BIOLOGICAL STUDIES ON NITROGEN - CONTAINING COMPOUNDS FROM CAMPYLOSPERMUM OLIVERIANUM AND CAMPYLOSPERMUM SULCATUM (OCHNACEAE)

  • Auguste Abouem A Zintchem Department of Chemistry, Higher Training College, University of Yaounde I, P. O. Box 47, Yaounde, Cameroon
  • Joseph Thierry Ndongo Department of Chemistry, Higher Training College, University of Yaounde I, P. O. Box 47, Yaounde, Cameroon
  • Serge Dominique Ngono Bikobo Department of Organic Chemistry, Faculty of Science, University of Yaounde I, P. O. Box 812, Yaounde, Cameroon.
  • Jeanne Louise Nkot Department of Organic Chemistry, Faculty of Science, University of Yaounde I, P. O. Box 812, Yaounde, Cameroon.

Abstract

Objective: Campylospermum oliverianum and C. sulcatum (Ochnaceae) are considered conspecific by some reports.

Methods: Following phytochemical analyses on those species, biological tests were carried.

Results: Phytotchemical analyses led to the isolation of three known nitrogenous compounds: two cyanoglucosides named dhurrin and menisdaurin and an indole alkaloid, serotobenine. These nitrogen-containing compounds showed potent cytotoxic activities against the microcrustacean Artemia salina (brine shrimp), when two of them exhibited efficient bactericidal effects against a few Gram cocci. This newest co-occurrence of both α- and γ-hydroxynitrile glucosides within the same species suggested another biosynthetic pathway for putative tyrosine-derived non-cyanogenic cyanoglucosides.

Conclusion: This study does not recommend an identical chemical profile for the two species, hence they might not be regarded as the same. The biosynthetic pathway of numerous putative tyrosine-derived cyanoglucosides is supported by the isolated compounds from C. sulcatum. The taxonomical value of serotobenine in species of the Campylospermum genus as well as the other one of cyanoglucosides in angiosperms is once more highlighted.

 

Keywords: Campylospermum, cyclohex(en)yl cyanoglucosides, menisdaurin, serotobenine, biosynthesis, chemotaxonomy, antimicrobial assay, brine shrimp toxicity.

Downloads

Download data is not yet available.

References

1. Farron C. Les genres Rhabdophylum van Tiegh. et Campylospermum van Tiegh. (Ochnaceae) en Afrique tropicale (Note préliminaire). Bull Jard Bot État 1965;35:389–405.
2. Keay RWJ. Revision of the “Flora of West Tropical Africa”-III. Kew Bull 1953;8:69–82.
3. Harris DJ. The vascular plants of the Dzanga-Sangha Reserve, Central African Republic. National Botanic Garden: Meise; 2002.
4. Bouquet. Féticheurs et médecines traditionnelles du Congo (Brazzaville). Paris: ORSTOM; 1969.
5. A Zintchem AA, Bikobo DN, Atchadé AT, Mbing JN, Pieboji JG, Tih RG, et al. Nitrile glucosides and serotobenine from Campylospermum glaucum and Ouratea turnarea (Ochnaceae). Phytochemistry 2008;69:2209–13.
6. Bikobo DSN, Atchadé AT, Tih RG, Piéboji JG, Blond A, Pegnyemb DE, Bodo B. Antimicrobial activities of some Ouratea species (Ochnaceae) and biflavonoids from Ouratea elongata. Asian Chemistry Letters 2009;13:59–66.
7. Bikobo DSN, Nkot JL, Mosset P, Atchadé AT, Ndongo JT, Pemha R, et al. Acylsteryl glycosides and constituents from Campylospermum densiflorum species (Ochnaceae). RĀSAYAN J Chem 2011;4:753–63.
8. Brandão GC, Kroon EG, dos Santos JR, Stehmann JR, Lombardi JA, de Oliveira AB. Antiviral activity of plants occurring in the state of Minas Gerais (Brazil):part III. J Chem Pharm Res 2011;3:223–36.
9. Ndongo JT, Shaaban M, Mbing JN, Bikobo DN, Atchadé AT, Pegnyemb DE, Laatsch H. Phenolic dimers and an indole alkaloid from Campylospermum flavum (Ochnaceae). Phytochemistry 2010;71:1872–8.
10. À Zintchem AA, Atchadé AT, Tih RG, Mbafor JT, Blond A, Pegnyemb DE, et al. Flavonoids from Ouratea staudtii (Ochnaceae). Biochem Syst Ecol 2007;35:255–6.
11. Ba Njock GB, Bartholomeusz TA, Foroozandeh M, Pegnyemb DE, Christen P, Jeannerat D. NASCA-HMBC, a new NMR methodolody for the resolution of severely overlapping signals: application to the study of agathisflavone. Phytochem Anal 2012;23:126–30.
12. Pegnyemb DE, Mbing JN, Atchadé AT, Tih RG, Sondengam BL, Blond A, et al. Antimicrobial biflavonoids from the aerial parts of Ouratea sulcata. Phytochemistry 2005;66:1922–6.
13. Manga SSE, Messanga BB, Sondengam BL. 7,8-dihydrobenzofuranones from Ouratea reticulata. Fitoterapia 2001;72:706–8.
14. Bak S, Paquette SM, Morant M, Rasmussen AB, Saito S, Bjarnholt N, et al. Cyanogenic glucosides: a case study for evolution and application of cytochromes P450. Phytochem Rev 2006;5:309–29.
15. Lechtenberg M, Nahrstedt A. Cyanogenic glycosides. In: Ikan R, editor. Naturally Occuring Glycosides. Chichester: John Wiley and sons; 1999. p. 147–91.
16. Bjarnholt N, Møller BL. Hydroxynitrile glucosides. Phytochemistry 2008;69:1947–61.
17. Bjarnholt N, Rook F, Motawia MS, Cornett C, Jørgensen C, Olsen CE, et al. Diversification of an ancient theme: Hydroxynitrile glucosides. Phytochemistry 2008;69:1507–16.
18. Seigler DS, Pauli GF, Fröhlich R, Wegelius E, Nahrstedt A, Glander KE, et al. Cyanogenic glycosides and menisdaurin from Guazuma ulmifolia, Ostrya virginiana, Tiquilia plicata and Tiquilia canescens. Phytochemistry 2005;66:1567–80.
19. Hegnauer R. Die cyanogenen Verbindungen der Liliatae und Magnoliatae: Zur systematischen Bedeutung des Merkmals der Cyanogenese. Biochemical Systematics 1973;1:191–7.
20. Nahrstedt A, Wray V. Structural revision of a putative cyanogenic glucoside from Ilex aquifolium. Phytochemistry 1990;29:3934–6.
21. Takahashi K, Matsuzawa S, Takani M. Studies on the constituents of medicinal plants. XX. The constituents of the vines of Menispermum dauricum. Chem Pharm Bull 1978;26:1677–81.
22. Sarker SD, Savchenko T, Whiting P, Šik K, Dinan LN. Moschamine, cis-moschamine, moschamindole and moschamindolol: four novel indole alkaloids from Centaura moschata. Nat Prod Lett 1997;9:189–99.
23. Sato H, Kawagishi H, Nishimura T. Serotobenine, a novel phenolic amide from Safflower seeds (Carthamus tinctorins L. ). Agric Biol Chem 1985;49:2969–74.
24. Nahrstedt A, Lechtenberg M, Brinker A, Seigler DS, Hegnauer R. 4-Hydroxymandelonitrile glucosides, dhurrin in Suckleya suckleyana and taxiphyllin in Girgensohnia oppositifolia (Chenopodiaceae). Phytochemistry 1993;33:847–50.
25. Fleming FF. Nitrile containing natural products. Nat Prod Rep 1999;16:597–606.
26. Willems MA. Cyanogenic glucoside from Ilex aquifolium. Phytochemistry 1988;27:1852–3.
27. Nielsen KA, Olsen CE, Pontoppidan K, Møller BL. Leucine-derived cyanoglucosides in barley. Plant Physiol 2002;129:1066–75.
28. Saito S, Motawia MS, Olsen CE, Møller BL, Bak S. Biosynthesis of rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile. Phytochemistry 2012;77:260–7.
29. Simpol LR, Otsuka H, Ohtani K, Kasai R, Yamasaki K. Nitrile glucosides and rosmarinic acid, the histamine inhibitor from Ehretia philippinensis. Phytochemistry 1994;36:91–5.
30. Zhang H, Liao ZX, Yue JM. Cyano and nitro-containing compounds from the roots of Semiaquilegia adoxoides. Chin J Chem 2004;22:1200–3.
31. Shanker K, Gupta MM, Srivastava SK, Bawankule DU, Pal A, Khanuja SPS. Determination of bioactive nitrile glycoside(s) in drumstick (Moringa Oleifera) by reverse phase HPLC. Food Chem 2007;105:376–82.
32. Messanga BB, Kimbu SF, Sondengam BL, Martin MT, Bodo B. Triflavonoids of Ochna calodendron. Phytochemistry 2002;59:435–8.
33. Murakami A, Ohigashi H, Tanaka S, Hirota M, Irie R, Takeda N, et al. Bitter cyanoglucosides from Lophira alata. Phytochemistry 1993;32:1461–6.
34. Tih AE, Tih RG, Sondengam BL, Martin MT, Bodo B. Lanceolins A and B: nitrile glycosides esters from Lophira lanceolata. J Nat Prod 1994;57:971–4.
35. Messanga BB, Ghogomu R, Sondengam BL, Blond A, Bodo B. Lanceolin C, a new nitrile glycoside from Lophira alata. Fitoterapia 1998;69:439–42.
36. Elliger CA, Waiss AC, Lundin RE. Simmondsin, an unusual 2-cyanomethylenecyclohexyl glucoside from Simmondsia californica. J Chem Soc Perkin I 1973;2209–12.
37. Tih AE, Ghogomu RT, Sondengam BL, Caux C, Bodo B. Constituents of Lophira alata leaves. Biochem Syst Ecol 2003;31:549–51.
38. Tih AE, Ghogomu RT, Sondengam BL, Caux C, Bodo B. Minor biflavonoids from Lophira alata leaves. J Nat Prod 2006;69:1206–8.
39. Sosa A, Winternitz F, Wylde R, Pavia AA. Structure of a cyanoglucoside of Lithospermum purpureo-caeruleum. Phytochemistry 1977;16:707–9.
40. The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 2003;141:399–436.
41. Judd WS, Olmstead RG. A survey of tricolpate (eudicot) phylogenetic relationships. Am J Bot 2004;91:1627–44.
42. Soltis PS, Soltis DE. The origin and diversification of angiosperms. Am J Bot 2004;91:1614–26.
43. Erdemgil FZ, Baser KHC, Akbay P, Sticher O, Ҫalis I. Thalictricoside, a new phenolic compound from Thalictrum orientale. Z Naturforsch 2003;58c:632–6.
44. Han Q, Jiang B, Mei S, Ding G, Sun H, Xie J, Liu Y. Constituents from the roots of Semiaquilegia adoxoides. Fitoterapia 2001;72:86–8.
45. Niu F, Cui Z, Chang HT, Jiang Y, Chen FK, Tu PF. Constituents from the roots of Semiaquilegia adoxoides. Chin J Chem 2006;24:1788–91.
46. Sano T, Matsumura I, Nakamura R. Genetic and chemical comparison of Boi and Seifuto. J Nat Med 2010;64:257–65.
47. Wu J, Fairchild EH, Beal JL. Lithospermoside and dasycarponin, cyanoglucosides from Thalictrum dasycarpum. J Nat Prod 1979;42:500–11.
48. Elliger CA, Waiss AC, Lundin RE. Cyanomethylenecyclohexyl glycosides from Simmondsia californica. Phytochem Rep 1974;13:2319–20.
49. Chen CC, Chen YP, Hsu HY. Bauhinin, a new nitrile glucoside from Bauhinia championii (Leguminosae). J Nat Prod 1985;48:933–7.
50. Nakanishi T, Nishi M, Somekawa M. Structures of new and known cyanoglucosides from a north american plant Purshia tridentata DC. Chem Pharm Bull 1994;42:2251–5.
51. Ueda K, Yasutomi K, Mori I. Structure of a new cyanoglucoside from Ilex warburgii Loesn. Chem Lett 1983;149–50.
52. Willems M. Quantitative determination and distribution of a cyanogenic glucoside from Ilex aquifolium. Planta Med 1989;2:195.
53. Bremer B, Bremer K, Heidari N, Erixon P, Olmstead RG, Anderberg AA, et al. Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Mol Phyl Evol 2000;24:274–301.
54. Olmstead RG, Kim KJ, Jansen RK, Wagstaff SJ. The phylogeny of the Asteridae sensu lato based on chloroplast ndhF gene sequences. Mol Phyl Evol 2000;16:96–112.
55. Wang ZB, Gao HY, Yang CJ, Sun Z, Wu LJ. Novel cyanoglucosides from the leaves of Hydrangea macrophylla. Helv Chim Acta 2011;94:847–52.
56. Kumarasamy Y, Fergusson ME, Nahar L, Sarker SD. Bioactivity of moschamindole from Centaurea moschata. Pharm Biol 2002;40:307–10.
57. Nicollier GF, Pope DF, Thompson AC. Biological activity of dhurrin and other compounds from Johnson grass (Sorghum halepense). J Agric Food Chem 1983;31:744–8.
58. Ito H, Miyake M, Nishitani E, Mori K, Hatano T, Okuda T, et al. Anti-tumour promoting activity of polyphenols from Cowania mexicana and Coleogyne ramosissima. Cancer Lett 1999;143:5–13.
Statistics
501 Views | 872 Downloads
How to Cite
A Zintchem, A. A., J. T. Ndongo, S. D. Ngono Bikobo, and J. L. Nkot. “BIOLOGICAL STUDIES ON NITROGEN - CONTAINING COMPOUNDS FROM CAMPYLOSPERMUM OLIVERIANUM AND CAMPYLOSPERMUM SULCATUM (OCHNACEAE)”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 6, no. 9, 1, pp. 252-6, https://innovareacademics.in/journals/index.php/ijpps/article/view/2164.
Section
Original Article(s)