IDENTIFICATION, QUANTIFICATION AND VALIDATION OF STIGMASTEROL FROM ALPINIA CALCARATA USING HIGH-PERFORMANCE THIN LAYER CHROMATOGRAPHY METHOD

Authors

  • P. Pratheema P.G. and Research department of Chemistry, Holy Cross College, Tiruchirappalli 620002, India
  • L. Cathrine P.G. and Research department of Chemistry, Holy Cross College, Tiruchirappalli 620002, India

DOI:

https://doi.org/10.22159/ijpps.2017v9i9.19988

Keywords:

Alpinia calcarata Roscoe, Stigmasterol, HPTLC

Abstract

Objective: The present study is designed to develop a new simple, precise, rapid and selective highâ€performance thinâ€layer chromatographic (HPTLC) method for the determination of stigmasterol in methanolic rhizomes extract of Alpinia calcarata.

Methods: As per International Conference on Harmonization (ICH) guidelines we have applied different concentrations of stigmasterol as standard on HPTLC plates for the quantification of stigmasterol from the Alpinia calcarata rhizomes. The concentration of standard stigmasterol is 1 mg/ml.

Results: The retention factor of stigmasterol was 0.58. Linearity was obtained in the range of 50 ngâ€250 ng for stigmasterol. The developed and validated HPTLC method was employed for stigmasterol in methanolic rhizomes extract of Alpinia calcarata for standardization of the content of the marker. The linear regression data for the calibration plots showed a good linear relationship with r=0.99977 for stigmasterol, respectively Satisfactory recoveries of 99.77 % were obtained for stigmasterol.

Conclusion: The results obtained in validation assays indicate the accuracy and reliability of the developed HPTLC method for the quantification of stigmasterol in methanolic rhizomes extract of Alpinia calcarata

Downloads

Download data is not yet available.

References

Mohanasundari L, Suja S. Qualitative phytochemical screening of rhizomes on Alpinia calcarata and Alpinia speciosa. J Pharmacogn Phytochem 2015;4 Suppl 2:53-6.

Silvy Mathew, John Britto S. LCMS/MS analysis of methanolic rhizome extracts of Alpinia calcarata roscoe (Zingiberaceae)-a multipotent medicinal plant. Int J Adv Res 2016;4 Suppl 5:1817-22.

Kumar MAS, Nair M, Hema PS, Mohan J, Santhoshkumar TR. Pinocembrin triggers Bax-dependent mitochondrial apoptosis in colon cancer cells. Mol Carcinog 2007;46 Suppl 3:231-41.

George M, Pandalai KM. Investigations on plant antibiotics. Indian J Med Res 1949;37:169–81.

Pushpangadan P, Atal CK. Ethno-medico-botanical investigations in Kerala. J Ethnopharmacol 1984;111:59–77.

Arambewela LSR, Arawwawala LDAM, Ratnasooriya WD. Antinociceptive activities of aqueous and ethanolic extracts of Alpinia calcarata rhizomes in rats. J Ethnopharmacol 2004;95:311–6.

Arambewela LSR, Arawwawala LDAM. Antioxidant activities of ethanolic and hot aqueous extracts of Alpinia calcarata rhizomes, Aust J Med Herbalism 2005;17:91–4.

Ratnasooriya WD, Jayakody JR. Effects of aqueous extract of Alpinia calcarata rhizomes on reproductive competence of male rats. Acta Biol Hung 2006;57:23–35.

Arambewela LSR, Arawwawala LDAM, Ratnasooriya WD. Hypoglycemic and antihyperglycemic activities of the aqueous and the ethanolic extracts of Alpinia calcarata rhizomes in rats. Pharmacogn Mag 2009;5:412–8.

Ahmed AD, Medine G, Meryen S, Hatice O, Fikerenttin S, Isa K. Anti-microbial effects of Ocium basciliam (Labiatae) extract. Turkey J Biol 2005;29:155-60.

Perveen R, Islam F, Khanum J, Yeasmin T. Preventive effect of ethanolic extract of Alpinia Calcarata Rosc on ehrlich's ascitic carcinoma cell induced malignant ascites in mice. Asian Pac J Trop Med 2012;5:121-5.

Leal-Cardoso JH. Effects of essential oil of Alpinia Zerumbet on the compound action potential of the ratsciatic nerve. Phytomedicine 2004;11 Suppl 6:549-53.

Bezerra MA. Myorelant and antispasmodic effects of the essential oil of Alpinia speciosa rat ileum. Phytother Res 2000;14 Suppl 7:549-51.

Lahlou S. Antihypertensive effects of the essential oil of Alpinia Zerumbet and its main constituent, terpinen-4-ol, in DOCA-salt hypertensive conscio rats. Fundam Clin Pharmacol 2003;17 Suppl 3:323-30.

De Moura RS. Antihypertensive and endothelium dependent vasodilator effects of Alpinia Zerumbet, a medicinal plant. J Cardiovasc Pharmacol 2005;46 Suppl 3:288-94.

Rathee D, Thanki M, Agarwal R, Anandjiwala S. Simultaneous quantification of bergenin, catechin, gallicin, gallic acid and quantification of β-Sitosterol using HPTLC from Bergenia ciliate (Haw). Pharm Anal Acta 2010;1:104.

Deepti Rathee, Sushila Rathee, Permender Rathee, Aakash Deep, Sheetal Anandjiwala, Dharmender Rathee. HPTLC densitometric quantification of stigmasterol and lupeol from Ficus religiosa. Arab J Chem 2015;8:366–71.

Suthar AC, Banavaliker MM, Biyani MK, Priyadarsini Indira K, Sudarsan V, Mohan H. A high performance thin layer chromatography method for quantitative estimation of lupeol in Crataeva nurvala. Indian Drugs 2001;38 Suppl 9:474–8.

Badami S, Gupta MK, Ramaswamy S, Rai SR, Nanjaian M, Bendell DJ, et al. Determination of betulin in Grewia itiaefolia by HPTLC. J Separ Sci 2004;27:129–31.

Purnima D, Hamrapurkar PK. HPTLC Determination of stigmasterol and tocopherol acetate in Leptadenia reticulata and its formulation. J Plan Chromatogr 2007;20 Suppl 3:183–7.

Geneva. ICH, Q2A (R1), Validation of Analytical Procedure: Text and Methodology, International Conference on Harmonization Specification; 2005. p. 5–10.

Ravindra CS, Sanjay BK, Kalaichelvan VK. Phytochemical profile studies on the steroids of methanolic leaf extract of medicinally important plant Holoptelea integrifolia (Roxb.) planch using high performance thin layer chromatography. Asian J Pharm Clin Res 2014;7:4.

Lavanya MS, Gnanamani A, Ilavarasan R. Physico-chemical, phytochemical and high performance thin layer chromatography analysis of the whole plant of Orthosiphon thymiflorus (Roth.) sleesen. Asian J Pharm Clin Res 2015;8:1.

Geneva. ICH, Q2B, Guideline on Validation of Analytical Procedure: Methodology, International Conference on Harmonization; 1996. p. 1–8.

Geneva. ICH, Q2A, Text on Validation of Analytical Procedure, International Conference on Harmonization; 1994. p. 1–5.

Sarfaraj Hussain, Sheeba Fareed, Mohammad Ali, Sarfaraz Alam, Akhlakquer Rahman, Srivastava AK. Phytochemical investigation and simultaneous estimation of bioactive lupeol and stigmasterol in Abutilon indicumby validated HPTLC method. J Coastal Life Med 2014;2 Suppl 5:394-401.

Kpoviéssi DSS, Gbaguidia F, Gbénou J, Accrombessia G, Moudachiroua M, Rozetd E. Validation of a method for the determination of sterols and triterpenes in the aerial part of Justicia anselliana (Nees) T. Anders by capillary gas chromatography. J Pharm Biomed Anal 2008;48:1127-35.

Delporte C, Backhouse N, Erazo S, Negrete R, Vidal P, Silva X. Analgesic-anti-inflammatory properties of Proustia pyrifolia. J Ethnopharmacol 2005;99 Suppl 11:119-24.

McAnuff MA, Harding WW, Omoruyi FO, Jacobs H, Morrison EY, Asemota HN. Hypoglycemic effects of steroidal sapogenins isolated from Jamaican bitteryam, Dioscorea polygonoides. Food Chem Toxicol 2005;43 Suppl 11:1667-72.

Sunitha S, Nagaraj M, Varalakshmi P. Hepatoprotective effect of lupeol and lupeol linoleate on tissue antioxidant defence system in cadmium-induced hepatotoxicity in rats. Fitoterapia 2001;72:516-23.

Chaturvedi PK, Bhui K, Shukla Y. Lupeol: connotations for chemoprevention. Cancer Lett 2008;263:1-13.

Saleem M, Alam A, Arifin S, Shah MS, Ahmed B, Sultana S. Lupeol, a triterpene, inhibits early responses of tumor promotion induced by benzoyl peroxide in murine skin. Pharmacol Res 2001;43:127-34.

Nigam N, Prasad S, George J, Shukla Y. Lupeol induces p53 and cyclin-B-mediated G2/M arrest and targets apoptosis through activation of caspase in mouse skin. Biochem Biophys Res Commun 2009;381:253-8.

Saleem M. Lupeol, A novel anti-inflammatory and anticancer dietary triterpene. Cancer Lett 2009;285:109-15.

Biringanine G, Chiarelli MT, Faes M, Duez P. A validation protocol for the HPTLC standardization of herbal products: application to the determination of acteoside in leaves of Plantago palmate Hook. Talanta 2006;69:418-24.

Kamboj A, Saluja AK. Isolation of stigmasterol and β-sitosterol from petroleum ether extract of aerial parts of Ageratum conyzoides (Asteraceae). Int J Pharm Pharm Sci 2011;3 Suppl 1:94–6.

Vijaykumar M Kal, Ajay G Namdeo. HPTLC densitometric evaluation by simultaneous estimation of galangin in Alpinia galanga and Alpinia officinarum Pharm Lett 2015;7 Suppl 7:158-64.

Sorenson WR, Sullivan D. Determination of campesterol, stigmasterol, and beta-sitosterol in saw palmetto raw materials and dietary supplements by gas chromatography: single-laboratory validation. J AOAC Int 2006;89:22–34.

Hamrapurkar PD, Karishma P. HPTLC determination of stigmasterol and tocopherol acetate in Leptadenia reticulata and in its formulation. J Planar Chromatogr Mod TLC 2007;20 Suppl 3:183-7.

Ling-Yi K, Min-Jian Q, Masatake N. Diterpenoids from the rhizomes of Alpinia calcarata. J Nat Prod 2000;63 Suppl 7:939–42.

Mizanur R, Atiar R, Hashem MA, Ullah M, Shakila A, Vidyanath C. Anti-inflamatory, analgesic and GC-MS analysis of essential oil of Alpinia calcarata rhizome. Int J Pharma Bio Sci 2012;3 Suppl 4:55–63.

Sonali Sethi, Om Prakash, Pant AK. Phytochemical analysis and isolation of stigmasterol and β-Sitosterol from the rhizomes of Alpinia allughas Rosc. Int J Curr Res Biosci Plant Biol 2015;2 Suppl 5:124-9.

Published

01-09-2017

How to Cite

Pratheema, P., and L. Cathrine. “IDENTIFICATION, QUANTIFICATION AND VALIDATION OF STIGMASTEROL FROM ALPINIA CALCARATA USING HIGH-PERFORMANCE THIN LAYER CHROMATOGRAPHY METHOD”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 9, no. 9, Sept. 2017, pp. 126-31, doi:10.22159/ijpps.2017v9i9.19988.

Issue

Section

Original Article(s)