
81. Mbow ML, De Gregorio E, Valiante NM, Rappuoli R. New adjuvants for human vaccines. Curr Opin Immunol 2010;22:411-6.
82. Matzner P, Sorski L, Shaashua L, Elbaz E, Lavon H, Melamed R, et al. Perioperative treatment with the new synthetic TLR‐4 agonist GLA‐SE reduces cancer metastasis without adverse effects. Int J Cancer 2016;138:1754-64.
83. Santone M, Aprea S, Wu TY, Cooke MP, Mbow ML, Valiante NM, et al. A new TLR2 agonist promotes cross-presentation by mouse and human antigen presenting cells. Hum Vaccin Immunother 2015;11:2038-50.
84. Agger EM. Novel adjuvant formulations for delivery of anti-tuberculosis vaccine candidates. Adv Drug Delivery Rev 2016;102:73-82.
85. Subiza J, El-Qutob D, Fernandez-Caldas E. New developments in oral vaccines and mucosal adjuvants. Recent Pat Inflammation Allergy Drug Discovery 2014;9:4-15.
86. Venkatesan M. A novel protein-based subunit Shigella vaccine candidate. Immunol Cell Biol 2015;93:603-4.
87. Nordly P, Madsen H, Nielsen H, Foged C. Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulatory. Expert Opin Drug Delivery 2009;6:657-72.
88. Dey A, Srivastava I. Novel adjuvants and delivery systems for enhancing immune responses induced by immunogens. Expert Rev Vaccines 2011;10:227-51.
89. Foged C. Subunit vaccines of the future: the need for safe, customized and optimized particulate delivery systems. Ther Delivery 2011;2:1057-77.
Statistics
1027 Views | 1407 Downloads
Citations
How to Cite
Hudu, S. A., S. H. Shinkafi, and S. Umar. “AN OVERVIEW OF RECOMBINANT VACCINE TECHNOLOGY, ADJUVANTS AND VACCINE DELIVERY METHODS”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 8, no. 11, Nov. 2016, pp. 19-24, doi:10.22159/ijpps.2016v8i11.14311.
Section
Review Article(s)