INORGANIC NANOPARTICLES: AN ALTERNATIVE THERAPY TO COMBAT DRUG RESISTANT INFECTIONS

Authors

  • MONIKA GUPTA Department of Biotechnology, Invertis University, Bareilly, India, Amity Institutes of Biotechnology, Amity University Madhya Pradesh, Gwalior, India

DOI:

https://doi.org/10.22159/ijpps.2021v13i8.42643

Keywords:

Bacterial infection, Fungal infection, Viral infection, Parasite infection

Abstract

One of the most urgent challenges that medical sciences face today is overcoming the problem of drug resistance. This review paper encompasses research studies that provide a solution towards this major concern. It aims to highlight the therapeutic effects of various metal-based nanoparticles over conventional antibiotics. Severe infections caused by bacteria, viruses, fungi and parasites are transmitted easily and spread across millions of people round the globe. Resistance developed by these organisms and their various strains against regular antibiotics has posed great threat to save the lives of humans. Nanoparticles are tiny in nature and thus capable of generating Reactive Oxygen Species (ROS). These ROS bursts to create severe oxidative stresses causing damage to DNA, lipids peroxidation and protein changes resulting in cell death. This mechanism is quite different from traditional antibiotics and hence gives better results towards microbial resistance. The study demonstrates the use of metal nanoparticles such as silver, zinc oxide, aluminium oxide, gold, copper oxide, titanium dioxide, magnesium oxide, iron oxide in combination with various antibiotics to efficiently kill infectious microbes.

Downloads

Download data is not yet available.

References

Morens DM, Fauci AS. Emerging infectious diseases: threats to human health and global stability. PLOS Pathog 2013;9:e1003467.

Fauci AS, Morens DM. The perpetual challenge of infectious diseases. N Eng J Med 2012;366:454–61.

Parrish CR, Holmes EC, Morens DM, Park EC, Burke DS, Calisher CH, et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev 2008;72:457–70.

National Institutes of Health [US]. Biological sciences curriculum study NIH curriculum supplement series. In Understanding Emerging and Re-emerging Infectious Diseases; National Institutes of Health [US]: Bethesda, MD, USA; 2007. Available from: https://www.ncbi.nlm.nih.gov/books/NBK20370/ [Last accessed on 13 Mar 2018]

Casadevall A. Antibody-based therapies for emerging infectious diseases. Emerg Infect Dis 1996;2:200.

Saylor C, Dadachova E, Casadevall A. Monoclonal antibody-based therapies for microbial diseases. Vaccine 2009;27:G38–46.

Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioall Sci 2010;2:282–9.

Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Delivery Rev 2013;65:1803–15.

Zhang L, Pornpattananangkul D, Hu CM J, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 2010;6:585–94.

Baek YW, An YJ. Microbial toxicity of metal oxide nanoparticles [CuO, NiO, ZnO, and Sb2O3] to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 2011;8:1603–8.

Nath D, Banerjee P. Green nanotechnology-a new hope for medical biology. Environ Toxicol Pharmacol 2013;3:997–1014.

Huh AJ, Kwon YJ. Nanoantibiotics: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Controlled Release 2011;2:128–45.

Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res Int 2014;1:8.

Ashkarran AA, Ghavami M, Aghaverdi H, Stroeve P, Mahmoudi M. Bacterial effects and protein corona evaluations: crucial ignored factors in the prediction of bio-efficacy of various forms of silver nanoparticles. Chem Res Toxicol 2012;18:1231-42.

Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, et al. Antibacterial properties of nanoparticles. Trends Biotechnol 2012;10:499-511.

Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence 2011;5:395-401.

Vallyathan V, Shi X. The role of oxygen free radicals in occupational and environmental lung diseases. Environ Health Perspect 1997;1:165-77.

Bonner JC. Lung fibrotic responses to particle exposure. Toxicol Pathol 2007;1:148-53.

Ray PC, Yu H, Fu PP. Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health Part C: Environ Carcinog Ecotoxicol Rev 2009;1:1-35.

Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006;5761:622-7.

Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008;10:2121-34.

Wang S, Lu W, Tovmachenko O, Rai US, Yu H, Ray PC. Challenge in understanding size and shape-dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett 2008;1-3:145-9.

Shaligram S, Campbell A. Toxicity of copper salts is dependent on solubility profile and cell type tested. Toxicol In Vitro 2013;2:844-51.

Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, et al. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 2010;1-3:92-6.

Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Controlled Release 2011;2:128-45.

Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Delivery Rev 2013;13-14:1803-15.

Nathan C, Cunningham Bussel A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat Rev Immunol 2013;5:349-61.

Pan X, Redding JE, Wiley PA, Wen L, McConnell JS, Zhang B. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere 2010;1:113-6.

Wang S, Lawson R, Ray PC, Yu H. Toxic effects of gold nanoparticles on salmonella typhimurium bacteria. Toxicol Ind Health 2011;6:547-54.

Matejka V, Tokarsky J. Photocatalytical nanocomposites: a review. J Nanosci Nanotechnol 2014;2:1597-616.

Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 1999;9:4094-8.

Beyth N, Yudovin Farber I, Perez Davidi M, Domb AJ, Weiss EI. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc Natl Acad Sci India 2010;51:22038-43.

Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, et al. Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 2007;4:527-34.

Mohamed MM, Fouad SA, Elshoky HA, Mohammed GM, Salaheldin TA. Antibacterial effect of gold nanoparticles against corynebacterium pseudotuberculosis. Int J Vet Sci Med 2017;1:23-9.

Gong P, Li H, He X, Wang K, Hu J, Tan W, et al. Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanot 2007;28:285-604.

Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002;17:6679-86.

Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 2011;7:2325-31.

Yoon KY, Byeon JH, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 2007;2-3:572-5.

Bonnet M, Massard C, Veisseire P, Camares O, Awitor KO. Environmental toxicity and antimicrobial efficiency of titanium dioxide nanoparticles in suspension. J Biomater Nanobiotechnol 2015;3:11.

Simon Deckers A, Loo S, Mayne L’hermite M, Herlin Boime N, Menguy N, Reynaud C, et al. Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 2009;21:8423-9.

Tallury P, Malhotra A, Byrne LM, Santra S. Nanobioimaging and sensing of infectious diseases. Adv Drug Delivery Rev 2010;4-5:424-37.

Baldoni D. Innovative methods for the diagnosis and treatment of implant-associated infections. Doctoral dissertation, University_of_Basel; 2009.

Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect 2015;3:173-83.

Melville S, Craig L. Type IV pili in gram-positive bacteria. Microbiol Mol Biol Rev 2013;3:323-41.

Pizarro Cerda J, Cossart P. Bacterial adhesion and entry into host cells. Cell 2006;4:715-27.

Hall Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004;2:95-108.

Joo HS, Otto M. Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem Biol 2012;12:1503-13.

Jafari AR, Mosavi T, Mosavari N, Majid A, Movahedzade F, Tebyaniyan M, et al. Mixed metal oxide nanoparticles inhibit growth of Mycobacterium tuberculosis into THP-1 cells. Int J Mycobact 2016;5:S181-3.

Praba VL, Kathirvel M, Vallayyachari K, Surendar K, Muthuraj M, Jesuraj PJ, et al. Bactericidal effect of silver nanoparticles against mycobacterium tuberculosis. J Bionanosci 2013;3:282-7.

Singh R, Nawale LU, Arkile M, Shedbalkar UU, Wadhwani SA, Sarkar D, et al. Chemical and biological metal nanoparticles as antimycobacterial agents: a comparative study. Int J Antimicrob Agents 2015;2:183-8.

Inbaneson SJ, Ravikumar S, Manikandan N. Antibacterial potential of silver nanoparticles against isolated urinary tract infectious bacterial pathogens. Appl Nanosci 2011;4:231-6.

Pickard R, Lam T, MacLennan G, Starr K, Kilonzo M, McPherson G, et al. Antimicrobial catheters for reduction of symptomatic urinary tract infection in adults requiring short-term catheterization in hospital: a multicentre randomized controlled trial. Lancet 2012;9857:1927-35.

Ritter J, Thomas L, Lederer J, Jarvis WR. Effectiveness of a silver-alloy and hydrogel coated urinary catheter on symptomatic catheter-associated urinary tract infections. Am J Infect Control 2013;6:S143-44.

Ford J, Hughes G, Phillips P. Literature review of silver-coated urinary catheters-draft SMTL; 2014. Available from: http://www.medidex.com/research/830-silver-coated-catheters-full-article.html [Last accessed on 07 Jul 2017]

Thibon P, Le Coutour X, Leroyer R, Fabry J. Randomized multi-center trial of the effects of a catheter coated with hydrogel and silver salts on the incidence of hospital-acquired urinary tract infections. J Hosp Infect 2000;2:117-24.

Srinivasan A, Karchmer T, Richards A, Song X, Perl TM. A prospective trial of a novel, silicone-based, silver-coated foley catheter for the prevention of nosocomial urinary tract infections. Infect Controlled Hosp Epidemiol 2006;1:38-43.

Akram FE, El-Tayeb T, Abou-Aisha K, El-Azizi M. A combination of silver nanoparticles and visible blue light enhances the antibacterial efficacy of ineffective antibiotics against methicillin-resistant staphylococcus aureus [MRSA]. Ann Clin Microbiol Antimicrob 2016;1:48.

Fatimah I. Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. J Adv Res 2016;6:961-9.

Verma A, Mehata MS. Controllable synthesis of silver nanoparticles using neem leaves and their antimicrobial activity. J Radiat Res Appl Sci 2016;1:109-15.

Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A. Process variables in the biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta Indica [Neem] leaves. J Nanopar Res 2010;1:237-46.

Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan NJ. Synthesis of silver nanoparticles using acalypha indica leaf extracts and its antibacterial activity against water-borne pathogens. Colloids Surf B 2010;1:50-6.

Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S. Synthesis of silver nanoparticles using leaves of catharanthus roseus linn. G. don and their antiplasmodial activities. Asian Pac J Trop Biomed 2012;7:574.

Tippayawat P, Phromviyo N, Boueroy P, Chompoosor A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. Peer J 2016;4:e2589.

Ali ZA, Yahya R, Sekaran SD, Puteh R. Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Adv Mater Sci Eng 2016;1. https://doi.org/10.1155/2016/4102196

Allafchian AR, Mirahmadi Zare SZ, Jalali SA, Hashemi SS, Vahabi MR. Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J Nanostruct Chem 2016;2:129-35.

Maiti S, Krishnan D, Barman G, Ghosh SK, Laha JK. Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J Anal Sci Technol 2014;1:1-7.

Chiguvare H, Oyedeji OO, Matewu R, Aremu O, Oyemitan IA, Oyedeji AO, et al. Synthesis of silver nanoparticles using Buchu plant extracts and their analgesic properties. Molecules 2016;6:774.

Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP. Biosynthesis of silver nanoparticles using ocimum sanctum [Tulsi] leaf extract and screening its antimicrobial activity. J Nanopart Res 2011;7:2981-8.

Nabikhan A, Kandasamy K, Raj A, Alikunhi NM. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, sesuvium portulacastrum L. Colloids Surf B 2010;2:488-93.

Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK. Extracellular synthesis of silver nanoparticles by the bacillus strain CS 11 isolated from the industrialized area. 3 Biotech 2014;2:121-6.

Choi O, Deng KK, Kim NJ, Ross Jr L, Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 2008;12:3066-74.

Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on escherichia coli and staphylococcus aureus. J Biomed Mat Res 2000;4:662-8.

Sondi I, Salopek Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 2004;1:177-82.

Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2012;1:32.

Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007;1:95-101.

Lu Z, Rong K, Li J, Yang H, Chen R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci: Mater Med 2013;6:1465-71.

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotech 2005;10:2346.

Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel SS. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of raphanus sativus. J Genet Eng Biotechnol 2017;15:31-9.

El-Sheekh MM, El-Kassas HY. Algal production of nano-silver and gold: Their antimicrobial and cytotoxic activities: a review. J Genet Eng Biotechnol 2016;2:299-310.

Saravanan C, Rajesh R, Kaviarasan T, Muthukumar K, Kavitake D, Shetty PH. Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Rep 2017;5:33-40.

Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 2010;1-2:1-3.

Ashajyothi C, Oli AK, Prabhurajeshwar C. Potential bactericidal effect of silver nanoparticles synthesized from enterococcus species. Orient J Chem 2014;3:1253-62.

Minaeian S, Shahverdi AR, Nouhi AA, Shahverdi HR. Extracellular biosynthesis of silver nanoparticles by some bacteria. J Sci IAU 2008;17:1–4.

Shirley AD, Dayanand A, Sreedhar B, Dastager SG. Antimicrobial activity of silver nanoparticles synthesized from novel streptomyces species. Dig J Nanomater Bios 2010;2:447-51.

Wan G, Ruan L, Yin Y, Yang T, Ge M, Cheng X. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria acinetobacter baumannii. Int J Nanomed 2016;11:3789.

Li P, Li J, Wu C, Wu Q, Li J. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotech 2005;9:1912.

Le AT, Le TT, Tran HH, Dang DA, Tran QH, Vu DL. Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections. Adv Nat Sci: Nanosci Nanotechnol 2012;4:045007.

Sadiq IM, Chowdhury B, Chandrasekaran N, Mukherjee A. Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine 2009;3:282-6.

Jalal M, Ansari MA, Shukla AK, Ali SG, Khan HM, Pal R, et al. Green synthesis and antifungal activity of Al 2 O 3 NPs against fluconazole-resistant Candida spp isolated from a tertiary care hospital. RSC Adv 2016;109:107577-90.

Ansari MA, Khan HM, Alzohairy MA, Jalal M, Ali SG, Pal R, et al. Green synthesis of Al 2 O 3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa. World J Microbiol Biotechnol 2015;1:153-64.

Prashanth PA, Raveendra RS, Hari Krishna R, Ananda S, Bhagya NP, Nagabhushana BM, et al. Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles. J Asian Ceram Soc 2015;3:345-51.

Brintha SR, Ajitha M. Synthesis, structural and antibacterial activity of aluminium and nickel doped ZnO nanoparticles by sol-gel method. Asian J Chem Sci 2016;12:1-9.

Ahmed KB, Subramanian S, Sivasubramanian A, Veerappan G, Veerappan A. Preparation of gold nanoparticles using salicornia brachiata plant extract and evaluation of the catalytic and antibacterial activity. Spectrochim Acta Part A 2014;130:54-8.

Zhang Y, Shareena Dasari TP, Deng H, Yu H. Antimicrobial activity of gold nanoparticles and ionic gold. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 2015;3:286-327.

Rai A, Prabhune A, Perry CC. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 2010;32:6789-90.

Saha B, Bhattacharya J, Mukherjee A, Ghosh A, Santra C, Dasgupta AK, et al. In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett 2007;12:614.

Bagga P, Ansari TM, Siddiqui HH, Syed A, Bahkali AH, Rahman MA, et al. Bromelain capped gold nanoparticles as the novel drug delivery carriers to aggrandize the effect of the antibiotic levofloxacin. EXCLI J 2016;15:772.

Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, et al. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 2014;10:10682-6.

Adavallan K, Krishnakumar N. Mulberry leaf extract mediated synthesis of gold nanoparticles and its antibacterial activity against human pathogens. Adv Nat Sci: Nanosci Nanotechnol 2014;2:025018.

Taran M, Rad M, Alavi M. Antibacterial activity of copper oxide [CuO] nanoparticles biosynthesized by bacillus sp. FU4: optimization of experiment design. Pharm Sci 2017;3:198-206.

Sutradhar P, Saha M, Maiti D. Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J Nanostruct Chem 2014;1:86.

Altikatoglu M, Attar A, Erci F, Cristache CM, Isildak I. Green synthesis of copper oxide nanoparticles using ocimum basilicum extract and their antibacterial activity. Fresenius Environ Bull 2017;12:7832-7.

Azam A, Ahmed AS, Oves M, Khan MS, Memic A. Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and-negative bacterial strains. Int J Nanomed 2012;7:3527.

Chatterjee AK, Chakraborty R, Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotech 2014;13:135101.

Kumar PV, Shameem U, Kollu P, Kalyani RL, Pammi SV. Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. BioNanoSci 2015;3:135-9.

Devatha CP, Jagadeesh K, Patil M. Effect of green synthesized iron nanoparticles by Azardirachta Indica in different proportions on antibacterial activity. Environ Nanotechnol Monit Manag 2018;9:85-94.

Kanagasubbulakshmi S, Kadirvelu K. Green synthesis of iron oxide nanoparticles using lagenaria siceraria and evaluation of its antimicrobial activity. Def Life Sci J 2017;4:422–7.

Rafi MM, Ahmed KS, Nazeer KP, Kumar DS, Thamilselvan M. Synthesis, characterization and magnetic properties of hematite [α-Fe 2 O 3] nanoparticles on polysaccharide templates and their antibacterial activity. Appl Nanosci 2015;4:515-20.

Masadeh MM, Karasneh GA, Al-Akhras MA, Albiss BA, Aljarah KM, Al-Azzam SI, et al. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram-positive and gram-negative biofilm bacteria. Cytotechnology 2015;3:427-35.

Narayanasamy P, Switzer BL, Britigan BE. Prolonged-acting, multi-targeting gallium nanoparticles potently inhibit the growth of both HIV and mycobacteria in co-infected human macrophages. Sci Rep 2015;1:1-7.

Kurtjak M, Vukomanovic M, Kramer L, Suvorov D. Biocompatible nano-gallium/hydroxyapatite nanocomposite with antimicrobial activity. J Mater Sci Mater Med 2016;11:170.

Choi SR, Britigan BE, Moran DM, Narayanasamy P. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent mycobacterium tuberculosis in macrophages. PLoS One 2017;5:e0177987.

Olakanmi O, Gunn JS, Su S, Soni S, Hassett DJ, Britigan BE. Gallium disrupts iron uptake by intracellular and extracellular Francisella strains and exhibits therapeutic efficacy in a murine pulmonary infection model. Antimicrob Agents Chemother 2010;1:244-53.

Sharma G, Soni R, Jasuja ND. Phytoassisted synthesis of magnesium oxide nanoparticles with swertia chirayaita. J Taibah Univ Sci 2017;11:471-7.

Besinis A, De Peralta T, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on streptococcus mutans using a suite of bioassays. Nanotoxicology 2014;1:1-6.

Alhadrami HA, Al-Hazmi F. Antibacterial activities of titanium oxide nanoparticles. J Bioelectron Nanotechnol 2017;2:5.

Desai VS, Meenal K. Antimicrobial activity of titanium dioxide nanoparticles synthesized by sol-gel technique. Res J Microbiol 2009;3:97-103.

Lin X, Li J, Ma S, Liu G, Yang K, Tong M, et al. Toxicity of TiO 2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. PloS One 2014;10:e110247.

Planchon M, Ferrari R, Guyot F, Gelabert A, Menguy N, Chaneac C, et al. Interaction between Escherichia coli and TiO2 nanoparticles in natural and artificial waters. Colloids Surf B 2013;102:158-64.

Tong T, Binh CT, Kelly JJ, Gaillard JF, Gray KA. Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: effects of environmental factors. Water Res 2013;7:2352-62.

Jesline A, John NP, Narayanan PM, Vani C, Murugan S. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl Nanosci 2015;2:157-62.

Voicu G, Oprea O, Vasile BS, Andronescu E. Antibacterial activity of zinc oxide-gentamicin hybrid material. Dig J Nanomater Bios 2013;8:3.

Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 2015;32:55-61.

Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011;7:4020-8.

Hsueh YH, Ke WJ, Hsieh CT, Lin KS, Tzou DY, Chiang CL. ZnO nanoparticles affect bacillus subtilis cell growth and biofilm formation. PloS One 2015;6:e0128457.

Fernandes S, Simoes M, Dias N, Santos C, Lima N. Fungicidal activity of microbicides. Russell, hugo and ayliffe’s: principles and practice of disinfection, preservation and sterilization. Wiley 2013;10:142-54.

Pereira L, Dias N, Santos C, Lima N. The use of MALDI-TOF ICMS as an alternative tool for Trichophyton rubrum identification and typing. Enfermedades Infecciosasy Microbiol Clin 2014;1:11-7.

Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses 2008;51:2-15.

Dias N, Santos C, Portela M, Lima N. Toenail onychomycosis in a portuguese geriatric population. Mycopathologia 2011:1:55-61.

Freytes DM, Arroyo Novoa CM, Figueroa Ramos MI, Ruiz Lebron RB, Stotts NA, Busquets A. Skin disease in HIV-positive persons living in puerto rico. Adv Skin Wound Care 2007;3:149-56.

Mukherjee PK, Leidich SD, Isham N, Leitner I, Ryder NS, Ghannoum MA. Clinical trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrob Agents Chemother 2003;1:82-6.

Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007;1:95-101.

Auberger J, Lass Florl C, Aigner M, Clausen J, Gastl G, Nachbaur D. Invasive fungal breakthrough infections, fungal colonization and emergence of resistant strains in high-risk patients receiving antifungal prophylaxis with posaconazole: real-life data from a single-centre institutional retrospective observational study. J Antimicrob Chem 2012;9:2268-73.

Rai M, Gade A, Yadav A. Biogenic nanoparticles: an introduction to what they are, how they are synthesized and their applications. Metal Nanopart Microbiol Springer Berlin Heidelberg; 2011. p. 1-14.

Mohanta YK, Panda SK, Jayabalan R, Sharma N, Bastia AK, Mohanta TK. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa [Roxb.]. Front Mol Biosci 2017;17:14.

Lara HH, Romero Urbina DG, Pierce C, Lopez Ribot JL, Arellano Jimenez MJ, Jose Yacaman M. Effect of silver nanoparticles on candida albicans biofilms: an ultrastructural study. J Nanobiotechnol 2015;1:1-2.

Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K, et al. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed 2010;5:1085.

Monteiro DR, Gorup LF, Silva S, Negri M, De Camargo ER, Oliveira R, et al. Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of candida albicans and candida glabrata. Biofouling 2011;7:711-9.

Nasrollahi A, Pourshamsian KH, Mansourkiaee P. Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dim 2011;1:233–9.

Hwang IS, Lee J, Hwang JH, Kim KJ, Lee DG. Silver nanoparticles induce apoptotic cell death in candida albicans through the increase of hydroxyl radicals. FEBS J 2012;7:1327-38.

Rajarathinam M, Kalaichelvan PT. Biogenic nanosilver as a potential antibacterial and antifungal additive to commercially available dish wash and hand wash for an enhanced antibacterial and antifungal activity against selected pathogenic strains. Int Res J Pharma 2013;4:68-75.

Ahmad A, Wei Y, Syed F, Tahir K, Taj R, Khan AU, et al. Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. Microb Pathog 2016;99:271-81.

Falkiewicz Dulik M, Macura AB. Nanosilver as substance biostabilising footwear materials in the foot mycosis prophylaxis. Mikologia Lekarska 2008;15:145-50.

Noorbakhsh F, Rezaie S, Shahverdi AR. Antifungal effects of silver nanoparticle alone and with combination of antifungal drug on dermatophyte pathogen Trichophyton rubrum. Int Conf Biosci Biochem Bioinfo 2011;5:364-7.

Marcato PD, Duran M, Huber SC, Rai M, Melo PS, Alves OL, Duran N. Biogenic silver nanoparticles and its antifungal activity as a new topical transungual drug. J Nano Res 2012;20:99-107.

Weitz IS, Maoz M, Panitz D, Eichler S, Segal E. Combination of CuO nanoparticles and fluconazole: preparation, characterization, and antifungal activity against candida albicans. J Nanopart Res 2015;8:342.

Sojinrin T, Conde J, Liu K, Curtin J, Byrne HJ, Cui D, et al. Plasmonic gold nanoparticles for detection of fungi and human cutaneous fungal infections. Anal Bioanal Chem 2017;19:4647-58.

Niemirowicz K, Durnas B, Tokajuk G, Piktel E, Michalak G, Gu X, et al. Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci Rep 2017;1:1-2.

Seddighi NS, Salari S, Izadi AR. Evaluation of antifungal effect of iron-oxide nanoparticles against different candida species. IET Nanobiotechnol 2017;7:883-8.

Haghighi F, Roudbar Mohammadi S, Mohammadi P, Hosseinkhani S, Shipour R. Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect Epidemiol Microbiol 2013;1:33-8.

Sardella D, Gatt R, Valdramidis VP. Assessing the efficacy of zinc oxide nanoparticles against penicillium expansum by automated turbidimetric analysis. Myco 2018;1:43-8.

He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and penicillium expansum. Microbiol Res 2011;3:207-15.

Xue J, Luo Z, Li P, Ding Y, Cui Y, Wu Q. A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Sci Rep 2014;4:5408.

Shinde SS. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. Sci Med Central 2015;3:1033.

Auyeung A, Casillas Santana MA, Martinez Castanon GA, Slavin YN, Zhao W, Asnis J, et al. Effective control of molds using a combination of nanoparticles. PloS One 2017;1:e0169940.

Arciniegas Grijalba PA, Patino Portela MC, Mosquera Sanchez LP, Guerrero Vargas JA, Rodriguez Paez JE. ZnO nanoparticles [ZnO-NPs] and their antifungal activity against coffee fungus erythricium salmonicolor. Appl Nanosci 2017;5:225-41.

Strasfeld L, Chou S. Antiviral drug resistance: mechanisms and clinical implications. Infect Dis Clin 2010;3:809-33.

Global AIDS/HIV Epidermic. Available from: https://www.aids.gov/hiv-aids-basics/hiv-aids-101/global-statistics/ [Last accessed on 10 Mar 2018].

Lara HH, Ayala Nunez NV, Ixtepan Turrent L, Rodriguez Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 2010;1:1-10.

Sun RW, Chen R, Chung NP, Ho CM, Lin CL, Che CM. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Comm 2005;40:5059-61.

Elechiguerra JL, Burt JL, Morones JR, Camacho Bragado A, Gao X, Lara HH, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 2005;1:1-10.

Baram Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjugate Chem 2009;8:1497-502.

Hu RL, Li SR, Kong FJ, Hou RJ, Guan XL, Guo F. Inhibition effect of silver nanoparticles on herpes simplex virus 2. Genet Mol Res 2014;3:7022-8.

Samji NS, Anand BS. Viral hepatitis; 2017. Available from: http://emedicine.medscape.com/article/775507-overview#a7 [Last accessed on 10 Mar 2018]

Lu L, Sun RW, Chen R, Hui CK, Ho CM, Luk JM, et al. Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Ther 2008;2:253.

Davis CP. Available from: https://www.medicinenet.com/ viral_hepatitis/article.htm [Last accessed on 10 Mar 2018]

Xiang D, Zheng Y, Duan W, Li X, Yin J, Shigdar S, et al. Inhibition of A/Human/Hubei/3/2005 [H3N2] influenza virus infection by silver nanoparticles in vitro and in vivo. Int J Nanomed 2013;8:4103.

Mori Y, Ono T, Miyahira Y, Nguyen VQ, Matsui T, Ishihara M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza a virus.

Nanoscale Res Lett 2013;1:93.

Li Y, Lin Z, Zhao M, Guo M, Xu T, Wang C, et al. Reversal of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with amantadine. RSC Adv 2016;92:89679-86.

Sametband M, Shukla S, Meningher T, Hirsh S, Mendelson E, Sarid R, et al. Effective multi-strain inhibition of influenza virus by anionic gold nanoparticles. Med Chem Comm 2011;5:421-3.

Xiang DX, Chen Q, Pang L, Zheng CL. Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro. J Virol Methods 2011;1-2:137-42.

Mehrbod P, Motamed N, Tabatabaeian M, Soleymani ER, Amini E, Shahidi M, et al. In vitro antiviral effect of “Nanosilver” on influenza virus. DARU J Pharm Sci 2015;17:88–93.

Kesarkar R, Oza G, Pandey S, Dahake R, Mukherjee S, Chowdhary A, et al. Gold nanoparticles: effective as both entry inhibitors and virus neutralizing agents against HIV. J Microbiol Biotechnol Res 2017;2:276–83.

Sarid R, Gedanken A, Baram Pinto D. Inventors; Bar Ilan University, assignee. Pharmaceutical compositions comprising water-soluble sulfonate-protected nanoparticles and uses there of. United States patent US 8,758,777; 2014.

Baram Pinto D, Shukla S, Gedanken A, Sarid R. Inhibition of HSV‐1 attachment, entry, and cell‐to‐cell spread by functionalized multivalent gold nanoparticles. Small 2010;9:1044-50.

Yasri S, Wiwanitkit V. Effect of gold nanoparticle on viral load of hepatitis C virus. J Coast Life Med 2014;2:2754-61.

Lee MY, Yang JA, Jung HS, Beack S, Choi JE, Hur W, et al. Hyaluronic acid–gold nanoparticle/interferon α complex for targeted treatment of hepatitis C virus infection. ACS Nano 2012;11:9522-31.

Taubenberger JK, Morens DM. The pathology of influenza virus infections. Annu Rev Pathol Mech Dis 2008;3:499-522.

Feng F, Sakoda Y, Ohyanagi T, Nagahori N, Shibuya H, Okamastu M, et al. Novel thiosialosides tethered to metal nanoparticles as potent influenza a virus haemagglutinin blockers. Antiviral Chem Chemother 2013;2:59-65.

Ryoo SR, Jang H, Kim KS, Lee B, Kim KB, Kim YK, Yeo WS, et al. Functional delivery of DNAzyme with iron oxide nanoparticles for hepatitis C virus gene knockdown. Biomaterials 2012;9:2754-61.

Hang X, Peng H, Song H, Qi Z, Miao X, Xu W. Antiviral activity of cuprous oxide nanoparticles against hepatitis C virus in vitro. J Virol Methods 2015;222:150-7.

Antoine TE, Hadigal SR, Yakoub AM, Mishra YK, Bhattacharya P, Haddad C, et al. Intravaginal zinc oxide tetrapod nanoparticles as novel immunoprotective agents against genital herpes. J Immunol 2016;11:4566-75.

Mishra YK, Adelung R, Rohl C, Shukla D, Spors F, Tiwari V. Virostatic potential of micro–nano filopodia-like ZnO structures against herpes simplex virus-1. Antiviral Res 2011;2:305-12.

Mishra A, Kaushik NK, Sardar M, Sahal D. Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf B 2013;111:713-8.

Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, et al. Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitol Int 2016;3:276-84.

Murugan K, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Hwang JS, Wang L, et al. Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on plasmodium falciparum and its vector anopheles stephensi, with little non-target effects on predatory copepods. Environ Sci Pollut Res 2016;16:16671-85.

Murugan K, Panneerselvam C, Samidoss CM, Madhiyazhagan P, Suresh U, Roni M, et al. In vivo and in vitro effectiveness of azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res Vet Sci 2016;106:14-22.

Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S. Synthesis of silver nanoparticles using leaves of catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed 2012;7:574.

Starke CG. Leishmaniasis; 2017. Available from: http://emedicine.medscape.com/article/220298-overview [Last accessed on 12 Jul 2017]

Mohapatra S. Drug resistance in leishmaniasis: newer developments. Trop Parasitol 2014;4:4–9.

Ameneh S, Khadije M, Ahmad Reza T, Omid R. Inhibition of leishmania major growth by ultraviolet radiation B with silver nanoparticles in an animal model. In: Proceedings of the World Congress on Advances in Nano, Biomechanics, Robotics and Energy Research, Seoul, Korea; 2013. p. 25-8.

Rossi Bergmann B, Pacienza Lima W, Marcato PD, De Conti R, Duran N. Therapeutic potential of biogenic silver nanoparticles in murine cutaneous leishmaniasis. J Nano Res 2012;20:89–97.

Lima DD, Gullon B, Cardelle Cobas A, Brito LM, Rodrigues KA, Quelemes PV, et al. Chitosan-based silver nanoparticles: a study of the antibacterial, antileishmanial and cytotoxic effects. J Bioact Compat Polym 2017;4:397-410.

Ahmad A, Syed F, Shah A, Khan Z, Tahir K, Khan AU, et al. Silver and gold nanoparticles from sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Adv 2015;90:73793-806.

Zahir AA, Chauhan IS, Bagavan A, Kamaraj C, Elango G, Shankar J, et al. Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob Agents Chemother 2015;8:4782-99.

Sheet F. Leishmaniasis; 2017. Available from: http://www.who.int/mediacentre/factsheets/fs375/en/.Article [Last accessed on 11 Mar 2018]

Khosravi A, Sharifi I, Barati M, Zarean M, Hakimi Parizi M. Anti-leishmanial effect of nanosilver solutions on Leishmania tropica promastigotes by in vitro assay. Zahedan J Res Med Sci 2011;13:e93813.

Allahverdiyev AM, Abamor ES, Bagirova M, Ustundag CB, Kaya C, Kaya F, et al. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int J Nanomed 2011;6:2705.

Hedley L, Wani RLS. Helminth infections: diagnosis and treatment; 2015. Available from: http://www.pharmaceutical-journal.com/learning/learning-article/helminth-infections-diagnosis-andtreatment/20069529.article [Last accessed on 11 Mar 2018]

Rashid MM, Ferdous J, Banik S, Islam MR, Uddin AM, Robel FN. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and M. charantia fruit extract. BMC Complementary Altern Med 2016;1:1-6.

Karthik L, Kumar G, Keswani T, Bhattacharyya A, Reddy BP, Rao KB. Marine actinobacterial mediated gold nanoparticles synthesis and their antimalarial activity. Nanomedicine 2013;7:951-60.

Dutta PP, Bordoloi M, Gogoi K, Roy S, Narzary B, Bhattacharyya DR, et al. Antimalarial silver and gold nanoparticles: green synthesis, characterization and in vitro study. Biomed Pharmacother 2017;91:567-80.

Sazgarnia A, Taheri AR, Soudmand S, Parizi AJ, Rajabi O, Darbandi MS. Antiparasitic effects of gold nanoparticles with microwave radiation on promastigotes and amastigotes of leishmania major. Int J Hyperthermia 2013;1:79-86.

Kar PK, Murmu S, Saha S, Tandon V, Acharya K. Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PloS One 2014;1:e84693.

Jameii F, Dalimi Asl A, Karimi M, Ghaffarifar F. Healing effect comparison of selenium and silver nanoparticles on skin leishmanial lesions in mice. Sci J Hamadan Univ Med Sci 2015;3:217-23.

Mohapatra SC, Tiwari HK, Singla M, Rathi B, Sharma A, Mahiya K, et al. Antimalarial evaluation of copper [II] nanohybrid solids: inhibition of plasmepsin II, a hemoglobin-degrading malarial aspartic protease from Plasmodium falciparum. J Biol Inorg Chem 2010;3:373-85.

Dorostkar R, Ghalavand M, Nazarizadeh A, Tat M, Hashemzadeh MS. Anthelmintic effects of zinc oxide and iron oxide nanoparticles against toxocara vitulorum. Int Nano Lett 2017;2:157-64.

Published

01-08-2021

How to Cite

GUPTA, M. “INORGANIC NANOPARTICLES: AN ALTERNATIVE THERAPY TO COMBAT DRUG RESISTANT INFECTIONS”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 13, no. 8, Aug. 2021, pp. 20-31, doi:10.22159/ijpps.2021v13i8.42643.

Issue

Section

Review Article(s)