RECOMBINANT ERYTHROPOIETIN MITIGATES REPERFUSION INJURY IN NEONATAL RAT CARDIOMYOCYTES BY NOVEL MULTIPLE SIGNALLING PATHWAYS

  • Asiya Parvin Allaudeen Centre for Biotechnology, Anna University,Chennai 600025, Tamil Nadu, India
  • Pavani Koka Centre for Biotechnology, Anna University,Chennai 600025, Tamil Nadu, India
  • Tarun Pant Centre for Biotechnology, Anna University,Chennai 600025, Tamil Nadu, India
  • Yamini Chandramohan Centre for Biotechnology, Anna University,Chennai 600025, Tamil Nadu, India
  • Sanjana Sivanesan SRM University, Porur, Chennai, Tamil Nadu, India
  • John E. Baker Department of Surgery, Division of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
  • Anuradha Dhanasekaran Centre for Biotechnology, Anna, University,Chennai 600025, Tamil Nadu, India

Abstract

Objective: Recombinant Human Erythropoietin (rhEPO) is strongly inferred to protect the cardiomyocytes from the reperfusion injury and our aim is to elucidate the cardioprotective effect and the exact mechanism behind the cardioprotection.

Methods: Neonatal rat cardiomyocytes (NCM) exposed to Hypoxia/Reperfusion (H/R) with or without pretreatment using various concentrations of rhEPO. To determine the cell viability-MTT assay, Acridine orange and Ethidium Bromide (Ao/EtBr) staining was performed. To determine the reactive oxygen species (ROS) and mitochondrial membrane potential (Δψm), Dichlorofluorescein diacetate (DCF-DA) and Rhodamine-123 was used. To determine the signaling pathways Western blot analysis of pAkt, pp38 MAPK, cytochrome-c were performed.

Results: rhEPO was found to reduce the cell death by stabilizing ROS significantly, Δψm, cytochrome c release, and caspase-3. rhEPO, increases the phosphorylation of p38 MAPK, Akt and BAD compared to H/R. Further myocytes blocked with Wortmannin (WT), and SB203580 showed increased caspase-3 activity.

Conclusion: Hence we conclude from this study that rhEPO regulated the factors involved in reperfusion injury through modulation of Akt and p38 MAPK pathways.

Keywords: Neonatal rat cardiomyocytes, Reperfusion injury, Akt, p38 MAPK, rhEPO and BAD

Downloads

Download data is not yet available.

References

1. Gao E, Koch WJ. Is erythropoietin behind maladaptive anemic heart failure? Am J Physiol-Heart C 2009;296:H559-H60.
2. Junk AK, Mammis A, Savitz SI, Singh M, Roth S, et al. Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proc Natl Acad Sci 2002;99:10659-64.
3. Malhotra R, Lin Z, Vincenz C, Brosius Iii FC. Hypoxia induces apoptosis via two independent pathways in Jurkat cells: differential regulation by glucose. Am J Physiol Cell Physiol 2001;281:C1596-C603.
4. Lemasters JJ, Nieminen AL, Qian T, Trost LC. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. BBA-Bioenergetics 1998;1366:177-96.
5. Grover GJ, Atwal KS, Sleph PG, Wang FL. Excessive ATP hydrolysis in ischemic myocardium by mitochondrial F1F0-ATPase: effect of selective pharmacological inhibition of mitochondrial ATPase hydrolase activity. Am J Physiol Heart C 2004;287:H1747-H55.
6. Giorgio M, Migliaccio E, Orsini F, Paolucci D. Electron transfer between cytochrome c and p6 generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005;122:221-33.
7. Zweier JL, Talukder MAH. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 2006;70:181-90.
8. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 2008;88:581-609.
9. Boucher M, Pesant S, Lei YH, Nanton N. Simultaneous administration of insulin-like growth factor-1 and darbepoetin alfa protects the rat myocardium against myocardial infarction and enhances angiogenesis. Clin Transl Sci 2008;1:13-20.
10. van der Meer P, Lipsic E, Henning RH, Boddeus K. Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. J Am Coll Cardiol 2005;46:125-33.
11. Maxwell PH, Osmond MK, Pugh CW, Heryet A. Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 1993;44:1149-62.
12. Maxwell PH, Pugh CW, Ratcliffe PJ. The inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci 1993;90:2423-7.
13. Wenger RH. Mammalian oxygen sensing, signaling and gene regulation. J Exp Biol 2000;203:1253-63.
14. Klopsch C, Furlani D, Gäbel R, Li W, et al. Intracardiac injection of erythropoietin induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. J Cell Mol Med 2009;13:664-79.
15. Ueda K, Takano H, Niitsuma Y, Hasegawa H. Sonic hedgehog is a critical mediator of erythropoietin-induced cardiac protection in mice. J Clin Invest 2010;120:2016-29.
16. Nagasaki Y, Yoshitomi T, Hirayama A, Schock-Kusch D. Acute kidney injury-Experimental models: NDT Plus; 2011. p. 4.
17. Wen Y, Zhang XJ, Ma YX, Xu XJ. Erythropoietin attenuates hypertrophy of neonatal rat cardiac myocytes induced by angiotensin‐II in vitro. Scand J Clin Lab Invest 2009;69:518-25.
18. Sharples EJ, Patel N, Brown P, Stewart K. Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol 2004;15:2115-24.
19. Abdelrahman M, Sharples EJ, McDonald MC, Collin M. Erythropoietin attenuates the tissue injury associated with hemorrhagic shock and myocardial ischemia. Shock 2004;22:63-9.
20. Schmeding M, Hunold G, Ariyakhagorn V, Rademacher S. Erythropoietin reduces ischemia‐reperfusion injury after liver transplantation in rats. Transplant Int 2009;22:738-46.
21. Parvin A, Raj Pranap A, Shalini U, Devendran A, Baker JE, Dhanasekaran A. Erythropoietin protects cardiomyocytes from cell death during hypoxia/reperfusion injury through activation of survival signaling pathways. PloS One 2014;9:e107453.
22. Fu J, Gao J, Pi R, Liu P. An optimized protocol for the culture of cardiomyocyte from a neonatal rat. Cytotechnology 2005;49:109-16.
23. Dhanasekaran A, Gruenloh SK, Buonaccorsi JN, Zhang R. Multiple antiapoptotic targets of the PI3K/Akt survival pathway are activated by epoxyeicosatrienoic acids to protect cardiomyocytes from hypoxia/anoxia. Am J Physiol-Heart C 2008;294:H724-H35.
24. Lingadurai S, Roy S, Joseph RV, Nath LK. Antileukemic activity of the leaf extract of Bischofia javanica blume on human leukemic cell lines. Indian J Pharmacol 2011;43:143-9.
25. Jin ZQ, Zhou HZ, Cecchini G, Gray MO, Karliner JS. MnSOD in mouse heart: acute responses to ischemic preconditioning and ischemia-reperfusion injury. Am J Physiol-Heart C 2005;288:H2986-H94.
26. Dhanasekaran A, Bodiga S, Gruenloh S, Gao Y. 20-HETE increases survival and decreases apoptosis in pulmonary arteries and pulmonary artery endothelial cells. Am J Physiol-Heart C 2009;296:H777-H86.
27. Verma S, Fedak PWM, Weisel RD, Butany J, Rao V, Maitland A, et al. Fundamentals of reperfusion injury for the clinical cardiologist. Circulation 2002;105:2332-6.
28. Miura T, Tanno M, Sato T. Mitochondrial kinase signaling pathways in myocardial protection from ischaemia/reperfusion-induced necrosis. Cardiovasc Res 2010;88:7-15.
29. Vegh A, Komori S, Szekeres L, Parratt JR. Antiarrhythmic effects of preconditioning in anesthetized dogs and rats. Cardiovasc Res 1992;26:487-95.
30. Sun HY, Wang NP, Halkos M, Kerendi F. Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis 2006;11:1583-93.
31. Takano H, Tang XL, Kodani E, Bolli R. Late preconditioning enhances recovery of myocardial function after infarction in conscious rabbits. Am J Physiol-Heart C 2000;279:H2372-H81.
32. Yellon DM, Baxter GF. Protecting the ischaemic and reperfused myocardium in acute myocardial infarction: distant dream or near reality? Heart 2000;83:381-7.
33. Ambrosio G, Tritto I. Reperfusion injury: experimental evidence and clinical implications. Am Heart J 1999;138:S69-S75.
34. Harder Y, Amon M, Schramm R, Contaldo C. Erythropoietin reduces necrosis in critically ischemic myocutaneous tissue by protecting nutritive perfusion in a dose-dependent manner. Surgery 2009;145:372-83.
35. Fiordaliso F, Chimenti S, Staszewsky L, Bai A. A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia–reperfusion injury. Proc Natl Acad Sci 2005;102:2046-51.
36. Calvillo L, Latini R, Kajstura J, Leri A. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci 2003;100:4802-6.
37. Cai Z, Semenza GL. Phosphatidylinositol-3-kinase signaling is required for erythropoietin-mediated acute protection against myocardial ischemia/reperfusion injury. Circulation 2004;109:2050-3.
38. Fliser D. Erythropoietin (EPO) and Ischemia-reperfusion After Kidney Transplantation. 2010 ed. Germany: Clinical Trials. gov Archive Site; 2010.
39. Zorov DB, Juhaszova M, Yaniv Y, Nuss HB, Wang S, Sollott SJ. Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc Res 2009;83:213-25.
40. Petronilli V, Penzo D, Scorrano L, Bernardi P. The mitochondrial permeability transition, the release of cytochrome c and cell death correlation with the duration of pore openings in situ. J Biol Chem 2001;276:12030-4.
41. Bernardi P, Krauskopf A, Basso E, Petronilli V. The mitochondrial permeability transition from in vitro artifact to disease target. FASEB J 2006;273:2077-99.
42. Di Lisa F, Menabò R, Canton M, Barile M. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 2001;276:2571-5.
43. Rafiee P, Shi Y, Su J, Pritchard KA. Erythropoietin protects the infant heart against ischemia–reperfusion injury by triggering multiple signaling pathways. Basic Res Cardiol 2005;100:187-97.
44. Chong ZZ, Kang JQ, Maiese K. Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Akt1, Bad, and caspase‐mediated pathways. Br J Pharmacol 2003;138:1107-18.
45. Zhao L, Liu X, Liang J, Han S. Phosphorylation of p38 MAPK mediates hypoxic preconditioning-induced neuroprotection against cerebral ischemic injury via mitochondrial translocation of Bcl-xL in mice. Brain Res 2013;1503:78-88.
46. Theus MH, Wei L, Cui L, Francis K. In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol 2008;210:656-70.
47. Baker JE, Curry BD, Olinger GN, Gross GJ. Increased tolerance of the chronically hypoxic immature heart to ischemia: contribution of the KATP channel. Circulation 1997;95:1278-85.
48. Prass K, Scharff A, Ruscher K, Löwl D. Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke 2003;34:1981-6.
49. Foster TC, Sharrow KM, Masse JR, Norris CM. Calcineurin links Ca2+dysregulation with brain aging. J Neurosci 2001;21:4066-73.
Statistics
469 Views | 867 Downloads
Citatons
How to Cite
Allaudeen, A. P., P. Koka, T. Pant, Y. Chandramohan, S. Sivanesan, J. E. Baker, and A. Dhanasekaran. “RECOMBINANT ERYTHROPOIETIN MITIGATES REPERFUSION INJURY IN NEONATAL RAT CARDIOMYOCYTES BY NOVEL MULTIPLE SIGNALLING PATHWAYS”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 8, no. 12, Dec. 2016, pp. 34-40, doi:10.22159/ijpps.2016v8i12.8386.
Section
Original Article(s)