THERAPEUTICS APPROACHES OF INVERTEBRATE ANIMAL TOXINS: A REVIEW

Authors

  • SIMRAN SHARMA Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur
  • RAVI KANT UPADHYAY Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

DOI:

https://doi.org/10.22159/ijpps.2022v14i9.45520

Keywords:

Invertebrates, animal toxins, ion channel blockers and therapeutic effects

Abstract

The present review article describes invertebrate venoms and various toxins secreted by them. Animal venoms are stores of novel peptides which exhibit a wide variety of biological effects and actively interact with pathogen and parasites. Animal toxins selectively bind to ion channels and receptors and display show hemolytic, cytolytic, proteolytic, anti-diabetic, antimicrobial and analgesic activity. These generate allergic and inflammatory responses in victims. These disrupt cell membrane and inhibit bacterial growth and kill them. Animal toxins inhibit virus entry into host cells, and obstruct virus replication. These were also found highly effective against protozoan, and fungal pathogens. By using bio-informatics tools, methods and approaches, both structural and functional diversity of toxin peptides could be harnessed to develop highly effective broad spectrum drugs for therapeutics. Animal venoms are inexhaustible source of bioactive molecules, which could be used for development of immune diagnostics, various pharmaceuticals for therapeutics and bio-insecticides.  Present article tries to explore exceptional specificity and high potency of animal toxins for drug development.

Downloads

Download data is not yet available.

References

Babenko VV, Mikov AN, Manuvera VA, Anikanov NA, Kovalchuk SI, Andreev YA, et al. Identification of unusual peptides with new Cys frameworks in the venom of the cold-water sea anemone Cnidopus japonicus. Sci Rep. 2017;7:14534.

Mariottini GL, Pane L. Cytotoxic and cytolytic cnidarian venoms. A review on health implications and possible therapeutic applications. Toxins (Basel). 2013;6:108-51.

Mariottini GL, Pane L. Mediterranean jellyfish venoms: a review on scyphomedusae. Mar Drugs. 2010;8:1122-52

Lazcano-Pérez F, Zavala-Moreno A, Rufino-González Y, Ponce-Macotela M, García-et al. Hemolytic, anticancer and anti-giardial activity of Palythoa caribaeorum venom. J Venom Anim Toxins Incl Trop Dis. 2018;24:12.

Ben-Ari H, Paz M, Sher D. The chemical armament of reef-building corals: inter- and intra-specific variation and the identification of an unusual actinoporin in Stylophorapistilata. Sci Rep. 2018;8:251.

Leychenko E, Isaeva M, Tkacheva E, Zelepuga E, Kvetkina A, Guzev K, Monastyrnaya M, Kozlovskaya E. Multigene Family of Pore-Forming Toxins from Sea Anemone Heteractis crispa. Mar Drugs. 2018;16:183.

Ben-Ari H, Paz M, Sher D. The chemical armament of reef-building corals: inter- and intra-specific variation and the identification of an unusual actinoporin in Stylophorapistilata. Sci Rep. 2018;8:251

Tejuca M, Anderluh G, Macek P, Marcet R, Torres D, Sarracent J, et al. Anti-parasite activity of sea-anemone cytolysins on Giardia duodenalis and specific targeting with anti-Giardia antibodies. Int J Parasitol. 1999;29:489-98.

Sintsova O, Gladkikh I, Kalinovskii A, Zelepuga E, Monastyrnaya M, Kim N, et al. Magnificamide, a α-Defensin-Like Peptide from the Mucus of the Sea Anemone Heteractis magnifica, Is a Strong Inhibitor of Mammalian α-Amylases. Mar Drugs. 2019;17:542.

Ceolin Mariano DO, de Oliveira ÚC, Zaharenko AJ, Pimenta DC, Rádis-Baptista G, Prieto-da-Silva ÁRB. Bottom-Up Proteomic Analysis of Polypeptide Venom Components of the Giant Ant Dinoponera Quadriceps. Toxins (Basel). 2019;11:448.

Osmakov DI, Kozlov SA, Andreev YA, Koshelev SG, Sanamyan NP, Sanamyan KE, et al. Sea anemone peptide with uncommon β-hairpin structure inhibits acid-sensing ion channel 3 (ASIC3) and reveals analgesic activity. J Biol Chem. 2013;288:23116-27.

Andreev YA, Osmakov DI, Koshelev SG, Maleeva EE, Logashina YA, Palikov VA, et al. Analgesic Activity of Acid-Sensing Ion Channel 3 (ASIС3) Inhibitors: Sea Anemones Peptides Ugr9-1 and APETx2 versus Low Molecular Weight Compounds. Mar Drugs. 2012;16:500.

Babenko VV, Mikov AN, Manuvera VA, Anikanov NA, Kovalchuk SI, Andreev YA, et al. Identification of unusual peptides with new Cys frameworks in the venom of the cold-water sea anemone Cnidopusjaponicus. Sci Rep. 2017;7:14534.

De Domenico S, De Rinaldis G, Paulmery M, Piraino S, Leone A. Barrel Jellyfish (Rhizostoma pulmo) as Source of Antioxidant Peptides. Mar Drugs. 2019;17:134.

Gladkikh I, Monastyrnaya M, Zelepuga E, Sintsova O, Tabakmakher V, Gnedenko O, et al. New Kunitz-Type HCRG Polypeptides from the Sea Anemone Heteractiscrispa. Mar Drugs. 2015;13:6038-63

Gladkikh I, Peigneur S, Sintsova O, Lopes Pinheiro-Junior E, Klimovich A, Menshov A, et al. Kunitz-Type Peptides from the Sea Anemone Heteractiscrispa Demonstrate Potassium Channel Blocking and Anti-Inflammatory Activities. Biomedicines. 2020;8:473.

Sintsova O, Gladkikh I, Monastyrnaya M, et al. Sea Anemone Kunitz-Type Peptides Demonstrate Neuroprotective Activity in the 6-Hydroxydopamine Induced Neurotoxicity Model. Biomedicines. 2021;9:283.

D'Ambra I, Lauritano C. A Review of Toxins from Cnidaria. Mar Drugs. 2020;18(10):507.

Kalina, R.S.; Peigneur, S.; Zelepuga, E.A.; Dmitrenok, P.S.; Kvetkina, A.N.; Kim, N.Y.; Leychenko, E.V.; Tytgat, J.; Kozlovskaya, E.P.; Monastyrnaya, M.M.; Gladkikh, I.N. New Insights into the Type II Toxins from the Sea Anemone Heteractis crispa. Toxins 2020, 12, 44.

Monastyrnaya M, Peigneur S, Zelepuga E, et al. Kunitz-Type Peptide HCRG21 from the Sea Anemone Heteractis crispa is a Full Antagonist of the TRPV1 Receptor. Mar Drugs. 2016;14:229.

Gladkikh I, Monastyrnaya M, Leychenko E, Zelepuga E, Chausova V, Isaeva M, et al. Atypical reactive center Kunitz-type inhibitor from the sea anemone Heteractiscrispa. Mar Drugs. 2012;10:1545-65.

Tauil CB, VON Glehn F, Nonato-Rodrigues R, Gomes JRAA, Brandão CO, Santos LMBD, et al. From Charcot's descriptions to the current understanding of neuropsychiatric symptoms in multiple sclerosis. ArqNeuropsiquiatr. 2019 ;77:521-24.

Andreev YA, Kozlov SA, Koshelev SG, Ivanova EA, Monastyrnaya MM, Kozlovskaya EP, Grishin EV. Analgesic compound from sea anemone Heteractis crispa is the first polypeptide inhibitor of vanilloid receptor 1 (TRPV1). J Biol Chem. 2008;283:23914-21.

Domínguez-Pérez D, Campos A, Alexei Rodríguez A, Turkina MV, Ribeiro T, Osorio H, et al. Proteomic Analyses of the Unexplored Sea Anemone Bunodactisverrucosa. Mar Drugs. 2018;16:42.

Sintsova O, Gladkikh I, Kalinovskii A, et al. Magnificamide, a β-Defensin-Like Peptide from the Mucus of the Sea Anemone Heteractis magnifica, Is a Strong Inhibitor of Mammalian α-Amylases. Mar Drugs. 2019;17:542.

Chi V, Pennington MW, Norton RS, Tarcha EJ, Londono LM, Sims-Fahey B, Upadhyay SK, Lakey JT, Iadonato S, Wulff H, Beeton C, Chandy KG. Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon. 2012;59:529-46.

Li R, Yu H, Li T, Li P. Comprehensive Proteome Reveals the Key Lethal Toxins in the Venom of Jellyfish Nemopilemanomurai. J Proteome Res. 2020;19:2491-2500.

Ovchinnikova TV, Balandin SV, Aleshina GM, Tagaev AA, Leonova YF, Krasnodembsky ED, et al. Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. BiochemBiophys Res Commun. 2006;348:514-23.

Li R, Yu H, Xue W, Yue Y, Liu S, Xing R, et al. Jellyfish venomics and venom gland transcriptomics analysis of Stomolo phusmeleagristo reveal the toxins associated with sting. J Proteomics. 2014;106:17-29.

Li A, Yu H, Li R, Liu S, Xing R, Li P. Inhibitory Effect of Metalloproteinase Inhibitors on Skin Cell Inflammation Induced by Jellyfish Nemopile manomurai Nematocyst Venom. Toxins (Basel). 2019;11:156.

Huang C, Morlighem JR, Zhou H, Lima ÉP, Gomes PB, Cai J, et al. The Transcriptome of the Zoanthid Protopalythoa variabilis (Cnidaria, Anthozoa) Predicts a Basal Repertoire of Toxin-like and Venom-Auxiliary Polypeptides. Genome BiolEvol. 2016;8:3045-3064.

Domínguez-Pérez D, Campos A, Alexei Rodríguez A, Turkina MV, Ribeiro T, Osorio H, et al. Proteomic Analyses of the Unexplored Sea AnemoneBunodactisverrucosa. Mar Drugs. 2018;16:42.

Ramírez-Carreto S, Vera-Estrella R, Portillo-Bobadilla T, Licea-Navarro A, Bernaldez-Sarabia J, et al. Transcriptomic and Proteomic Analysis of the Tentacles and Mucus of Anthopleuradowii Verrill, 1869. Mar Drugs. 2019;17:436.

Yamaguchi Y, Hasegawa Y, Honma T, Nagashima Y, Shiomi K. Screening and cDNA cloning of Kv1 potassium channel toxins in sea anemones. Mar Drugs. 2010;8:2893-905.

B Orts DJ, Peigneur S, Silva-Gonçalves LC, Arcisio-Miranda M, P W Bicudo JE, et al J. AbeTx1 Is a Novel Sea Anemone Toxin with a Dual Mechanism of Action on Shaker-Type K⁺ Channels Activation. Mar Drugs. 2018;16:360.

Wanke E, Zaharenko AJ, Redaelli E, Schiavon E. Actions of sea anemone type 1 neurotoxins on voltage-gated sodium channel isoforms. Toxicon. 2009;54:1102-11.

Honma T, Minagawa S, Nagai H, Ishida M, Nagashima Y, Shiomi K. Novel peptide toxins from acrorhagi, aggressive organs of the sea anemone Actinia equina. Toxicon. 2005;46:768-74

Kalina RS, Koshelev SG, Zelepuga EA, Kim NY, Kozlov SA, Kozlovskaya EP, et al. APETx-Like Peptides from the Sea Anemone Heteractiscrispa, Diverse in Their Effect on ASIC1a and ASIC3 Ion Channels. Toxins (Basel). 2020;12:266.

Kim CH, Lee YJ, Go HJ, Oh HY, Lee TK, Park JB, et al. Defensin-neurotoxin dyad in a basally branching metazoan sea anemone. FEBS J. 2017;284:3320-38.

Honma T, Minagawa S, Nagai H, Ishida M, Nagashima Y, Shiomi K. Novel peptide toxins from acrorhagi, aggressive organs of the sea anemone Actinia equina. Toxicon. 2005;46:768-74.

Domínguez-Pérez D, Campos A, Alexei Rodríguez A, Turkina MV, Ribeiro T, Osorio H, et al. Proteomic Analyses of the Unexplored Sea AnemoneBunodactisverrucosa. Mar Drugs. 2018;16:42.

Prentis PJ, Pavasovic A, Norton RS. Sea Anemones: Quiet Achievers in the Field of Peptide Toxins. Toxins (Basel). 2018;10:36.

Natsui K, Mizuno Y, Tani N, Yabuki M, Komuro S. Retraction Note to: Identification of CYP3A4 as the primary cytochrome P450 responsible for the metabolism of tandospirone by human liver microsomes. Eur J Drug Metab Pharmacokinet. 2019;44:853.

Zamith-Miranda D, Fox EGP, Monteiro AP, Gama D, Poublan LE, de Araujo AF, et al. The allergic response mediated by fire ant venom proteins. Sci Rep. 2018;8:14427.

James FK Jr, Pence HL, Driggers DP, Jacobs RL, Horton DE. Imported fire ant hypersensitivity. Studies of human reactions to fire ant venom. J Allergy Clin Immunol. 1976;58:110-20.

Kim SC, Hong CS. A case of anaphylaxis by ant (Ectomomyrmex spp.) venom and measurements of specific IgE and IgG subclasses. Yonsei Med J. 1992;33:281-7.

Stafford CT. Hypersensitivity to fire ant venom. Ann Allergy Asthma Immunol. 1996 77:87-95.

Sousa PL, Quinet YP, Cavalcante Brizeno LA, Sampaio TL, Torres AF, Martins AM, Assreuy AM. The acute inflammatory response induced in mice by the venom of the giant ant Dinoponera quadriceps involves macrophage and interleukin-1β. Toxicon. 2016;117:22-9.

Song Y, Kumar V, Wei HX, Qiu J, Stanley P. Lunatic, Manic, and Radical Fringe Each Promote T and B Cell Development. J Immunol. 2016;196:232-43.

Tani N, Kazuma K, Ohtsuka Y, Shigeri Y, Masuko K, Konno K, Inagaki H. Mass Spectrometry Analysis and Biological Characterization of the Predatory Ant Odontomachus monticola Venom and Venom Sac Components. Toxins (Basel). 2019;11:50.

Touchard A, Aili SR, Fox EG, Escoubas P, Orivel J, Nicholson GM, Dejean A. The Biochemical Toxin Arsenal from Ant Venoms. Toxins (Basel). 2016;8:30.

Krayem N, Abdelkefi-Koubaa Z, Marrakchi N, Luis J, Gargouri Y. Anti-angiogenic effect of phospholipases A2 from Scorpio maurus venom glands on Human Umbilical Vein Endothelial Cells. Toxicon. 2018;145:6-14.

Kvetkina A, Leychenko E, Chausova V, Zelepuga E, Chernysheva N, Guzev K, et al. A newmultigene HCIQ subfamily from the sea anemone Heteractis crispa encodes Kunitz-peptides exhibiting neuroprotective activity against 6-hydroxydopamine. Sci Rep. 2020;10:4205.

Lee H, Bae SK, Kim M, Pyo MJ, Kim M, Yang S, et al. Anticancer Effect of Nemopilemanomurai Jellyfish Venom on HepG2 Cells and a Tumor Xenograft Animal Model. Evid Based Complement Alternat Med. 2017;2752716.

Babenko VV, Mikov AN, Manuvera VA, Anikanov NA, Kovalchuk SI, Andreev YA, et al. Identification of unusual peptides with new Cys frameworks in the venom of the cold-water sea anemone Cnidopusjaponicus. Sci Rep. 2017;7:14534.

Mariottini GL, Pane L. Cytotoxic and cytolytic cnidarian venoms. A review on health implications and possible therapeutic applications. Toxins (Basel). 2013;6:108-51.

Mariottini GL, Pane L. Mediterranean jellyfish venoms: a review on scyphomedusae. Mar Drugs. 2010;8:1122-52.

Lazcano-Pérez F, Zavala-Moreno A, Rufino-González Y, Ponce-Macotela M, García-et al. Hemolytic, anticancer and antigiardial activity of Palythoacaribaeorum venom. J Venom Anim Toxins Incl Trop Dis. 2018;24:12.

Alvarez C, Ros U, Valle A, Pedrera L, Soto C, et al. Biophysical and biochemical strategies to understand membrane binding and pore formation by sticholysins, pore-forming proteins from a sea anemone. Biophys Rev. 2017;9:529-44.

Bulati M, Longo A, Masullo T, Vlah S, Bennici C, Bonura A, Salamone M, et al. Partially Purified Extracts of Sea Anemone Anemonia viridis Affect the Growth and Viability of Selected Tumour Cell Lines. Biomed Res Int. 2016:3849897.

Ayed Y, Sghaier RM, Laouini D, Bacha H. Evaluation of anti-proliferative and anti-inflammatory activities of Pelagianoctiluca venom in Lipopolysaccharide/Interferon-γ stimulated RAW264.7 macrophages. Biomed Pharmacother. 2016;84:1986-91.

Loret EP, Luis J, Nuccio C, Villard C, Mansuelle P, Lebrun R, et al . A Low Molecular Weight Protein from the Sea Anemone Anemonia viridis with an Anti-AngiogenicActivity. Mar Drugs. 2018;16:134.

Merrifield RB, JuvvadiP, Andreu D, Ubach J, Boman A, Boman HG. Retro and retroenantio analogs of cecropin-melittin hybrids. Proc NatlAcad Sci USA 1995;92:3449–53.

Merrifield RB, Wade D, Boman HG. Antibiotic Peptides Containing D-Amino Acids. US5585353 A 1996.

Anju G, Reetu G, Sudarshan K. Hanbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering. Soni, Shivani; Hershey, PA, USA 2015.

Stockwell VO, Duffy B. Use of antibiotics in plant agriculture. Rev Sci Tech 2012;31:199–21079.

Badosa E, Ferre R, Planas M, Feliu L, Besalu E, Cabrefiga J, et al. A library of linear undecapeptides with bactericidal activity against phyto-pathogenic bacteria. Peptides 2007;28:2276–285.

Rubner MF, Yang SY, Qiu Y, Lynn C, Lally JM. Method for making medical devices having antimicrobial coatings thereon. US20140112994. 2014.Toxins 2015;7:1126-150.

Baghian A, Jaynes J, Enright F, Kousoulas KG. An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread. Peptides 1997;18:177–83.

Wachinger M, Saermark T, Erfle V. Influence of amphipathic peptides on the HIV-1 production in persistently infected T lymphoma cells. FEBS Lett1992;309:235–41.

Ayed Y, Sghaier RM, Laouini D, Bacha H. Evaluation of anti-proliferative and anti-inflammatory activities of Pelagianoctiluca venom in Lipopolysaccharide/Interferon-γ stimulated RAW264.7 macrophages. Biomed Pharmacother. 2016;84:1986-91.

Loret EP, Luis J, Nuccio C, Villard C, Mansuelle P, Lebrun R, et al . A Low Molecular Weight Protein from the Sea Anemone Anemoniaviridis with an Anti-AngiogenicActivity. Mar Drugs. 2018;16:134.

Kvetkina A, Leychenko E, Chausova V, Zelepuga E, Chernysheva N, Guzev K, et al. A new multigene HCIQ subfamily from the sea anemone Heteractis crispa encodes Kunitz-peptides exhibiting neuroprotective activity against 6-hydroxydopamine. Sci Rep. 2020;10:4205.

Daly JW, Noimai N, Kongkathip B, Kongkathip N, Wilham JM, Garraffo HM, et al. Biologically active substances from amphibians: preliminary studies on anurans from twenty-one genera of Thailand. Toxicon. 2004;44:805-15.

Kauskot A, Cominetti MR, Ramos OH, Bechyne I, Renard JM, Hoylaerts MF, et al. Hemostatic effects of recombinant DisBa-01, a disintegrin from Bothrops alternatus. Front Biosci. 2008;13:6604-16.

Morjen M, Othman H, Abdelkafi-Koubaa Z, Messadi E, Jebali J, El Ayeb M, Abid NS, Luis J, Marrakchi N. Targeting α1 inserted domain (I) of α1β1 integrin by Lebetin 2 from M. lebetina transmediterranea venom decreased tumorigenesis and angiogenesis. Int J Biol Macromol. 2018;117:790-99.

Chalier F, Mugnier L, Tarbe M, Aboudou S, Villard C, Kovacic H, Gigmes D, Mansuelle P, de Pomyers H, Luis J, Mabrouk K. Isolation of an Anti-Tumour Disintegrin: Dabmaurin-1, a Peptide Lebein-1-Like, from Daboia mauritanica Venom. Toxins (Basel). 2020;12:102.

Dudley A, McKinstry W, Thomas D, Best J, Jenkins A. Removal of endotoxin by reverse phase HPLC abolishes anti-endothelial cell activity of bacterially expressed plasminogen kringle 5. Biotechniques. 2003;35:724-6.

Zouari-Kessentini R, Srairi-Abid N, Bazaa A, El Ayeb M, Luis J, Marrakchi N. Antitumoral potential of Tunisian snake venoms secreted phospholipases A2. Biomed Res Int. 2013;2013:391389.

Cooper A.M., Fox G.A., Nelsen D.R., Hayes W.K. Variation in venom yield and protein concentrationofthecentipedes Scolopendrapolymorpha and Scolopendrasubspinipes. Toxicon. 2014;82:30–51.

Roy, A., Bharadvaja, N. Venom-Derived Bioactive Compounds as Potential Anticancer Agents: A Review. Int J Pept Res Ther. 2021;27:129–47.

Jameel Al-Tamimi, Abdelhabib Semlali, Iftekhar Hassan, Hossam Ebaid, Ibrahim M. Alhazza, Syed H. Mehdi, Mohammed Al-Khalifa, , and Mohammad S. AlanaziCancer Biotherapy & Radiopharmaceuticals 2018: 65-73.

Ebaid H, Al-Tamimi J, Hassan I, Alhazza I, Al-Khalifa M. Antioxidant bioactivity of Samsum ant (Pachycondyla sennaarensis) venom protects against CCL₄-induced nephrotoxicity in mice. Oxid Med Cell Longev. 2014;2014:763061.

Monincová L, et al. “Structure-activity study of macropin, a novel antimicrobial peptide from the venom of solitary bee Macropis fulvipes (Hymenoptera: Melittidae)”. J Pept Sci. 20 2014375-84.

Kim BY, et al. “Antimicrobial activity of a honeybee (Apiscerana) venom Kazal-type serine protease inhibitor”. Toxicon.2013:110-7.

Čujová S, et al. “Panurgines, novel antimicrobial peptides from the venom of communal bee Panurguscalcaratus (Hymenoptera: Andrenidae)”. Amino Acids.452013:143-57.

Câmara GA, et al. A Multiomics Approach Unravels New Toxins With Possible InSilico Antimicrobial, Antiviral, and Antitumoral Activities in the Venom of Acanthoscurriarondoniae. Front Pharmacol. 112020:1075.

Silva JC, et al. “Evaluation of the antimicrobial activity of the mastoparanPolybia-MPII isolated from venom of the social wasp Pseudo polybiavespicepstestacea (Vespidae, Hymenoptera). Int J Antimicrob Agents.49:167-75.

Das Neves RC, et al. “Antimycobacterial Activity of a New Peptide Polydim-I Isolated from Neotropical Social Wasp Polybiadimorpha”. PLoS One. 11:e0149729.

Ha YJ, et al. “Anti-Salmonella Activity Modulation of Mastoparan V1-A Wasp Venom Toxin-Using Protease Inhibitors, and Its Efficient Production via an Escherichia coli Secretion System”.Toxins (Basel). 9:321.

Rangel M, et al. “Polydim-I antimicrobial activity against MDR bacteria and its model membrane interaction. PLoSOne.12, 2017 :e0178785

Dos Santos Cabrera MP, et al. “Chemical and Biological Characteristics of Antimicrobial α-Helical Peptides Found in Solitary Wasp Venoms and Their Interactions with Model Membranes. Toxins (Basel).112019:559.

Kim BY, et al. “Antimicrobial activity of a honeybee (Apiscerana) venom Kazal-type serine protease inhibitor. Toxicon.2013:110-7.

Cesa-Luna C, et al. “Structural characterization of scorpion peptides and their bactericidal activity against clinical isolates of multidrug-resistant bacteria”. PLoS One.11 2019:e0222438.

Zhang S, et al. “Loop Replacement Enhances the Ancestral Antibacterial Function of a Bifunctional Scorpion Toxin”. Toxins (Basel).42018:227.

Dubovskii PV, et al. “Latarcins: versatile spider venom peptides”. Cell Mol Life Sci.722015 :4501-22.

Monincová L, et al. “Structural basis for antimicrobial activity of lasiocepsi”. Chembiochem.152014:301-8.

Ha YJ, et al. Anti-Salmonella Activity Modulation of Mastoparan V1-A Wasp Venom Toxin-Using Protease Inhibitors, and Its Efficient Production via an Escherichia coli Secretion System. Toxins (Basel). 92017:321.

Rangel M, et al. Polydim-I antimicrobial activity against MDR bacteria and its model membrane interaction. PLoS One. 122017:e0178785.

Konno K, et al. “New Mastoparan Peptides in the Venom of the Solitary Eumenine Wasp Eumenesmicado”. Toxins (Basel).112019:155.

Madden AA, et al. “The emerging contribution of social wasps to grape rots disease ecology. Peer J.52017:e3223.

Lin Z, Wang RJ, Cheng Y, Du J, Volovych O, Han LB, Li JC, et al. Insights into the venom protein components of Microplitis mediator, an endoparasitoid wasp. Insect Biochem Mol Biol. 2019;105:33-42.

Vanha-Aho LM, Anderl I, Vesala L, Hultmark D, Valanne S, Rämet M. Edin Expression in the Fat Body Is Required in the Defense Against Parasitic Wasps in Drosophila melanogaster. PLoS Pathog. 2015;11:e1004895.

Pinto-Santini DM, Stenbak CR, Linial ML. Foamy virus zoonotic infections. Retrovirology. 2017;14:55.

Dodou Lima HV, Sidrim de Paula Cavalcante C, Rádis-Baptista G. Antimicrobial activity of synthetic Dq-3162, a 28-residue ponericin G-like dinoponeratoxin from the giant ant Dinoponera quadriceps venom, against carbapenem-resistant bacteria. Toxicon. 2020;187:19-28.

Guzman J, Téné N, Touchard A, Castillo D, Belkhelfa H, Haddioui-Hbabi L, Treilhou M, Sauvain M. Anti-Helicobacter pylori Properties of the Ant-Venom Peptide Bicarinalin. Toxins (Basel). 2017;10:21.

Téné N, Bonnafé E, Berger F, Rifflet A, Guilhaudis L, Ségalas-Milazzo I, Pipy B, Coste A, Leprince J, Treilhou M. Biochemical and biophysical combined study of bicarinalin, an ant venom antimicrobial peptide. Peptides. 2016;79:103-13.

Rifflet A, Gavalda S, Téné N, Orivel J, Leprince J, Guilhaudis L, Génin E, Vétillard A, Treilhou M. Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum. Peptides. 2012;38:363-70.

Sabiá Júnior EF, Menezes LFS, de Araújo IFS, Schwartz EF. Natural Occurrence in Venomous Arthropods of Antimicrobial Peptides Active against Protozoan Parasites. Toxins (Basel). 2019;11:563.

Domínguez-Pérez D, Campos A, Alexei Rodríguez A, Turkina MV, Ribeiro T, Osorio H, Vasconcelos V, Antunes A. Proteomic Analyses of the Unexplored Sea Anemone Bunodactis verrucosa. Mar Drugs. 2018;16:42.

Mason B, Cooke I, Moya A, Augustin R, Lin MF, Satoh N, Bosch TCG, Bourne DG, Hayward DC, Andrade N, Forêt S, Ying H, Ball EE, Miller DJ. AmAMP1 from Acropora millepora and damicornin define a family of coral-specific antimicrobial peptides related to the Shk toxins of sea anemones. Dev Comp Immunol. 2021;114:103866.

Zhao L, Huang Y, Dong Y, Han X, Wang S, Liang X. Aptamers and Aptasensors for Highly Specific Recognition and Sensitive Detection of Marine Biotoxins: Recent Advances and Perspectives. Toxins (Basel). 2018;10:427.

Dubovskii PV, Vassilevski AA, Kozlov SA, Feofanov AV, Grishin EV, Efremov RG. Latarcins: versatile spider venom peptides. Cell Mol Life Sci. 2015;72:4501-22.

Silva JC, Neto LM, Neves RC, Gonçalves JC, Trentini MM, Mucury-Filho R, Smidt KS, et al. Evaluation of the antimicrobial activity of the mastoparan Polybia-MPII isolated from venom of the social wasp Pseudopolybia vespiceps testacea (Vespidae, Hymenoptera). Int J Antimicrob Agents. 2017;49:167-75.

Jouvenaz DP, Blum MS, MacCONNELL JG. Antibacterial activity of venom alkaloids from the imported fire ant, Solenopsis invicta Buren. Antimicrob Agents Chemother. 1972;2:291-93.

Wang K, Yan J, Chen R, Dang W, Zhang B, Zhang W, Song J, Wang R. Membrane-active action mode of polybia-CP, a novel antimicrobial peptide isolated from the venom of Polybia paulista. Antimicrob Agents Chemother. 2012;56:3318-23.

Veloso Júnior PHH, Simon KS, de Castro RJA, Coelho LC, Erazo FAH, et al. Peptides ToAP3 and ToAP4 decrease release of inflammatory cytokines through TLR-4 blocking. Biomed Pharmacother. 2019;118:109152.

Hansen PR, Munk JK. Synthesis of antimicrobial peptoids. Methods Mol Biol. 2013;1047:151-9.

Willems J, Noppe W, Moerman L, van der Walt J, Verdonck F. Cationic peptides from scorpion venom can stimulate and inhibit polymorphonuclear granulocytes. Toxicon. 2002 ;40:1679-83.

Dodou Lima HV, de Paula Cavalcante CS, Rádis-Baptista G. Corrigendum to "Antimicrobial activity of synthetic Dq-3162, a 28-residue ponericin G-like dinoponeratoxin from the giant ant Dinoponera quadriceps venom, against carbapenem-resistant bacteria,Toxicon. 2021;189:105-106.

Rocha LQ, Orzaéz M, García-Jareño AB, Nunes JVS, Duque BR, Sampaio TL, Alves RS, Lima DB, Martins AMC. Dinoponera quadriceps venom as a source of active agents against Staphylococcus aureus. Toxicon. 2021;189:33-38.

Guzman J, Téné N, Touchard A, Castillo D, Belkhelfa H, Haddioui-Hbabi L, Treilhou M, Sauvain M. Anti-Helicobacter pylori Properties of the Ant-Venom Peptide Bicarinalin. Toxins (Basel). 2017;10:21.

Téné N, Bonnafé E, Berger F, Rifflet A, Guilhaudis L, Ségalas-Milazzo I, Pipy B, Coste A, Leprince J, Treilhou M. Biochemical and biophysical combined study of bicarinalin, an ant venom antimicrobial peptide. Peptides. 2016;79:103-13.

Rifflet A, Gavalda S, Téné N, Orivel J, Leprince J, Guilhaudis L, Génin E, Vétillard A, Treilhou M. Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum. Peptides. 2012;38:363-70.

Sabiá Júnior EF, Menezes LFS, de Araújo IFS, Schwartz EF. Natural Occurrence in Venomous Arthropods of Antimicrobial Peptides Active against Protozoan Parasites. Toxins (Basel). 2019;11:563.

Guo Z, Gu Y, Wang C, Zhang J, Shan S, Gu X, Wang K, Han Y, Ren T. Enforced expression of miR-125b attenuates LPS-induced acute lung injury. Immunol Lett. 2014 Nov;162(1 Pt A):18-26.

Jindřichová B, Burketová L, Novotná Z. Novel properties of antimicrobial peptide anoplin. Biochem Biophys Res Commun. 2014;444:520-4.

Singulani JL, Galeane MC, Ramos MD, Gomes PC, Dos Santos CT, de Souza BM, Palma MS, Fusco Almeida AM, Mendes Giannini MJS. Antifungal Activity, Toxicity, and Membranolytic Action of a Mastoparan Analog Peptide. Front Cell Infect Microbiol. 2019 Dec 6;9:419.

Marcos CM, de Oliveira HC, Assato PA, de Andrade CR, Fusco-Almeida AM, Mendes-Giannini MJS. Paracoccidioides brasiliensis 14-3-3 protein is important for virulence in a murine model. Med Mycol. 2019;57:900-904.

Salas RL, Garcia JKDL, Miranda ACR, Rivera WL, Nellas RB, Sabido PMG. Effects of truncation of the peptide chain on the secondary structure and bioactivities of palmitoylated anoplin. Peptides. 2018;104:7-14.

Moreels L, Peigneur S, Galan DT, De Pauw E, Béress L, Waelkens E, Pardo LA, Quinton L, Tytgat J. APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel KV10.1. Mar Drugs. 2017;15:287.

Torres-Rêgo M, Gláucia-Silva F, Rocha Soares KS, de Souza LBFC, Damasceno IZ, Santos-Silva ED, Lacerda AF, Chaves GM, Silva-Júnior AAD, Fernandes-Pedrosa MF. Biodegradable cross-linked chitosan nanoparticles improve anti-Candida and anti-biofilm activity of TistH, a peptide identified in the venom gland of the Tityus stigmurus scorpion. Mater Sci Eng C Mater Biol Appl. 2019;103:109830.

Baek JH, Lee SH. Isolation and molecular cloning of venom peptides from Orancistrocerus drewseni (Hymenoptera: Eumenidae). Toxicon. 2010;55:711-8.

Zeitler, Benjamin et al. “De-novo design of antimicrobial peptides for plant protection.” PloS one vol. 8,8 e71687. 12 Aug. 2013.

Tejuca M, Anderluh G, Macek P, Marcet R, Torres D, Sarracent J, Alvarez C, Lanio ME, Dalla Serra M, Menestrina G. Antiparasite activity of sea-anemone cytolysins on Giardia duodenalis and specific targeting with anti-Giardia antibodies. Int J Parasitol. 1999;29:489-98.

Ben-Ari H, Paz M, Sher D. The chemical armament of reef-building corals: inter- and intra-specific variation and the identification of an unusual actinoporin in Stylophora pistilata. Sci Rep. 2017;8:251.

Nicosia A, Maggio T, Mazzola S, Cuttitta A. Evidence of accelerated evolution and ectodermal-specific expression of presumptive BDS toxin cDNAs from Anemoniaviridis. Mar Drugs. 2013;11:4213

Gladkikh I, Monastyrnaya M, Zelepuga E, Sintsova O, Tabakmakher V, Gnedenko O, et al. New Kunitz-Type HCRG Polypeptides from the Sea Anemone Heteractiscrispa. Mar Drugs. 2015;13:6038-63

Gladkikh I, Peigneur S, Sintsova O, Lopes Pinheiro-Junior E, Klimovich A, Menshov A, et al. Kunitz-Type Peptides from the Sea Anemone Heteractiscrispa Demonstrate Potassium Channel Blocking and Anti-Inflammatory Activities. Biomedicines. 2020;8:473.

Sintsova O, Gladkikh I, Monastyrnaya M, et al. Sea Anemone Kunitz-Type Peptides Demonstrate Neuroprotective Activity in the 6-Hydroxydopamine Induced Neurotoxicity Model. Biomedicines. 2021;9:283.

Ben-Ari H, Paz M, Sher D. The chemical armament of reef-building corals: inter- and intra-specific variation and the identification of an unusual actinoporin in Stylophora pistilata. Sci Rep. 2018;8:251.

Uddin MB, Lee BH, Nikapitiya C, Kim JH, Kim TH, Lee HC, Kim CG, Lee JS, Kim CJ. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. J Microbiol. 2016;54:853-66.

Lee WR, Kim KH, An HJ, Kim JY, Chang YC, Chung H, Park YY, Lee ML, Park KK. The protective effects of melittin on Propionibacterium acnes-induced inflammatory responses in vitro and in vivo. J Invest Dermatol. 2014;134:1922-30.

Sarhan M, El-Bitar AMH, Hotta H. Potent virucidal activity of honeybee "Apis mellifera" venom against Hepatitis C Virus. Toxicon. 2020;188:55-64.

Sample CJ, Hudak KE, Barefoot BE, Koci MD, Wanyonyi MS, Abraham S, Staats HF, Ramsburg EA. A mastoparan-derived peptide has broad-spectrum antiviral activity against enveloped viruses. Peptides. 2013;48:96-105.

Carpena M, Nuñez-Estevez B, Soria-Lopez A, Simal-Gandara J. Bee Venom: An Updating Review of Its Bioactive Molecules and Its Health Applications. Nutrients. 2020 ;12:3360.

Zhang J, Yu C, Zhang X, Chen H, Dong J, Lu W, Song Z, Zhou W. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. J Neuroinflammation. 2018;15:37.

Lu HY, Chen YH, Liu HJ. Baculovirus as a vaccine vector. Bioengineered. 2012 3:271-4.

Marques B, Martins RG, Tralhão G, Couto J, Saraiva S, Ferrão H, Ribeiro J, Santos J, Martins T, Cadime AT, Rodrigues F. Gastric neuroendocrine neoplasm with late liver metastasis. Endocrinol Diabetes Metab Case Rep. 2018;:18-0048.

Uenishi H, Iwanami N, Kuribayashi K, Tamamura H, Fujii N, Nakatani T, Kawasaki T, Yamagishi H. Overlapping epitopes of friend murine leukemia virus gag-encoded leader sequence recognized by single cytotoxic T-lymphocyte clones. Immunol Lett. 1998 ;62:33-8.

Preet P. Peptides: a new therapeutic approach. Int J Curr Pharm Res 2018;10:29-34.

Ahulwalia, S., and N. Shah. “Animal venom for treating breast cancer”. International Journal of Pharmacy and Pharmaceutical Sciences, 2014:9:24-30.

Mohd, KS., MA. Kassim Hassan, W.-Atirah Azemin, and S. Dharmaraj. “A review of potential anti-cancers from antimicrobial peptides”. International Journal of Pharmacy and Pharmaceutical Sciences, 2015; 7: 19-26.

Published

04-08-2022

How to Cite

SHARMA, S., and R. K. UPADHYAY. “THERAPEUTICS APPROACHES OF INVERTEBRATE ANIMAL TOXINS: A REVIEW”. International Journal of Pharmacy and Pharmaceutical Sciences, vol. 14, no. 9, Aug. 2022, doi:10.22159/ijpps.2022v14i9.45520.

Issue

Section

Original Article(s)