• DHARMESHKUMAR M. MODI Gujarat Technological University, Ahmedabad, Gujarat 382424, India
  • AKSHAT D. MODI Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada, Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
  • RAJESH H. PARIKH SICART, Vallabh Vidyanagar 388120 Gujarat India
  • JOLLY R. PARIKH A R College of Pharmacy Andamp; G H Patel Institute of Pharmacy, Vallabh Vidyanagar 388120 Gujarat, India



Mebendazole, EPAS, Spherical agglomerates, Uniformity index, Desirability function, Flow ability, Compressibility, Dissolution


Objective: Mebendazole is a popular benzimidazole class anthelmintic drug useful in the treatment of main infections of threadworms as well as other less common worm infections like whipworm, roundworm, and hookworm in adults and children over 2 y of age. It is poorly soluble in water resulting in poor absorption from the intestinal tract leading to a decrease in bioavailability. Moreover, Mebendazole has poor flowability due to the needle-shaped crystals. This work was carried out with the aim of increasing the flowability and solubility of Mebendazole.

Methods: A 32 full factorial design was used to investigate the effect of the concentration of Mebendazole and the quantity of water as an external phase using evaporative precipitation into an aqueous solution. The prepared agglomerates were characterized for particle size distribution, shape, Hausner ratio, Carr’s index and % dissolved in 60 min (C60).


Results: The prepared agglomerates were found to be monodispersed. They also showed a decrease in the Hausner ration and Carr’s index, indicating improved flowability. Increase in C60 indicated that the agglomerates were found to have increased water solubility.

Conclusion: Scanning Electron Microscopy showed that the agglomerates were spherical in shape. Fourier Transformed Infra-Red studies showed no chemical change in the prepared spherical agglomerates. Differential Scanning Calorimetry and X-ray diffraction studies showed an increase in amorphous characteristics of prepared spherical agglomerates. This method may be used for drugs with similar characteristics as Mebendazole.


Download data is not yet available.


Rakel RE. Conn’s current therapy. W B Saunders; 1987.

Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, Health Professions Division; 1996.

Zimmermann SC, Tichy T, Vavra J, Dash RP, Slusher CE, Gadiano AJ. N-substituted prodrugs of mebendazole provide improved aqueous solubility and oral bioavailability in mice and dogs. J Med Chem. 2018;61(9):3918-29. doi: 10.1021/acs.jmedchem.7b01792, PMID 29648826.

Keystone JS, Murdoch JK. Mebendazole. Ann Intern Med. 1979;91(4):582-6. doi: 10.7326/0003-4819-91-4-582, PMID 484964.

Shehatta I. Cyclodextrins as enhancers of the aqueous solubility of the anthelmintic drug mebendazole: thermodynamic considerations. Monatshefte Chem/Chemical. 2002;133(9):1239-47. doi: 10.1007/s007060200096.

Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm. 2004;284(1-2):109-22. doi: 10.1016/j.ijpharm.2004.07.019, PMID 15454302.

Hashimoto N, Yuminoki K, Takeuchi H, Okada C. Development of nanocrystal formulation of mebendazole with improved dissolution and pharmacokinetic behaviors. Asian J Pharm Sci. 2016;11(1):122-3. doi: 10.1016/j.ajps.2015.11.096.

Calvo NL, Kaufman TS, Maggio RM. Mebendazole crystal forms in tablet formulations. An ATR-FTIR/chemometrics approach to polymorph assignment. J Pharm Biomed Anal. 2016;122:157-65. doi: 10.1016/j.jpba.2016.01.035, PMID 26874854.

Parakh DR, Patil MP, Dashputre NL, Kshirsagar SJ. Development of self-micro emulsifying drug delivery system of mebendazole by spray drying technology: characterization, in vitro and in vivo evaluation. Drying Technol. 2016;34(9):1023-42. doi: 10.1080/07373937.2015.1090447.

Saidman E, Chattah AK, Aragon L, Sancho M, Cami G, Garnero C. Inclusion complexes of β-cyclodextrin and polymorphs of mebendazole: physicochemical characterization. Eur J Pharm Sci. 2019;127:330-8. doi: 10.1016/j.ejps.2018.11.012, PMID 30445224.

Lahiani Skiba M, Coquard A, Bounoure F, Verite P, Arnaud P, Skiba M. Mebendazole complexes with various cyclodextrins: preparation and physicochemical characterization. J Incl Phenom Macrocycl Chem. 2007;57(1-4):197-201. doi: 10.1007/s10847-006-9196-9.

Di Martino P, Di Cristofaro R, Barthelemy C, Joiris E, Palmieri Filippo G, Sante M. Improved compression properties of propyphenazone spherical crystals. Int J Pharm. 2000;197(1-2):95-106. doi: 10.1016/s0378-5173(99)00455-x, PMID 10704797.

Bethea ED, Gaj K, Gustafson JL, Axtell A, Lebeis T, Schoenike M. Pre-emptive pangenotypic direct-acting antiviral therapy in donor HCV-positive to recipient HCV-negative heart transplantation: an open-label study. Lancet Gastroenterol Hepatol. 2019;4(10):771-80. doi: 10.1016/S2468-1253(19)30240-7, PMID 31353243.

Puechagut HG, Bianchotti J, Chiale CA. Preparation of norfloxacin spherical agglomerates using the ammonia diffusion system. J Pharm Sci. 1998;87(4):519-23. doi: 10.1021/js960463w, PMID 9548908.

Swain S, Patra CN, Bhanoji Rao ME. Pharmaceutical drug delivery systems and vehicles. Woodhead Publishing India Pvt Ltd; 2016.

Jadhav N, Pawar A, Paradkar A. Design and evaluation of deformable talc agglomerates prepared by crystallo-Co-agglomeration technique for generating heterogeneous matrix. AAPS PharmSciTech. 2007;8(3):E59. doi: 10.1208/pt0803059, PMID 17915809.

Modi D, Parikh RH, Parikh JR. Novel Particle Engineering Techniques in Drug Delivery: Review of Coformulations Using Supercritical Fluids and Liquefied Gases; 2004;32:41-56.

Sarkari M, Brown J, Chen X, Swinnea S, Williams RO, Johnston KP. Enhanced drug dissolution using evaporative precipitation into aqueous solution. Int J Pharm. 2002;243(1-2):17-31. doi: 10.1016/s0378-5173(02)00072-8, PMID 12176292.

Kaerger JS, Edge S, Price R. Influence of particle size and shape on flowability and compactibility of binary mixtures of paracetamol and microcrystalline cellulose. Eur J Pharm Sci. 2004;22(2-3):173-9. doi: 10.1016/j.ejps.2004.03.005, PMID 15158902.

Ruecroft G, Hipkiss D, Ly T, Maxted N, Cains PW. Sonocrystallization: the use of ultrasound for improved industrial crystallization. Org Process Res Dev. 2005;9(6):923-32. doi: 10.1021/op050109x.

Rajadhyax A, Shinde U, Desai H, Mane S. Hot Mmelt extrusion in the engineering of drug cocrystals: a review. Asian J Pharm Clin Res 2021;14:10-9. doi: 10.22159/ajpcr.2021.v14i8.41857.

Dn CP, AS. A solubility enhancement of Acelofenac by new crystallization technique. Asian J Pharm Clin Res. 2021:113-8.

Alex R, Bodmeier R. Encapsulation of water-soluble drugs by a modified solvent evaporation method. I. Effect of process and formulation variables on drug entrapment. Journal of Microencapsulation. 1990;7(3):347-55. doi: 10.3109/02652049009021845, PMID 2384837.

O’Donnell PB, McGinity JW, McGinity JW, O’Donnell PB. Preparation of microspheres by the solvent evaporation technique. Advanced Drug Delivery Reviews. 1997;28(1):25-42. doi: 10.1016/s0169-409x(97)00049-5, PMID 10837563.

Shukla PG, Kalidhass B, Shah A, Palaskar DV. Preparation and characterization of microcapsules of water-soluble pesticide monocrotophos using polyurethane as carrier material. Journal of Microencapsulation. 2002;19(3):293-304. doi: 10.1080/02652040110081343, PMID 12022495.

Swanepoel E, Liebenberg W, Devarakonda B, de Villiers MM. Developing a discriminating dissolution test for three mebendazole polymorphs based on solubility differences. Pharmazie. 2003;58(2):117-21. PMID 12641328.

Chen X, Vaughn JM, Yacaman MJ, Williams RO, Johnston KP. Rapid dissolution of high‐potency danazol particles produced by evaporative precipitation into aqueous solution. J Pharm Sci. 2004;93(7):1867-78. doi: 10.1002/jps.20001, PMID 15176074.

Szunyogh T, Ambrus R, Szabo Revesz P. Formation of niflumic acid particle size by solvent diffusion and solvent evaporation as precipitation methods. Journal of Drug Delivery Science and Technology. 2012;22(4):307-12. doi: 10.1016/S1773-2247(12)50052-3.

Vaughn JM, McConville JT, Crisp MT, Johnston KP, Williams RO. Supersaturation produces high bioavailability of amorphous danazol particles formed by evaporative precipitation into an aqueous solution and spray freezing into liquid technologies. Drug Development and Industrial Pharmacy. 2006;32(5):559-67. doi: 10.1080/03639040500529176, PMID 16720411.

Gao L, Liu G, Wang X, Liu F, Xu Y, Ma J. Preparation of a chemically stable quercetin formulation using nanosuspension technology. International Journal of Pharmaceutics. 2011;404(1-2):231-7. doi: 10.1016/j.ijpharm.2010.11.009, PMID 21093559.

Alshora DH, Ibrahim MA, Alanazi FK. Nanotechnology from particle size reduction to enhancing aqueous solubility. In: Surface chemistry of nanobiomaterials (Elsevier, 2016); 2016. p. 163-91.

Shariare MH, Mondal TK, Alothaid H, Sohel MD, Wadud M, Aldughaim MS. Azithromycin nanosuspension preparation using evaporative precipitation into the aqueous solution (EPAS) method and its comparative dissolution study. CPA. CPA. 2021;17(9):1224-31. doi: 10.2174/ 1573412917999200909145745.

Chen X, Young TJ, Sarkari M, Williams RO, Johnston KP. Preparation of cyclosporine a nanoparticle by evaporative precipitation into an aqueous solution. International Journal of Pharmaceutics. 2002;242(1-2):3-14. doi: 10.1016/s0378-5173(02)00147-3, PMID 12176220.

Sinswat P, Gao X, Yacaman MJ, Williams RO, Johnston KP. Stabilizer choice for rapid dissolving high potency itraconazole particles formed by evaporative precipitation into aqueous solution. International Journal of Pharmaceutics. 2005;302(1-2):113-24. doi: 10.1016/j.ijpharm.2005.06.027, PMID 16109466.

Vaughn JM, Gao X, Yacaman MJJ, Johnston KP, Williams RO. Comparison of powder produced by evaporative precipitation into an aqueous solution (EPAS) and spray freezing into liquid (SFL) technologies using novel Z-contrast STEM and complementary techniques. European Journal of Pharmaceutics and Biopharmaceutics. 2005;60(1):81-9. doi: 10.1016/j.ejpb.2005.01.002, PMID 15848060.

Chen X, Lo CYL, Sarkari M, Williams RO, Johnston KP. Ketoprofen nanoparticle gels are formed by evaporative precipitation into an aqueous solution. AIChE J. 2006;52(7):2428-35. doi: 10.1002/aic.10848.

Kakran M, Sahoo NG, Li L, Judeh Z. Dissolution of artemisinin/polymer composite nanoparticles fabricated by evaporative precipitation of nanosuspension. Journal of Pharmacy and Pharmacology. 2010;62(4):413-21. doi: 10.1211/jpp.62.04.0002, PMID 20604829.

Bosselmann S, Nagao M, Chow KT, Williams RO. Influence of formulation and processing variables on properties of itraconazole nanoparticles made by advanced evaporative precipitation into aqueous solution. AAPS PharmSciTech. 2012;13(3):949-60. doi: 10.1208/s12249-012-9817-0, PMID 22752680.

Balata G, Shamrool H. Spherical agglomeration versus solid dispersion as different trials to optimize dissolution and bioactivity of silymarin. Journal of Drug Delivery Science and Technology. 2014;24(5):478-85. doi: 10.1016/S1773-2247(14)50091-3.



How to Cite

M. MODI, D., A. D. MODI, R. H. PARIKH, and J. R. PARIKH. “PREPARATION, CHARACTERIZATION, AND OPTIMIZATION OF MEBENDAZOLE SPHERICAL AGGLOMERATES USING MODIFIED EVAPORATIVE PRECIPITATION IN AQUEOUS SOLUTION (EPAS)”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 14, no. 9, Sept. 2022, pp. 30-38, doi:10.22159/ijpps.2022v14i9.44728.



Original Article(s)