Gallego Cartagena Euler, Castillo RamÍrez Margarita, MartÍnez Burgos Walter


Objective: The objective was to evaluate the effect of stressful and non-stressful conditions on the growth and production of pigments in a strain of Dunaliella salina (D. salina) isolated from the artificial saline of Manaure municipality, department of La Guajira, Colombia in laboratory conditions.

Methods: Two treatments were performed, one in non-stressful growing conditions with medium J/1 to 1 M NaCl, 190-µmol. m-2. s-1, 5.0 mmol KNO3, pH 8.2 and another in stressful conditions with medium J/1 to 4.0 M NaCl, 390 µmol. m-2. s-1, 0.50 mmol KNO3, each in triplicate. Population growth was assessed by cell count, and the pigment content was performed by spectrophotometric techniques.

Results: It was found that the conditions of stressful influences in the growth and the production of carotenoids of D. salina in comparison with those cultures not stressed. There was a significant difference between the average values of total carotenoids in the experiment with stressful conditions with 9.67±0.19 µg/ml and the experiment with conditions not stressful with 1.54±0.08 µg/ml at the level of significance of p<0.05.

Conclusion: It was demonstrated that the stressful condition in the culture is associated with an increase in the production of lipophilic antioxidants, among these carotenoids. The knowledge of the stressful conditions for the production of carotenoids from D. salina isolated from the saline of Manaure opens a field in the use of this biotic resource with biotechnological purposes, production of new antibiotics, nutraceuticals and/or production of biofuels.


Dunaliella salina, Carotenoides, Saline of Manaure, Stressful conditions, Biotechnological purposes


Vedha H, Yasmin A, Ramya D. Solid state modification for the enhancement of solubility of poorly soluble drug: carrageenan as carrier. Int J Appl Pharm 2012;4:1-7.

Eriksen N. The technology of microalgal culturing. Biotechnol Lett 2008;30:1525-36.

Faheed F, Fattah Z. Effect of Chlorella vulgaris as biofertilizer on growth parameters and metabolic aspects of Lettus plant. J Agric Soc Sci 2008;4:165-9.

Vigani M, Parisi C, Cerezo E. Food and feed products from microalgae: Market opportunities and challenges for the EU. Trends Food Sci Technol 2015;42:81-92.

Hemaiswarya S, Raja R, Kumar R, Ganesan V, Anbazhagan C. Microalgae: a sustainable feed source for aquaculture. World J Microb Biot 2011;27:1737-46.

Chisti Y. Biodiesel from microalgae. Biotechnol Adv 2007;25:294-306.

Deng M, Coleman J. Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microb 1999;65:523-8.

Salar R, Gahlawat S, Siwach P, Duhan J. Microalgal biotechnology: prospects and applications. New Delhi: Springer; 2012.

Vílchez C, Forján E, Cuaresma M, Bédmar F, Garbayo I, Vega J. Marine carotenoids: biological functions and commercial applications. Mar Drugs 2011;9:319-33.

Gimpel J, Specht E, Georgianna D, Mayfield S. Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr Opin Chem Biol 2013;17:489-95.

Hallmann A. Algal transgenics and biotechnology. Transgenic Plant J 2007;1:81-98.

Raja R, Hemaiswarya S, Rengasamy R. Exploitation of Dunaliella for β-carotene production. Appl Microbiol Biot 2007;74:517-23.

Benemann J. Microalgae for biofuels and animal feeds. Energies 2013;6:5869-86.

Bhattacharjee M. Pharmaceutically valuable bioactive compounds of algae. Asian J Pharm Clin Res 2016;7:43-7.

Guedes A, Amaro H, Malcata F. Microalgae as sources of carotenoids. Mar Drugs 2011;9:625-44.

Emtyazjoo M, Moghadasi Z, Rabbani M, Emtyazjoo M, Samadi S, Mossaffa N. Anticancer effect of Dunaliella salina under stress and normal conditions against skin carcinoma cell line A431 in vitro. Iran J Fish Sci 2012;11:283-93.

Revathi D, Baskaran K, Subashini R. Antioxidant and free radical scavenging capacity of red seaweed Hypnea valentiae from Rameshwaram Coast Tamil Nadu, India. Int J Pharm Pharm Sci 2015;8:232-7.

Priyadarshani I, Rath B. Commercial and industrial applications of microalgae–a review. J Algal Biomass Utln 2012;3:89-100.

Kumar M. Harvesting of valuable eno-and exo-metabolites form cyanobacteria: a potential source. Asian J Pharm Clin Res 2014;7:24-8.

Oren A. A hundred years of Dunaliella research: 1905–2005. Saline Systems 2005;1:1-14.

El-Baky A, El-Baz F, El-Baroty G. Production of antioxidant by the green alga Dunaliella salina. Int J Agric Biol 2004;6:49-57.

Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biot 2004;65:635-48.

Borowitzka MA. Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 1995;7:3-15.

Ben-Amotz A, Sussman I, Avron M. Glycerol production by Dunaliella. Experientia 1982;38:49-52.

Raja R, Hemaiswarya S, Kumar N, Sridhar S, Rengasamy R. A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 2008;34:77-88.

Spolaore P, Joannis C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng 2006;101:87-96.

Lamers P, Janssen M, De Vos R, Bino R, Wijffels R. Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol 2008;26:631-8.

Zhu Y, Jiang J. Continuous cultivation of Dunaliella salina in a photobioreactor for the production of β-carotene. Eur Food Res Technol 2008;227:953-9.

Kleinegris D, Janssen M, Brandenburg W, Wijffels R. Continuous production of carotenoids from Dunaliella salina. Enzyme Microb Technol 2011;48:253-9.

Wichuk K, Brynjólfsson S, Fu W. Biotechnological production of value-added carotenoids from microalgae: emerging technology and prospects. Bioengineered 2014;5:204-8.

Andersen RA, Kawachi M. Traditional microalgae isolation techniques. Algal Culturing Techniques 2005;83:90-101.

Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S. Biofuels from algae: challenges and potential. Biofuels 2010;1:763-84.

Kharkwal H, Joshi D, Panthari P, Pant M, Kharkwal. Algae as future drugs. Asian J Pharm Clin Res 2012;5:1-4.

Gallego E, Manjarrez L, Herrera L. Effect of subbituminous coal on growth and pigments concentration of Dunaliella salina (Teodoresco, 1905) cultivated in photobioreactor multiple chambers oscillating. Intropica 2013;8:69-78.

Borowitzka M. Algal growth media and sources of algal cultures. In: Borowitzka MA, Borowitzka LJ. editors. Microalgal Biotechnology. Cambridge University Press: Cambridge; 1988. p. 456-65.

Borowitzka M, Borowitzka L. Limits to growth and carotenogenesis in the laboratory and large-scale outdoor cultures of Dunaliella salina. In: Stadler T, Mollion J, Verdus M, Karamanos Y, Morvan H, Christiaen D. editors. Algal biotechnology. Barking. UK: Elsevier Applied Science; 1988. p. 371-81.

Ginzburg M. Dunaliella: a green alga adapted to salt. Adv Bot Res 1987;14:93-183.

Loeblich L. Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta). J Mar Biol Assoc UK 1982;62:493-508.

Guevara M, Lodeiros C, Gómez O, Lemus N, Núñez P, Romero L, et al. Carotenogenesis of five strains of the algae Dunaliella sp. (Chlorophyceae) isolated from Venezuelan hypersaline lagoons. Rev Bio Trop 2005;53:331-7.

Guillard R. Division rates. In: Handbook of phycological methods: culture methods and growth measurements. Edn. J. Stein. Cambridge University Press: Cambridge; 1973. p. 34-45.

Jeffrey S, Humphrey G. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 1975;167:191-4.

Strickland JD, Parsons TR. A practical handbook of seawater analysis. Bulletin fisheries research board of Canadá. 2nd edn. Fisheries Research Board of Canadá, Otawa; 1972. p. 134-67.

Ben-Amotz A, Avron M. On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 1983;7:593-7.

Gómez P, González M. The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions. Biol Res 2005;38:151-62.

Fazeli M, Tofighi H, Samadi N, Jamalifar H, Fazeli A. Carotenoid’s accumulation by Dunaliella tertiolecta (Lake Urmia isolate) and Dunaliella salina (CCAP 19/18 and WT) under stress conditions. DARU 2006;14:146-50.

Fu W, Paglia G, Magnúsdóttir M, Steinarsdóttir E, Gudmundsson S, Palsson B, et al. Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina. Microb Cell Fact 2014;13:1-9.

Mishra A, Jha B. Isolation and characterization of extracellular polymeric substances from microalgae Dunaliella salina under salt stress. Bioresource Technol 2009;100:3382-6.

Dipak P, Lele S. Carotenoid production from microalga Dunaliella salina. Indian J Biotechnol 2005;4:476-83.

Lopez-Elijah J, Fimbres-Olivarría D, Medina-Juárez L, Miranda-Baeza A, Martínez-Córdova L, Molina-Quijada D. Producción de biomasa y carotenoides de Dunaliella tertiolecta en medios limitados en nitrógeno. Phytonutrients 2013;82:23-30.

Cifuentes A, Gonzalez M, Parra O, Zúñiga M. Cultivo de cepas de Dunaliella salina (Teodoresco 1905) en diferentes medios bajo condiciones de laboratorio. Revista Chilena Historia Natural 1996;69:105-12.

Chen H, Jiang J. Osmotic responses of Dunaliella to the changes of salinity. J Cell Physiol 2009;219:251-8.

Giordano M, Bowes G. Gas exchange and C allocation in Dunaliella salina cells in response to the N source and CO2 concentration used for growth. Plant Physiol 1997;115:1049-56.

Wykoff D, Davies J, Melis A, Grossman A. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 1998;117:129-39.

Vo T, Tran D. Effects of salinity and light on growth of Dunaliella isolates. J Appl Environ Microbiol 2014;2:208-11.

Cifuentes A, González M, Conejeros M, Dellarossa V, Parra O. Growth and carotenogenesis in eight strains of Dunaliella salina Teodoresco from Chile. J Appl Phycol 1992;4:111-8.

Azachi M, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A. Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol 2002;129:1320-9.

Cowan A, Rose P, Horne L. Dunaliella salina: a model system for studying the response of plant cells to stress. J Exp Bot 1992;43:1535-47.

Cowan A, Rose P. Abscisic cid metabolism in salt-stressed cells of Dunaliella salina: possible interrelationship with β-carotene accumulation. Plant Physiol 1991;97:798-803.

Hossein M, Ghasemi Y. Rapid determination of lipid accumulation under sulfur starvation in Chlamydomonas reinhardtii microalga using Fourier Transform Infrared (FTIR) spectroscopy. Int J Pharm Chem Res 2016;8:1356-60.

De Boer L. Biotechnological production of colorants. Adv Biochem Eng Biotechnol 2014;143:51-89.

Shariati M, Hadi M. Microalgal biotechnology and bioenergy in Dunaliella. In: Progress in Molecular and Environmental Bioengineering “From Analysis and Modeling to Technology Applications”. Edn. Intech Open Access Publisher, Isfahan, Iran; 2011. p. 480-5.

About this article




Dunaliella salina, Carotenoides, Saline of Manaure, Stressful conditions, Biotechnological purposes





Additional Links

Manuscript Submission


International Journal of Pharmacy and Pharmaceutical Sciences
Vol 9, Issue 4, 2017 Page: 32-37

Online ISSN



44 Views | 72 Downloads

Authors & Affiliations

Gallego Cartagena Euler
Faculty of Environmental Science, Universidad de La Costa, Barranquilla 3599481, Atlántico, Colombia

Castillo RamÍrez Margarita
Faculty of Environmental Science, Universidad de La Costa, Barranquilla 3599481, Atlántico, Colombia

MartÍnez Burgos Walter
Faculty of Enginering, Universidad del Norte, Barranquilla 3509509, Atlántico, Colombia


Article Tools



  • There are currently no refbacks.