FUNCTIONAL ANALYSIS OF MEDICINAL PLANTS USING SYSTEMS BIOLOGY APPROACHES

  • Yathisha Neeragunda Shivaraj Department of Studies and Research in Environmental Science
  • Sharathchandra Ramasandra Govind Department of Studies and Research in Environmental Science
  • Sudisha Jogaiah epartment of Microbiology and Biotechnology, Karnatak University, Dharwad
  • Devaraja Sannaningaiah Department of Studies and Research in biochemistry, Tumkur University, Tumakuru, Karnataka

Abstract

Plant derived medicine is an important source of life saving drugs, but the genome information of most important medicinal plants is still unavailable. The need of the hour is to identify more functional genes and enzymes that control secondary metabolite production in medical plants, develop new methods for systematics, engineer resistance to number of biotic and abiotic stresses, and develop new conservation strategies, more genomics, proteomics and metabolomics information needs to be produced. In this review, a brief overview of various omic technologies and its applications to medicinal and aromatic plants are discussed.

 

Keywords: Metabolomics, Genomics and Epigenomics, Bioinformatics.

Downloads

Download data is not yet available.

Author Biographies

Yathisha Neeragunda Shivaraj, Department of Studies and Research in Environmental Science

Research scholar,

Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru, Karnataka-572103

Sharathchandra Ramasandra Govind, Department of Studies and Research in Environmental Science

Assistaant Prtofessor of Microbiology 

Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru, Karnataka

Sudisha Jogaiah, epartment of Microbiology and Biotechnology, Karnatak University, Dharwad

Assistaant Prtofessor of Microbiology

Department of Studies in Microbiology and Biotechnology, Karnatak University, Dharwad, 580003 

Devaraja Sannaningaiah, Department of Studies and Research in biochemistry, Tumkur University, Tumakuru, Karnataka

Assistaant Prtofessor of biochemistry

Department of Studies and Research in biochemistry, Tumkur University, Tumakuru, Karnataka

References

1. Kann MG. Advances in translational bioinformatics: computational approaches for the hunting of disease genes. Briefings Bioinf 2009;11:96-110.
2. Ray LB, Chong LD, Gough NR. Computational biology: Sci STKE; 2002. p. 10.
3. Cui GH, Huang LQ, Qiu DY, Yuan Y, Fu GF. Functional genomics studies of Salvia miltiorrhiza II-gene expression profiling of different stage of hairy root. China J Chin Mater Med 2007;32:1267-72.
4. Xu B, Huang L, Cui G, Mao Y, Zhang H. Functional genomics of Salvia militiorrhiza IV--analysis of ethylene responsive element binding protein gene. China J Chin Mater Med 2009;34:2564-6.
5. Carles M, Cheung MK, Moganti S, Dong TT, Tsim KW, Ip NY, et al. A DNA microarray for the authentication of toxictraditional Chinese medicinal plants. Planta Med 2005;71:580-4.
6. Wu Q, Song JY, Sun YQ, Suo FM, Li CJ, Luo HM, et al. Transcriptprofiles of panax quinquefolius from flower leaf and root bring new insights into genes related to ginsenosides biosynthesis andtranscriptional regulation. Physiol Plant 2010;138:134-49.
7. Chen SL, Sun YQ, Song JY, Li Y, Li CJ, Hu SN, et al. Analysis of expressed sequence tags (EST) from panax quinquefolium root. Acta Pharm Sin B 2008;43:657-63.
8. Luo HM, Sun C, Li Y, Wu Q, Song JY, Wang DL, et al. Analysis of expressed sequence tags from the Huperziaserrata leaf for gene discovery in the areas of secondary metabolite biosynthesis and development regulation. Physiol Plantarum 2009;139:1-12.
9. Shukla AK, Shasany AK, Gupta MM, Khanuja SP. Transcriptome analysis in Catharanthus roses leaves and roots for comparative terpenoid indole alkaloid profiles. J Exp Bot 2006;57:3921-32.
10. Gong P, Pirooznia M, Guan X, Vera JC, Liang C, Deng YP, et al. l. A strategy for high throughput microarray oligo probe design using 454 and sanger sequencing data of Eisenia Fetida expressed sequence tags. The 2008 World Congress in Computer Science Computer Engineering and Applied Computing, USA; 2008. p. 1040-3.
11. Wang LJ, Wang SZ, Li YH, Paradesi MS, Brown SJ. The model organism database for Triboliumcastaneum. Beetle Base. Nucleic Acids Res 2007;35:D476-D479.
12. Van der KF, Maltese F, Choi YH, Kim HK, Verpoorte R. Qualitycontrol of herbal material and phytopharmaceuticals with MS and NMR based metabolic fingerprinting. Planta Med 2009;75:763-75.
13. Choi YH, Kim HK, Hazekamp A, Erkelens C, Lefeber AW, Verpoorte R. Metabolomic differentiation of Cannabissativa cultivars using 1H-NMR spectroscopy and principal component analysis. J Nat Prod 2004;67:953-7.
14. Choi YH, Choi HK, Peltenburg Looman AM, Lefeber AW, Verpoorte R. Quantitative analysis of ginkgolic acids from Ginkgo leaves and products using 1H-NMR. Phytochem Anal 2004;5:325-30.
15. Tianniam S, Tarachiwin L, Bamba T, Kobayashi A, Fukusaki E. Metabolic profiling of Angelica acutiloba roots utilizing gas chromatography-time-of-flight-mass spectrometry for quality assessment based on cultivation area and cultivar via multivariatepattern recognition. J Biosci Bioeng 2008;105:655-9.
16. Hou CC, Chen CH, Yang NS, Chen YP, Lo CP, Wang SY, et al. Comparative metabolomics approach coupled with cell-and gene-based assays for speciesclassification and anti-inflammatory bioactivity validation of Echinacea plants. J Nutr Biochem 2010;21:1045-59.
17. Farag MA, Huhman DV, Dixon RA, Sumner LW. Metabolomics reveals novel pathways and differentialmechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol 2008;146:387-402.
18. Barsch A, Tellstrom V, Patschkowski T, Kuster H, Niehaus K. Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Mol Plant Microbe Interact 2006;19:998-1013.
19. Barsch A, Carvalho HG, Cullimore JV, Niehaus K. GC-MS based metabolite profiling implies three interdependent ways of ammonium assimilation in Medicago truncatula root nodules. J Biotechnol 2006;127:79-83.
20. Mao JH, Shen Wu M, Roth M, Welti R, Deng YP. Lipidomic profiles reveal the potential useful plasma biomarkers associated with type II diabetes in black and white patients. Biocomputing 2009;2:774-9.
21. Blackstock WP, Weir MP. Proteomics. Quantitative and physical mapping of cellular proteins. Trends Biotechnol 1999;17:121-7.
22. Castillejo MA, Maldonado AM, Dumas Gaudot E, Fernandez paricio M, Susin R, Diego R, et al. Differential expressionproteomics to investigate responses and resistance to Orobanchecrenata in Medicago truncatula. BMC Genomics 2009;10:294.
23. Dam S, Laursen BS, Ornfelt JH, Jochimsen B, Staerfeldt HH, Friis C, et al. The proteome of seed development in the model legume Lotus japonicus. Plant Physiol 2009;149:1325-40.
24. Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi Pearson V, et al. On the mechanisms of cadmium stress alleviation in Medicagotruncatula by particular mycorrhizae symbiosis. A root proteomic study. Proteomics 2009;9:420-33.
25. Van Noorden GE, Kerim T, Goffard N, Wiblin R, Pellerone FI. Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobiummeliloti. Plant Physiol 2007;144:1115-31.
26. Prayitno J, Imin N, Rolfe BG, Mathesius U. Identification of ethylene mediated protein changes during nodulation in Medicago truncatula using proteome analysis. J Proteome Res 2006;5:3084-95.
27. Krishnan. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachtaindica. BMC Genomics 2012;13:464.
28. Titanji VP, Ngwa AA, Ngemenya M. Applications of biotechnology techniques to the study of medicinal plants. Afr J Med Med Sci 2007;36:23-9.
29. Chen SL, Yao H, Han JP, Liu C, Song JY, Shi LC, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 2010;5:8613.
30. Song JY, Yao H, Li Y, Li XW, Lin YL, Liu C, et al. Authentication of the family Polygonaceae in Chinesepharmacopoeia by DNA bar coding technique. J Ethnopharmacol 2009;124:434-9.
31. Yu HH, Yang ZL, Yang X, Tan ZF, Shu X, Liu RN. Advancesin studies on ITS sequence of medicinal plants germplasmresources. Chin Tradit Herb Drugs 2009;41:491-6.
32. Liu QZ, Sung AH, Chen ZX, Liu JZ, Huang XD, Deng YP. Feature selection and classification of MAQC-II breast cancerand multiple myeloma microarray gene expression data. PLoS One 2009;4:8250.
33. Farag MA, Deavours BE, de FA, Naoumkina M, Dixon RA, SumnerLW. Integrated metabolite and transcript profiling identify the biosynthetic mechanism for hispidol in Medicago transcultural cultures. Plant Physiol 2009;151:1096-113.
Statistics
439 Views | 943 Downloads
How to Cite
Shivaraj, Y. N., S. R. Govind, S. Jogaiah, and D. Sannaningaiah. “FUNCTIONAL ANALYSIS OF MEDICINAL PLANTS USING SYSTEMS BIOLOGY APPROACHES”. International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 7, no. 13, Sept. 2015, pp. 41-43, https://innovareacademics.in/journals/index.php/ijpps/article/view/8684.