• Ghalia Sabbagh Department of Pharmaceutical Chemistry and Quality Control, Faculty of Pharmacy, Aleppo University, Aleppo University Street, Aleppo, Syria
  • Thanaa Murad Aleppo University


Objective: This study is an attempt to identifying an effective fluoroquinolones (FQ) s against STAPHYLOCOCCUS AUREUS (S. aureus) by in silico analysis of 150 (FQ) compounds using iGemDock v2.1 tool.

Methods: Structure of DNA gyrase (2XCT) was retrieved from the Protein Data Bank (PDB) and the structures of (FQ) compounds were selected from literature survey of 400 novel compounds and the physical, chemical and molecular characteristics of each compound were obeyed for drug-relevant properties based on Lipinski's rule of five, then a total of 150 (FQ)s were docked against the protein of the 2XCT enzyme.

Results: From this study, it was found that the compound (1) [(3R,7E)-9-fluoro-7-(isonicotinoylhydrazono)-3-methyl-10-(4-methylpiperazin-1-yl)-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid] and the compound (2) [1-cyclopropyl-6-fluoro-7-{4-[(8-hydroxyquinolin-2-yl)methyl]piperazin-1-yl}-4-oxo-1,4-dihydroquinoline-3-carboxylic acid] showed the best interaction value against 2XCT enzyme, the binding energy was (-104. 58 kcal/mol), (-26. 5kcal/mol) respectively whereas the reference ciprofloxacin (CIP) was (-74. 33 kcal/mol).

Conclusion: Further in vitro studies of these compounds against the enzyme will lead a new pathway to drug discovery.


Keywords: S. aureus, (FQ)s, 2XCT, DNA gyrase, Lipinski’s rule, iGemdock, In silico


Download data is not yet available.


1. Tiwari HK, Das AK, Sapkota D, Sivarajan K, Pahwa VK. Methicillin resistant Staphylococcus aureus prevalence and antibiogram in a tertiary care hospital in western Nepal. J Infect Dev Countries 2009;3:21-4.
2. Chambers HF. The changing epidemiology of Staphylococcus aureus. Emerging Infect Dis 2001;7:182-7.
3. Cole A, Tahk S, Oren A, Yoshioka D, Kim YH, Park A, et al. Determinants of S. aureus nasal carriage. Clin Diagn Lab Immunol 2001;6:1064-9.
4. Robert J, Bismuth R, Jarlier V. Decreased susceptibility to glycopeptides in methicillin‑resistant Staphylococcus aureus. J Antimicrob Chemother 2006;57:506-11.
5. Bal M, Saha B, Singh AK, Ghosh A. Identification and characterization ofa vancomycin‑resistant S. aureus isolated from Kolkata (South Asia). J Med Microbiol 2008;57:172-9.
6. Foster JK, Joseph R, Lentino RS, Divincenzo C. Comparison of in vitro activity of quinolone antibiotic and vancomycin against gentamicin‑and methicillin‑resistant S. aureus time‑kill kinetic studies. Antimicrob Agents Chemother 1986;30:823-9.
7. Gould IM, David MZ, Esposito S. New insights into meticillin-resistant S. aureus (MRSA) pathogenesis, treatment and resistance. Int J Antimicrob Agents 2012;39:104-12.
8. Brown DF, Edwards DI, Hawkey PM, Morrison D, Ridgway GL, Towner KJ, et al. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant S. aureus (MRSA). J Antimicrob Chemother 2005;56:1000-18.
9. Champoux JJ. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem Allied Res India 2001;70:369-73.
10. Schoeffler AJ, Berger JM. DNA topoisomerases are harnessing and constraining energy to govern chromosome topology. Q Rev Biophys 2008;41:101-41.
11. Laponogov I, Sohi MK, Veselkov DA, Pan X-S, Sawhney R, Thompson AW, et al. Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nat Struct Mol Biol 2009;16:667–9.
12. Bax DB, Chan PF, Eggleston DS, Fosberry A, Gentry DR, Gorrec F, et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 2010;466:935-9.
13. Levine C, Hiasa H, Marians KJ. DNA Gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication and drug sensitivities. Biochim Biophys Acta Bio member 1998;1400:29-43.
14. Gallert M, Mizuuchi K, Mary O’dea H, Nash AH. DNA gyrase: an enzyme that introduces superhelical turns in to DNA. Proc Natl Acad Sci USA 1976;73:3872-6.
15. Drlica K, Zhao X. DNA Gyrase, Topoisomerase IV, and the 4-Quinolones. Microbiology and molecular biology reviews. Microbiol Mol Biol Rev 1997;61:377-92.
16. Angehrn P, Buchmann S, Funk C, Goetschi E, Gmuender H, Hebeisen. New Antibacterial agents derived from the DNA gyrase inhibitor cyclothialidine”. J Med Chem 2004;47:1487-93.
17. Hooper DC. Mode of action of (FQ)s. Drugs 1999;58:6-10.
18. Hooper DC. Mechanisms of action and resistance of older and newer (FQ)s. Clin Infect Dis 2000;31:24-8.
19. Hooper DC. Mechanisms of quinolone resistance. Clin Infect Dis 1999;2:38-55.
20. Emami S, Shafiee A, Foroumadi A. Structural features of new quinolones and relationship to antibacterial activity against Gram-positive bacteria. Mini Rev Med Chem 2006;6:375-86.
21. Prabodh Chander Sharma, Ankit Jain, Sandeep jain. (FQ) Antibacterials: a review on chemistry microbiology and therapeutic prospects. Acta Poloniae Pharm Drug Res 2009;66:587-98.
22. GS Tillotson. Quinolones: structure-activity relationships and future predictions. J Med Microbiol 1996;44:320-4.
23. Daniel T, W Chu, Prabhavathi B. Fernandest: structure-activity relationships of the (FQ)s. Am Soc Microbiol 1989;33:131-5.
24. Roy Akhilesh, Sardar SM, Salve B, Rishi Pathak DD. Studies on synthesis and biological evaluation of some substituted (FQ)s. Int J Chem Tech Res 2009;1:34-45.
25. Venkatachalam CM, Jiang X, Oldfield T, Waldman M, Ligand Fit. A novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graphics Modell 2003;21:289–99.
26. Research collaboratory for structural bioinformatics. Protein Data Bank; 2015. Available from [Last accessed on 26 Mar 2015].
27. Nikola Minovski, Andrej Perdih, Marjana Novic, Tom Solmaje. Cluster-based molecular docking study for in silico identification of novel 6-(FQ)s as potential inhibitors against mycobacterium tuberculosis. J Comput Chem 2013;34:790–9.
28. Bax DB, Chan PF, Eggleston DS, Fosberry A, Gentry DR, Gorrec F, et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 2010;466:935–9.
29. Margerrison EEC, Hopewell R, Fisher LM. The nucleotide sequence of the Staphylococcus aureus gyr A-gyr B locus ending the DNA gyrase A and B protein. J Bacteriol 1992;174:1596-663.
30. Brockbank SMV, Barth PT. Cloning, Sequencing, and expression of the DNA gyrase genes from Staphylococcus aureus. J Bacteriol 1993;175:3269-77.
31. Majed M, Masadeh, Karem H. Ciprofloxacin-induced antibacterial activity is attenuated by phosphodiesterase inhibitors. Curr Ther Res 2015;77:14-7.
32. Goossens H, Ferech M, Coenen S, Stephens P, Ferech, Coenen, et al. "Comparison of outpatient systemic antibacterial use in 2004 in the United States and 27 European countries". Eur Surveillance Antimicrobial Consumption Project Group Clin Infect 2007;8:1091-8.
33. Reanau Thomas E, Sanchez Joseph P, Gage Jeffrey W, Dever A, Shapiro Martin A. Structure-activity relationships of the quinolone antibacterials against mycobacteria: effect of structural changes At N-1 And C-7. J Med Chem 1996;39:729-35.
34. Baton Sandor, Timari Geza, KoczkaIstvan, Herecz Isavan. Synthesis and biological evaluation of N-(1-Aziridino)-6-(FQ)s. Bioorg Med Chem Lett 1996;13:1507-10.
35. Hong Chang Hong, Kim Young Kwan, Chang Jay Hyok, Kim Se Ho, Choi Hoon, Nam Hyun Do, et al. Noval(FQ) antibacterial agents containing oxime-substituted (Aminomethyl) pyrrolidines: synthesis and antibacterial activity of 7-(4-(Aminomethyl)-3-(Methoxyimino)Pyrrolidin-1-Yl)-1Cyclopropyl-6-Fluoro-4-Oxo-1,4-Dihydro[1,8]Naphthyridine-3-Carboxylic Acid. J Med Chem 1997;40:3584-93.
36. Neito MJ, Alovero FDL, Manzo RH, Mazzieri MR. A new class of (FQ)s: Benzenesulfonamide (FQ)s antibacterial activity and SAR studies. Eur J Med Chem 1999;34,209-14.
37. Kuo-Chang Fang, Yeh-Long Chen, Jia-Yuh Sheu, Tai-Chi Wang, Cherng-Chyi Tzeng. Synthesis, Antibacterial, and cytotoxic evaluation of certain 7-Substituted norfloxacin derivatives. J Med Chem 2000;43:3809-12.
38. Chen YL, Fang KC, Sheu JY, Hsu SL, Tzeng CC. Synthesis and antibacterial evaluation of certain quinolone derivatives. J Med Chem 2001;44:2374-7.
39. F Alovero, A Barnes, M Nieto, MR Mazzieri, RH Manzo. Comparative study of new benzenesulfonamide (FQ)s structurally related to ciprofloxacin against selected ciprofloxacin-susceptible and–resistant Gram-positive cocci. J Antimicrob Chemother 2001;48:709-12.
40. Natesh Rameshkumar, Mohan, Ekambaram Harihara, Ilavarasan Raju, Sridhar Seshaiah Krishnan. Synthesis of 6-Fluoro-1,4-Dihydro-4-Oxo-Quinoline-3-carboxylic acid derivatives as potential antimicrobial agents. Eur J Med Chem 2003;38:1001-4.
41. HU Guo-Qiang, Zhang Zhong Quan, Huang Wen Long, Zhang Hui Bin, Huang Sheng Tang. Synthesis and antibacterial activity of new tetracyclic triazolothiadiazino (FQ)s. Chin Chem Lett 2004;1:23-5.
42. Liu Bo, Yang Chun-Hao, XuGuang-Yu, Zhu Yong-Hong, Cui Jing-Rong, Wu Xi-Han. Syntheses of quinolone hydrochloride enantiomers from synthons (R)-and (S)-2-methylpiperazine. Bioorg Med Chem Lett 2005;13:2451-8.
43. Yue-Ling Zhao, Yeh-Long Chen, Jia-YuhSheu, I-Li Chen, Tai-Chi Wangc, Cherng-Chyi Tzenga. Synthesis and antimycobacterial evaluation of certain (FQ) derivatives. Bioorg Med Chem Lett 2005;13:3921-6.
44. Foroumadi Alireza, Ghodsi Shahram, Emami, Najjari Somayyeh, Samadi Nasrin, Faramarzi Mohammad Ali, et al. Synthesis and antibacterial activity of new (FQ)s containing a substituted N-(Phenethyl) piperazine moiety. Bioorg Med Chem Lett 2006;16:3450-4.
45. Talah AK, Gadad. Synthesis, Antibacterial and antitubercular activities of some 7-[4-(5-Amino-[1,3,4]Thiadiazole-2-Sulfonyl)-Piperazin-1-Yl] fluoroquinolonic derivatives. Eur J Med Chem 2006;41:918-24.
46. Prabodh Chander Sharma, Sandeep Jainb. Synthesis and in-vitro antibacterial activity of some novel n-nicotinoyl-1-ethyl-6-fluoro-1,4-dihydro-7-piperazin-1-yl-4-oxoquinoline-3-carboxylates. Acta Poloniae Pharm Drug Res 2008;65:551-7.
47. Pokrovskaya Varvara, Belakhov Valery, Hainrichson Mariana, Yaron Sima, Baasov Timor. Design, Synthesis, and evaluation of noval (FQ)-Aminoglycoside hybrid antibiotics. J Med Chem 2009;52:2243-54.
48. Lucia Pintilie, Catalina Negut, C Oniscu, MT Caproiu, M Nechifor, Luminitaiancu, et al. Synthesis and antibacterial activity of some novel quinolones. Rom Biotechnol Lett 2009;14:4756-67.
49. Raed A, Al-Qawasmeh, Jalal A Zahra, Franca Zani, Paola Vicini, Roland Boese, et al. Synthesis and antibacterial activity of 9-cyclopropyl-4-fluoro-6-oxo-6,9-dihydro-[1,2,5]thiadiazolo [3,4-h]quinoline-7-carboxylic acid and its ethyl ester. ARKIVOC 2009;12:322-36.
50. Akhiles Roy, SM Sardar, BU Salve, DD Rishi Pathak. Studies on synthesis and biological evaluation of some substituted (FQ)s. Int J Chem Tech Res 2009;1:34-45.
51. Ghodsi Shahram, Fouladi Shahrbanoo, Safari Hamze Ali, Ganji Masood Taghi. Synthesis and characterization of new (FQ)s containing an n substituted piperazine. Asian J Org Chem 2009;21:3037-40.
52. Shaikh Anwar R, Giridhar Rajani, Megraud Francis, Yadav Mange Ram. Metalloantibiotics: synthesis, characterization and antimicrobial evaluation of bismuth-fluroquinolone complex against helicobacter pyroli. Acta Pharm 2009;59:259-71.
53. Taghi-Ganji Karim Masood. Synthesis and characterization of new derivative of norfloxacin-containing an n substituted piperazine moiety. Asian J Org Chem 2009;21:3851-4.
54. Vincenet T, Andriole. The Quinolones. 4th ed. California: ACADIMIC PRESS; 2000.
55. Shanmugam Srinivasan, Shweta Gupta, Ruchi Marwah, P Manisankar, Rupesh Kumar. Synthesis, Characterization and in vitro biological studies of novel N-Aryl piperazinyl (FQ)s. Res J Pharm Biol Chem Sci 2010;1:208-19.
56. Om Prakash, Prabodh Chander, Sharma Sandeep Jain. Synthesis and antibacterial evaluation of novel (FQ) derivatives. Int Proc Chem Biol Environ Eng 2011;5:1-5.
57. Rajnish Kumar, Ashwani Kumar, Sandip Jain, Darpan Kaushik. Synthesis, antibacterial evaluation and QSAR studies of 7-[4-(5-aryl-1,3,4-oxadiazole-2-yl)piperazinyl] quinolone derivatives. Eur J Med Chem 2011;46:3543-50.
58. Najma Sultana, Muhammad Saeed Arayne, Syeda Bushra Shakeb Rizvi, Urooj Haroon. Synthesis, Characterization, and biological evaluation of ciprofloxacin carboxamide analogues. Bull Korean Chem Soc 2011;32:483-8.
59. Negar Mohammad hosseini, Zahra Alipanahi, Eskandar Alipour, Saeed Emami, Mohammad Ali Faramarzi, Nasrin Samadi, et al. Synthesis and antibacterial activity of novel levofloxacin derivatives containing a substituted thienylethyl moiety. Daru J Pharm Sci 2012;20:1-6.
60. SN Pandeya, Ranjana, Meena K Yadav. Synthesis and antimicrobial activity of ciprofloxacin schiff and mannich bases. Int J Pharm Tech Res 2012;4:778-85.
61. Jubie, R Kalirajan, Pavan Kumar Yadav. Design, Synthesis and docking studies of a novel ciprofloxacin analogue as an antimicrobial AGENT. EJ Chem 2012;9:980-7.
62. Sahu Susanta Kumar, Pandeya Surendra Nath, Pathak Ashish Kumar. In-silico identification and molecular docking studies of quinolone resistance determining region (QRDR) of E. coli DNA Gyrase-A with ofloxacin schiff bases. Int J Pharm Tech Res 2013;5:1791-9.
63. Saeed Emami, Ebrahim Ghafouri, Mohammad Ali Faramarzi, Nasrin Samadi, Hamid Irannejad, et al. Mannich bases of 7-piperazinylquinolones and kojic acid derivatives: synthesis, in vitro antibacterial activity and in silico study. Eur J Med Chem 2013;68:181-7.
64. M Jeyanthi, BR Venkatraman. Synthesis and biological evaluation of novel 7-mercaptobenzimidazolyl (FQ)s. Int J Chem Tech Res 2014;6:1246-50.
65. Mehul M Patel, Laxman J Patel. Design, Synthesis, Molecular docking, and antibacterial evaluation of some novel fluoroquinolone derivatives as potent antibacterial agent. Sci World J 2014. org/10.1155/2014/897187. [Article in Press]
66. ACD/Chem Sketch Freeware, version 10. 00, Advanced Chemistry Development, Inc. Toronto, ON, Canada; 2012.
67. Open Babel Freeware. Available from: lab/babel/start.html last view. [Last accessed on 01 May 2015].
68. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 2001;46:23–6.
69. Edward H Kerns, Li Di. Drug-like properties: concepts, Structure design and methods: from ADME to toxicity optimization. 1st ed. Academic Press; 2008. p. 120-6.
70. Molinspiration cheminformatics. Molinspiration; 2010. Available from: properties. [Last accessed on 26 Mar 2015].
71. Christopher A. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 200;46:23-6.
72. Kai-Cheng Hsu, Yen-Fu Chen, Shen-Rong Lin, Jinn-Moon Yang. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis, BMC Bioinf 2011;12:1-11.
73. Jinn-Moon Yang. Graphical-automatic drug design system for docking, screening and post-analysis. Department of Biological Science and Technology & Institute of Bioinformatics National Chiao Tung University; 2008. p. 1-69.
74. Balavignesh V, Srinivasan E, Ramesh Babu NG. Molecular docking study ON NS5B polymerase of hepatitis virus by screening of volatile compounds from Acacia concinna and ADMET prediction. Int J Pharm Life Sci 2013;4:2548-58.
75. D Gnanslin Sheeba, V Subha, K Suseela Gomathi, T Citarasu. Virtual docking studies of flavonoid compound against cell wall proteins of mycobacterium tuberculosis. Asian J Pharm Res Dev 2013;1:88-97.
76. Malik Mohammed, Adil Mustufa, Shubhra Chandra, Saima Wajid. Homology modeling and molecular docking analysis of human RAC-alpha serine/threonine protein kinase. Int J Pharma Bio Sci 2014;5:1033-42.
77. Rini Abraham, Nisha NC, George K Varghese, Sreekumar S. Molecular docking of terminalia cuneata on cholesteryl-esteras. Int J Computational Bioinf In Silico Modeling 2014;3:324-9.
428 Views | 1192 Downloads
How to Cite
Sabbagh, G., and T. Murad. “AN IN SILICO STUDY OF NOVEL FLUOROQUINOLONES AS INHIBITORS OF DNA GYRASE OF STAPHYLOCOCCUS AUREUS”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 8, no. 1, Nov. 2015, pp. 67-75,
Original Article(s)