BEES AND WASPS VENOM TOXINS, ITS IMMUNE-ALLERGIC RESPONSES, DIAGNOSIS AND THERAPEUTICS

  • KRISHNA KUMAR PRAJAPATI Immunobiological laboratory, Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, U. P. India
  • RAVI KANT UPADHYAY Immunobiological laboratory, Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, U. P. India

Abstract

Present article explains insect toxins, its immune allergic, pharmaceutical and therapeutic effects. Insect venom glands generate enzymatic and non-enzymatic toxins and are inflicted by the stings. Insect’s envenomation are highly painful, inflamed and life-threatening. It causes breathing difficulties, bronchospasm, hypotension and arrhythmia, cardiopulmonary problems, and imposes allergic reactions. Wasp venom toxins generate strong T-cell responses in hypersensitivity patients and stimulate the production of IgE antibody molecules. Massive envenomations causes the death of victims due to the toxic effects of the venom toxins if clinical treatment is delayed. This article also emphasizes the role of natural and recombinant toxins for the development of highly sensitive immune-assays for diagnosis of allergen-specific tolerance, its early and delayed effects in patients to avoid fatal anaphylactic reactions. It also directs about the essentiality of immune diagnostics, vaccines and antiserum therapy in high population density regions where incidences of wasp and bee envenomations are more frequently occur. Venom immunotherapy can restore normal immunity against venom allergens and may also provide lifetime tolerance against venoms. This article highlights the major effects of insect venom allergens, its diagnosis and venom immunotherapy.

Keywords: Wasps and honeybee, Allergens, Immune-hypersensitivity, Venom immunotherapy

Downloads

Download data is not yet available.

References

1. de Groot H. Allergy to bumblebees. Curr Opin Allergy Clin Immunol 2006;6:294–7.
2. Tankersley MS. The stinging impact of the imported fire ants. Curr Opin Allergy ClinImmunol 2008;8:354–9.
3. Müller UR. Entomology of hymenoptera. Clinical presentation and pathogenesis. In: Muller UR Insect Sting allergy: clinical picture, diagnosis and treatment. Gustav Fisher, New York; 1990. p. 3–65.
4. Ellis AK, Day JH. Clinical reactivity to insect stings. Curr Opin Allergy Clin Immunol 2005;5:349-54.
5. Freeman TM. Hypersensitivity to hymenoptera stings. New England J Med 2004;351:1978-84.
6. Yavuz ST, Sahiner UM, Buyuktiryaki B, Soyer OU, Sackesen C, Sekerel BE, et al. Clinical features of children with venom allergy and risk factors for severe systemic reactions. Int Arch Allergy Immunol 2013;160:313-21.
7. Ruëff F, Dugas Breit S, Przybilla B. Stinging hymenoptera and mastocytosis. Curr Opin Allergy Clin Immunol 2009;9:338-42.
8. De Graaf DC, Aerts M, Danneels E, Devreese B. Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. J Proteomics 2009;72:145-4.
9. King TP, Alagon AC, Kuan J, Sobotka AK, Lichtenstein LM. Immunochemical studies of yellow jacket venom proteins. Mol Immunol 1983;20:297-8.
10. Hoffman DR, Wood CL. Allergens in hymenoptera venom XI. Isolation of protein allergens from Vespula maculifrons (yellow jacket) venom. J Allergy Clin Immunol 1984;74:93–3.
11. King TP, Sobotka AK, Alagon A, Kochoumian L, Lichtenstein LM. Protein allergens of white-faced hornet, yellow hornet, and yellow jacket venoms. Biochemistry 1978;17:5165-74.
12. Hoffman DR. Allergens in hymenoptera venom XIII: Isolation and purification of protein components from three species of vespid venoms. J Allergy Clin Immunol 1985;75:599-605.
13. Vinzon SE, Marino Buslje C, Rivera E, Biscoglio de Jimenez Bonino M. A naturally occurring hypoallergenic variant of vespid Antigen 5 from Polybia scutellaris venom as a candidate for allergen-specific immunotherapy. PLoS One 2012;7:e41351.
14. King GF, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for control of insect pest. Annu Rev Entomol 2013;58:475-96.
15. Ebo DG, Faber M, Sabato V, Leysen J, Bridts CH, De Clerck LS. Component-resolved diagnosis of wasp (yellow jacket) venom allergy, Clin Exp Allergy 2013;43:255-61.
16. Kumar V, Nada R, Kumar S, Ramachandran R, Rathi M, Kohli HS. Acute kidney injury due to acute cortical necrosis following a single wasp sting. Ren Fail 2013;35:170-2.
17. Nestorovic B, Milosevic K, Rsovac S, Nikolic A. Anaphylaxis followed by unilateral lung opacity and hypocomplementemia in a young female. Am J Emerg Med 2013;31:1623.
18. Simons FE, Peng Z. Skeeter syndrome. J Allergy Clin Immunol 1999;104:705-7.
19. Matysiak J, Br?borowicz A, Kokot ZJ. Diagnosis of hymenoptera venom allergy--with special emphasis on honeybee (Apis mellifera) venom allergy. Ann Agric Environ Med 2013;20:875-9.
20. Hoshina MH, Santos LD, Palma MS, Marin Morales MS. Cytotoxic, genotoxic/antigenotoxic and mutagenic/ antimutagenic effects of the venom of the wasp Polybia paulista. Toxicon 2013;72:64-70.
21. Habermann E. Bee and wasp venoms. Science 1972;177:314-22.
22. Szumera B, Lalik B, Szl?k R. Wspó?czesne osi?gni?cia w dziedzinie alergii na jad owadów b?onkoskrzyd?ych [Present achievements in treatment of allergy to the hymenopteral insects venom]. Przegl Pediatr 2005;35:137–43.
23. Reisman RE, Müller UR, Wypych JI, Lazell MI. Studies of coexisting honeybee and vespid-venom sensitivity. J Allergy ClinImmunol 1984;73:246–52.
24. Mosbech H. Anaphylaxis to insect venom. Novartis Found Symp 2004;25:177-88.
25. Ewan PW. Allergy to insect stings: a review. J R Soc Med 1985;78:234–9.
26. Rungsa P, Incamnoi P, Sukprasert S, Uawonggul N, Klaynongsruang S, Daduang J, Patramanon R, et al. Cloning, structural modelling and characterization of VesT2s, a wasp venom hyaluronidase (HAase) from Vespa tropica. J Venom Anim Toxins Incl Trop Dis 2016;22:28.
27. Annila I. Bee venom allergy. Clin Exp Allergy 2000;30:1682–7.
28. Jesmin T, Muinuddin G, Hossain MM, Rahman MH, Mamun AA. Acute renal failure following wasp sting. Mymensingh Med J 2013;22:609-12.
29. Strohmeier B, Aberer W, Bokanovic D, Komericki P, Sturm GJ. Simultaneous intradermal testing with hymenoptera venoms is safe and more efficient than sequential testing, Allergy 2013;68:542-4.
30. Vetter RS, Visscher PK, Camazine S. Mass envenomation by honeybees and wasps. West J Med 1999;170:223-7.
31. Hoffman DR, Jacobson RS. Allergens in hymenoptera venom XII: how much protein is in a sting? Ann Allergy 1984;52:276–8.
32. Baumann K, Dashevsky D, Sunagar K, Fry B. Scratching the surface of an itch: molecular evolution of aculeata venom allergens. J Mol Evol 2018;86:484-500.
33. Rodriguez Perez R, Monsalve RL, Galan A, Perez Pinar T, Umpierrez A, Lluch Bernal M. Cross-reactivity between anisakis spp. and wasp venom allergens. Int Arch Allergy Immunol 2014;163:179-84.
34. Nadolski J. Effects of the European hornet (Vespa crabro Linnaeus 1761) crude venom on its own species. J Venom Anim Toxins Incl Trop Dis 2013;19:4.
35. Teng ZW, Xiong SJ, Xu G, Gan SY, Chen X, Stanley D, et al. Protein discovery: combined transcriptomic and proteomic analyses of venom from the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae). Toxins (Basel) 2017;9:135.
36. Craik DJ, Daly NL, Waine C. The cystine knot motif in toxins and implications for drug design. Toxicon 2001;39:43–60.
37. Jin C, Focke M, Leonard R, Jarisch R, Altmann F, Hemmer W. Reassessing the role of hyaluronidase in yellow jacket venom allergy. J Allergy Clin Immunol 2010;125:184–90.
38. Justo Jacomini DL, Campos Pereira FD, Aparecido dos Santos Pinto JR, dos Santos LD, da Silva Neto AJ, Giratto DT. Hyaluronidase from the venom of the social wasp Polybia paulista (Hymenoptera, Vespidae): Cloning, structural modeling, purification, and immunological analysis. Toxicon 2013;64:70-80.
39. Markovic Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Müller U, Schirmer T. Crystal structure of hyaluronidase, a major allergen of bee venom. Structure 2000;8:1025-35.
40. Lu G, Kochoumian L, King TP. Sequence identity and antigenic cross-reactivity of white face hornet venom allergen, also a hyaluronidase, with other proteins. J Biol Chem 1995;270:4457-65.
41. Kubelka V, Altmann F, Marz L. The asparagine-linked carbohydrate of honeybee venom hyaluronidase. Glycoconj J 1995;12:77-83.
42. Abe T, Sugita M, Fujikura T, Hiyoshi J, Akasu M. Giant hornet (Vespa mandarinia) venomous phospholipases. The purification, characterization and inhibitory properties by biscoclaurine alkaloids. Toxicon 2000;38:1803-16.
43. Costa H, Palma MS. Agelotoxin: a phospholipase A2 from the venom of the neotropical social wasp cassununga (Agelaia pallipas pallipas) (Hymenopotera-vespidae). Toxicon 2000; 38:13676-9.
44. Fang KSY, Vitale M, Fehlner P, King TP. cDNA cloning and primary structure of a white-face hornet venom allergen, antigen 5. Proc Natl Acad Sci USA 1988;85:895–9.
45. King TP, Moran D, Wang DF, Kochoumian L, Chait BT. Structural studies of a hornet venom allergen antigen 5, Dol m V and its sequence similarity with other proteins. Protein Seq Data Anal 1990;3:263-6.
46. Lu G, Villalba M, Coscia MR, Hoffman DR, King TP. Sequence analysis and antigenic cross-reactivity of a venom allergen, antigen 5, from hornets, wasps, and yellow jackets. J Immunol 1993;150:2823-30.
47. Hoffman DR. Allergens in hymenoptera venom. XXV: the amino acid sequences of antigen 5 molecules and the structural basis of antigenic cross-reactivity. J Allergy Clin Immunol 1993;92:707-16.
48. Henriksen A, King TP, Mirza O, Monsalve RI, Meno K, Ipsen H, et al. Major venom allergen of yellow jackets, Ves v 5: structural characterization of a pathogenesis-related protein superfamily. Proteins 2001;45:438-48.
49. de Azevedo RA, Figueiredo CR, Ferreira AK, Matsuo AL, Massaoka MH, Girola N. Mastoparan induces apoptosis in B16F10-Nex2 melanoma cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Peptides 2015;68:1139.
50. Leite NB, da Costa LC, dos Santos AD. The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by fluorescence and CD spectroscopy. Amino Acids 2011;40:91-100.
51. Higashijima T, Uzu S, Nakajima T, Ross EM. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G Proteins). J Biol Chem 1988;263:6491-4.
52. Rocha T, de Souza BM, Palma MS. Myotoxic effects of mastoparan from Polybia paulista (Hymenoptera, Epiponini) wasp venom in mice skeletal muscle. Toxicon 2007;50:589-99.
53. Rivers DB, Rocco MM, Frayha AR. Venom from the ectoparasite wasp Nasonia vitripennis increases Na+Influx and activates phospholipase c and phospholipase A2 De? pendent signal transduction pathways in cultured insect cells. Toxicon 2002;40:9.
54. Hirata Y, Nakahata N, Ohizumi Y. Identification of a 97-kDa mastoparan-binding protein involving in Ca(2+) release from skeletal muscle sarcoplasmic reticulum. Mol Pharmacol 2000;57:1235-42.
55. Lee JK, Jon SA, Weiss JN. Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1. J Gen Physiol 1999;113:555-64.
56. Karst H, Joels M, Wadman WJ, Piek T. Philanthotoxin inhibits Ca2+currents in rat hippocampal CA1 neurons. Eur J Pharmacol 1994;270:357-60.
57. Chahdi A, Choii W, Kim Y. Mastoparan selectively activates phospholipase D2 in cell membranes. J Biol Chem 2003;278:12039-45.
58. Jones D, Morgan C, Cockcroft S. Phospholipase D and membrane traffic: potential roles in regulated exocytosis, membrane delivery and vesicle budding. Biochim Biophysica Acta 1999;1439:229-44.
59. Argiolas A, Pisano JJ. Isolation and characterization of two new peptides, mastoparan C and crabrolin, from the venom of the European hornet, Vespa crabro. J Biol Chem 2013;259:10106-11.
60. Sharma JN, AL-Sherif GJ. The kinin system: present and future pharmacological targets. Am J Biomed Sci 2011;3:156-69.
61. Mendes MA, Palma MS. Two new bradykinin-related peptides from the venom of the social wasp Protopolybia exigua (Saussure). Peptides 2006;27:2632-9.
62. Duncan AM, Kladis A, Jennings GL. Kinins in Humans. Am J Physiol Regulatory Integrative Comparative Physiol 2000;278:R897-904.
63. Blank S, Neu C, Hasche D, Bantleon FI, Jakob T, Spillner E. Polistes species venom is devoid of carbohydrate-based cross-reactivity and allows interference-free diagnostics. J Allergy Clin Immunol 2013;131:1239-42.
64. Saidemberg NBB, Saidemberg DM, de Souza BM. Protonectin (1–6): a novel chemotactic peptide from the venom of the social wasp Agelaia pallipes pallipes. Toxicon 2010;56:880-9.
65. Bilo BM, Rueff F, Mosbech H. Diagnosis of hymenoptera venom allergy. Allergy 2005;60:1339-49.
66. Sellaturay P, Nasser S, Ewan P. The incidence and features of systemic reactions to skin prick tests. Ann Allergy Asthma Immunol 2015;115:229-33.
67. Neis MM, Merk HF. Value of component based diagnostics in IgE mediated hymenoptera sting reactions. Cutan Ocul Toxicol 2012;31:117–23.
68. Shin YS, Liu JN, Hur GY. Clinical features and the diagnostic value of component allergen-specific IgE in hymenoptera venom allergy. Allergy Asthma Immunol Res 2012;4:284-9.
69. Sturm GJ, Schuster C, Kranzelbinder B, Wiednig M, Groselj Strele A, Aberer W. Asymptomatic sensitization to hymenoptera venom is related to total immunoglobulin E levels. Int Arch Allergy Immunol 2009;148:261-4.
70. Bilo MB, Bonifazi F. The natural history and epidemiology of insect venom allergy: clinical implications. Clin Exp Allergy 2009;39:1467-76.
71. Jeep S, Kircholf E, O’Connor A, Kunkel G. Comparison of phadebas RAST with the pharmacia CAP system for insect venom. Allergy 1992;47:212–7.
72. Alonso R, Botey J, Pena JM, Eseverri JL, Marin A, Ras RM. Specific IgE determination using the CAP system: comparative evaluation with RAST. J Investig Allergol ClinImmunol 1995;5:156–60.
73. Ansotegui IJ, Melioli G, Canonica GW. IgE allergy diagnostics and other relevant tests in allergy, a world allergy organization position paper. World Allergy Organ J 2020;13:1000-80.
74. Watanabe M, Hirata H, Arima M. Measurement of hymenoptera venom specific IgE by the IMMULITE3 3g allergy in subjects with negative or positive results by ImmunoCAP. Asia Pac Allergy 2012;2:195–2.
75. Seismann H, Blank S, Braren I. Dissecting cross-reactivity in hymenoptera venom allergy by circumvention of alpha-1,3-core fucosylation. Mol Immunol 2010;47:799–8.
76. Hemmer W. Cross-reactivity to honeybee and wasp venom. Hautarzt 2008;59:194–9.
77. Erzen R, Korosec P, Silar M, Music E, Kosnik E. Carbohydrate epitopes as a cause of cross-reactivity in patients allergic to hymenoptera venom. Wien Klin Wochenschr 2009;121:349–52.
78. Chai L, Yang X, Liu M, Liu C, Han L, Guo H, et al. Biopanning of allergens from wasp sting patients. Biosci Rep 2018;38:11-3.
79. Gattinger P, Lupinek C, Kalogiros L, Silar M, Zidarn M, Korosec P, et al. The culprit insect but not severity of allergic reactions to bee and wasp venom can be determined by molecular diagnosis. PLoS One 2018;13:e0199250.
80. Bazon ML, Perez Riverol A, Dos Santos Pinto JRA, Fernandes LGR, Lasa AM, Justo Jacomini DL, et al. Heterologous expression, purification and immunoreactivity of the antigen-5 from Polybia paulista wasp venom. Toxins (Basel) 2017;9pii:E259.
81. Selb J, Kogovsek R, Silar M, Kosnik M, Korosec P. Improved recombinant api m 1-and ves v 5-based IgE testing to dissect bee and yellow jacket al. lergy and their correlation with the severity of the sting reaction. Clin Exp Allergy 2016;46:621-30.
82. Huss Marp J, Raulf M, Jakob T. Spiking with recombinant allergens to improve allergen extracts: benefits and limitations for the use in routine diagnostics: part 19 of the series molecular allergology. Allergo J Int 2015;24:236-43.
83. De Amici M, Barocci F, Caimmi S, Nespoli L, Licari A, Giuliani G, et al. Clinical use of basophil activation test (BAT) in drug, food and hymenoptera venom allergies. Minerva Pediatr 2018;71:209-17.
84. Krishna MT, Ewan PW, Diwakar L. Diagnosis and management of hymenoptera venom allergy: British society for allergy and clinical immunology (BSACI) guidelines. Clin Exp Allergy 2011;41:1201-20.
85. Mobs C, Muller J, Rudzio A, Pickert J, Blank S, Jakob T, et al. Decline of ves v 5-specific blocking capacity in wasp venom-allergic patients after stopping allergen immunotherapy. Allergy 2015;70:715-9.
86. Hockenhull J, Elremeli M, Cherry MG, Mahon J, Lai M, Darroch J. A systematic review of the clinical effectiveness and cost-effectiveness of Pharmalgen® for the treatment of bee and wasp venom allergy. Health Technol Assess 1998;16:III-IV, 1-110.
87. Schiener M, Graessel A, Ollert M, Schmidt Weber CB, Blank S. Allergen-specific immunotherapy of hymenoptera venom allergy. Hum Vaccin Immunother 2017;13:2467-81.
88. de Graaf DC, Aerts M, Brunain M, Desjardins CA, Jacobs FJ, Werren JH, et al. Insights into the venom composition of the ectoparasitoid wasp Nasonia vitripennis from bioinformatic and proteomic studies. Insect Mol Biol 2010;19:11-26.
89. Zhu Y, Michalovich D, Wu H, Tan KB, Dytko GM, Mannan IJ, et al. Cloning, expression, and pharmacological characterization of a novel human histamine receptor. Mol Pharmacol 2001;59:434-41.
90. Sookrung N, Wong-din-Dam S, Tungtrongchitr A, Reamtong O, Indrawattana N, Sakolvaree Y. Proteome and allergenome of Asian wasp, Vespa affinis, venom and IgE reactivity of the venom components, J Proteome Res 2014;13:1336-44.
91. Eberlein Konig B, Varga R, Mempel M, Darsow U, Behrendt H, Ring J. Comparison of basophil activation tests using CD63 or CD203c expression in patients with insect venom allergy. Allergy 2006;61:1084-5.
92. Massesini AR, Romano Silva MA, Gomez MV. Sodium channel toxins neurotransmitters release. Neurochem Res 2003;28:1607-11.
93. Savi E, Incorvaia C, Boni E, Mauro M, Peveri S, Pravettoni V, et al. Which immunotherapy product is better for patients allergic to polistes venom? A laboratory and clinical study. PLoS One 2017;7:12.
94. Panda S, Ehsan I. Molecular docking studies of snake venom serine protease of sharp–nosed pit viper with hesperetin. Asian J Pharm Clin Res 2018;11:457-61.
95. Kumar RB, Suresh MX. Neurotox: a unique database for animal neurotoxins. Int J Pharm Pharm Sci 2015;7:351-4.
96. Preet P. Peptides: a new therapeutic approach. Int J Curr Pharm Res 2018;10:29-34.
97. Asawale KY, Mehta MC, Uike PS. Drug utilization analysis of anti-snake venom at a tertiary care centre in central maharasthtra: a 3 y retrospective study. Asian J Pharm Clin Res 2018;11:134-7.
Statistics
203 Views | 196 Downloads
Citations
How to Cite
PRAJAPATI, K. K., and R. K. UPADHYAY. “BEES AND WASPS VENOM TOXINS, ITS IMMUNE-ALLERGIC RESPONSES, DIAGNOSIS AND THERAPEUTICS”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 13, no. 1, Jan. 2021, pp. 1-9, doi:10.22159/ijpps.2021v13i1.39650.
Section
Review Article(s)