• SATHESH KANNA VELLI Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600025, India
  • DEVAKI THIRUVENGADAM Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600025, India


Objective: The current plan was accompanied to explicate the possible protective role of vanillic acid (VA), on modification in lipid peroxidation, inflammatory cytokines, membrane-bound enzymes, and glycoconjugates during B(a)P induced lung cancer in Swiss albino mice.

Methods: Benzo(a)pyrene was administered orally (50 mg/kg b. wt) to induce lung cancer in Swiss albino mice. lipid peroxidation, serum marker enzymes, inflammatory cytokines, membrane-bound ATPases and protein-bound carbohydrate components (Hexose, hexosamine, sialic acid and fucose) and Mast cells and PAS staining were carried out.

Results: Lung cancer possessing animals exhibited increased levels of lipid peroxidation, ADA, AHH, γ-GT, 5’-NT, LDH, cytokines such as TNF-α and IL-1β, protein-bound carbohydrate components (protein-hexose, hexosamine, sialic acid, and fucose) also diminished activity of membrane-bound ATPases (Na+/K+ATPases, Ca2+ATPases, and Mg2+ATPase). Treatment with VA significantly ameliorated all these activities.

Conclusion: Overall, the present study evidence to the VA has effective anti-inflammatory in addition to free radical scavenging activity for the duration of lung carcinogenesis in Swiss albino mice.

Keywords: Lung cancer, Vanillic acid, Cytokines, Glycoconjugates, Benzo(a)pyrene


Download data is not yet available.


1. Khuri FR, Herbst RS, Fosella FV. Emerging therapies in non-small cell lung cancer. Ann Oncol 2001;12:739-44.
2. Winterhalder RC, Hirsch FR, Kotantoulas GK, Franklin WA, Bunn PA Jr. Chemoprevention of lung cancer-from biology to clinical reality. Ann Oncol 2004;15:185.
3. Ruano Ravina A, Figueiras A, Montes Martinez A, Barros Dios JM. Dose-response relationship between tobacco and lung cancer: new findings. Eur J Cancer Prev 2003;12:257.
4. Chandrasekar N, Subramanian R, Selvakumar A, John B, Thiruvengadam D. Baicalein improves antioxidant status and membrane-bound enzymes during oxidative stress in benzo(a)pyrene-induced lung carcinogenesis in mice. Biomed Preventive Nutr 2012;2:138-44.
5. Anandakumar P, Jagan S, Kamaraj S, Ramakrishnan G, Titto AA, Devaki T. Beneficial influence of capsaicin on lipid peroxidation, membrane-bound enzymes and glycoprotein profile during experimental lung carcinogenesis. J Pharm Pharmacol 2008;60:803-8.
6. Edward SK, Faldo RK. Chemoprevention of lung cancer. Curr Oncol 2002;4:341-6.
7. Ramakrishnan G, Titto AA, Jagan S, Vinodhkumar R, Devaki T. Effect of silymarin on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Exp Oncol 2007;29:39-44.
8. Sinha AK, Sharma UK, Sharma N. A comprehensive review on vanilla flavour: extraction, isolation and quantification of vanillin and other constituents. Int J Food Sci Nutr 2008;59:299-326.
9. Charrouf Z, Guillaume D. Phenols and polyphenols from argania spinosa. Am J Food Technol 2007;2:679.
10. Prince PSM, Rajkumar S, Dhanasekar K. Protective effect of vanillic acid on electrocardiogram, lipid peroxidation, antioxidants, proinflammatory markers and histopathology in isopretanol induced cardiotoxic rats. Eur J Pharmacol 2011;668:233-40.
11. Vetrano AM, Heck DE, Mariano TM, Mishin V, Laksin DL, Laskin JD. Characterization of the oxidase activity in mammalian catalase. J Biol Chem 2011;280:35372-81.
12. Guler EM, Nilufer C, Ozgur V, Dilek Y, Deniz B, Rahmi B. Genotoxic and Anti-genotoxic effects of vanillic acid against mitomycin C-induced genomic damage in human lymphocytes in vitro. Asian Pacific J Cancer Prev 2012;13:4993-8.
13. Vinoth A, Kowsalya R. Assessment of lipid peroxidation and antioxidant status in vanillic acid-treated 7, 12-dimethylbenz (a) anthracene-induced hamster buccal pouch carcinogenesis. J Can Res Ther 2018;14:1285-90.
14. Huang SM, Hsu CL, Chuang HC, Shih PH, Wu CH, Yen GC. Inhibitory effect of vanillic acid on methylglyoxal-mediated glycation in apoptotic neuro-2A cells. Neurotoxicology 2008;29:1016-22.
15. Tsuda H, Uehara N, Iwahori Y, Asamoo M, Ligo M, Nagao M, et al. Chemopreventive effects of beta-carotene, alpha-tocopherol and five naturally occurring antioxidants on initiation of hepatocarcinogenesis by 2-amino-3methylmidazo (4,5) quinoline in the rat. Japanese J Cancer Res 1994;85:1214-9.
16. Itoh A, Isoda K, Kondoh M, Kawase M, Kobayashi M, Tamesada M, et al. Hepatoprotective effect of syringic acid and vanillic acid on concanavalin a-induced liver injury. Bio-Pharm Bull 2009;32:1215-9.
17. Chiang LC, Ng LT, Chiang W, Chang MY, Lin CC. Immunomodulatory activities of flavonoids, monoterpenoids, triterpenoids, iridoid glycosides and phenolic compounds of plantago species. Planta Med 2011;69:600-4.
18. Jingli G, Shengxue Z, Shihai Y. Vanillic acid suppresses HIF-1? expression via inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK pathways in human colon cancer HCT116 cells. Int J Mol Sci 2019;20:465.
19. kanna VS, Jagan S, Murugan M, Gopalakrishnan B, Devaki T. Protective effect of vanillic acid against benzo(a)pyrene-induced lung cancer in swiss albino mice. J Biochem Mol Toxicol 2019;33:e22382.
20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54.
21. Galanti B, Giusti G. Direct colorimetric method for the determination of adenosine deaminase and 5’-AMP deaminase in the blood. Boll Soc Ital Biol Sper 1966;42:1316-20.
22. Mildred K, Richerd L, Joseph G, Alexander W, Conney A. Activation and inhibition of benzo(a)pyrene and aflatoxin B1 metabolism in human liver microsomes by naturally accruing flavonoids. Cancer Res 1981;41:67-2.
23. Orlowski M, Meister A. Isolation of ?-glutamyl transpeptidase from hog kiney. J Biol Chem 1965;240:338-47.
24. Hardonk MJ. 5’-nucleotidase. I. determinations of 5’-nucleotidase isoenzymes in tissues of rat and mouse. Histochemie 1968;12:1-17.
25. King J. The transferases-alanine and aspartate transaminases. In: King J. Ed. Practical clinical enzymology. Van Nostrand Company Ltd., London; 1965c. p. 121-38.
26. Dodge JT, Hanahan DJ. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 1963;100:119-30.
27. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351-8.
28. Israel Y, Kalant H, Leblanc E, Bernstein JC, Salazar I. Changes in cation transport and (Na+K+) activated adenosine triphosphatase produced by chronic administration of ethanol. J Pharmacol Exp Ther 1970;174:330-6.
29. Hjerten S, Pan H. Purification and characterization of two forms of a low-affinity Ca2+ATPase from erythrocyte membranes. Biochim Biophys Acta 1983;728:281-8.
30. Ohnishi T, Suzuki Y, Ozawa K. A comparative study of plasma membrane Mg2+ATPase activities in normal, regenerating and malignant cells. Biochim Biophys Acta 1982;684:67-74.
31. Niebes P, Berson I. Determination of enzymes and degradation products of mucopolysaccharide metabolism in the serum of healthy and varicose subjects. Bibliotheca Anatomica 1973;11:499-506.
32. Warren L. The thiobarbituric acid assay of sialic acids. J Biol Chem 1959;234:1971-5.
33. Ranieri G, Labriola A, Achille G, Florio G, Zito G, Zito AF, et al. Microvessel density, mast cell density and thymidine phosphorylase expression in oral squamous carcinoma. Int J Oncol 2002;21:1317-23.
34. Meloan SN, Valentine LS, Puchtler H. On the structure of carminic acid and carmine. Histochemie 1971;27:87-95.
35. Kamaraj S, Anandakumar P, Jagan S, Ramakrishnan G, Devaki T. Modulatory effect of hesperidin on benzo(a)pyrene-induced experimental lung carcinogenesis with reference to COX-2, MMP-and MMP-9. Eur J Pharmacol 2010;649:320-7.
36. Yogeeswaran G. Cell surface glycolipids and glycoproteins in malignant transformation. Adv Cancer Res 1983;38:289-350.
37. Sharmila S, Sathesh KV, Palanisamy K, Indumathi S, Manikandan M, Nirmala S, et al. Anti-cancer efficacy of umbelliferone against benzo(a)pyrene-induced lung carcinogenesis in swiss albino mice. Malaya J Biosci 2018;5:79-89.
38. Kocic G, Stanojevic V, Nagorm A, Brankovic N, Pavlovic D, Jevtovic T. Diagnostic importance of adenosine deaminase activity for progression and invasion of human colon tumors. Facta Universities 2003;10:76-8.
39. Amir M, Tiejuan M, Yang X, Rodney EK, Jiang-Fan C, Michael RB. Genetic removal of the A2A adenosine receptor enhances pulmonary inflammation, mucin production, and angiogenesis in adenosine deaminase-deficient mice. Am J Physiol Lung Cell Mol Physiol 2007;293:L753-L761.
40. Ngo EO, Nutter LM. Status of glutathione and glutathione-metabolizing enzymes in menadione-resistant human cancer cells. Biochem Pharmacol 1994;47:421-4.
41. Erdemli HK, Adam B, Bavbek N. Pyrmidine 5’nucleotidase I and II activities in acute leukaemias. Acta Medica (Hradec Kralove) 2004;47:129-31.
42. Dao TL, Ip C, Patel J. Serum sialyltransferase and 5’-nucleotidase as reliable biomarkers in women with breast cancer. J Natl Cancer Ins 1980;65:529-34.
43. Anbarasi K, Sabitha KE, Devi CSS. Lactate dehydrogenase isoenzyme patterns upon chronic exposure to cigarette smoke: protective effect of bacoside A. Environ Toxicol Pharmacol 2005;20:345-50.
44. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-7.
45. Heissig B, Rafii S, Akiyama H, Ohki Y, Sato Y, Rafael T, et al. Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9 mediated progenitor cell mobilization. J Exp Med 2005;202:739-50.
46. Tomita M, Mattsuzaki Y, Onitsuka T. Effect of mast cells on tumor angiogenesis in lung cancer. Ann Thorac Surgeons 2000;69:1686-90.
47. Balkwill F, Mantovani A. Inflammation and cancer: back to virchow? Lancet 2001;357:539-45.
48. Ben Bauch A. Host microenvironment in breast cancer development: inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor-microenvironment interactions. Breast Cancer Res 2003;5:31-6.
49. Lejune FJ, Ruegg C, Lienard D. Clinical applications of TNF-alpha in cancer. Curr Opin Immunol 1998;10:573-80.
50. Noguchi M, Hiwatashi N, Liu Z, Toyoto T. Secretion imbalance between tumour necrosis factor and its inhibitor in inflammatory bowel disease. Gut 1998;43:203-9.
51. Bartel DP. MicroRNAs genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97.
52. Cheng-cheng W, Jia-rui Y, Chen-fei W, Nan Y, Juan C, Dan L, et al. Anti-inflammatory effects of Phyllanthus emblica L on benzopyrene-induced precancerous lung lesion by regulating the IL-1?/miR-101/lin 28B signaling pathway. Integrative Cancer Ther 2017;16:505-15.
53. Thirunavukkarasu C, Sakthisekaran D. Stabilization of membrane-bound enzyme profiles by sodium selenite in N-nitrosoethylamine induced and phenobarbitol promoted hepatocarcinogenesis in rats. Biomed Pharmacother 2003a;57:117-23.
54. Thirunavukkarasu C, Sakthisekaran D. Influence of sodium selenite on glycoprotein contents in normal and N-nitrosodiethylamine initiated and phenobarbitol promoted rat liver tumors. Pharmacol Res 2003b;48:167-73.
55. Selvendiran K, Prince Vijeya Singh J, Sakthisekaran D. In vivo effect of piperine on serum and tissue glycoproteins levels in benzo(a)pyrene-induced lung carcionogenesis in Swiss albino mice. Pulmonary Pharmacol Ther 2006;19:107-11.
56. Mariline G, Renata S, Carolina RP, Helena C, Felix C, Maria LB, et al. Cellular models and in vitro assays for the screening of modulators of P-gp, MRP1 and BCRP. Molecules 2017;22:600.
57. Madankumar A, Jayakumar S, Devaki T. Geraniol, a component of plant essential oils prevents experimental oral carcinogenesis by modulating glycoprotein abnormalities and membrane-bound Atpase’s. Int J Pharm Pharm Sci 2013;5:416-21.
141 Views | 181 Downloads
How to Cite
VELLI, S. K., and D. THIRUVENGADAM. “VANILLIC ACID INHIBITS LUNG CARCINOGENESIS BY MODULATES GLYCOPROTEIN ABNORMALITIES, MEMBRANE-BOUND ENZYMES, AND INFLAMMATORY MARKERS”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 12, no. 3, Mar. 2020, pp. 83-88, doi:10.22159/ijpps.2020v12i3.36607.
Original Article(s)