INFLUENCE OF PEPTIDE P34 ON GENE EXPRESSION OF LISTERIA MONOCYTOGENES AND LISTERIA SEELEGERI

RODRIGO DE ALMEIDA VAUCHER1,2,3, JANICE LUEHRING GIONGO4, MAGTON ESTIVALES2, VÍRGÍNIA CIELO RECH2, VIVIAN SHINOBU KISHIMOTO NISHIHIRA5, CRISTIANE LUCHESE5, ETHEL ANTONES WILHELM1, MATHEUS DELLAMÉA BALDISSERA5, LEONARDO QUINTANA SOARES LOPES5, ROBERTO CHRIST VIANNA SANTOS5, ADRIANO BRANDELLI6

1 Postgraduate Program in Biochemistry and Bioprospecting, Center of Chemistry, Pharmaceutical and Food Science, Federal University of Pelotas (UFPel), Pelotas, 96010-900, Rio Grande do Sul, Brazil, 2 Laboratory of Microbiological Research, Health Sciences, Franciscan University Center (UNIFRA), Santa Maria, 97010-032, Rio Grande do Sul, Brazil, 3 Laboratory of Nanotechnology, Post Graduate Program in Nanosciences, Franciscan University Center, Santa Maria, 97010-032, Rio Grande do Sul, Brazil, 4 Laboratory of Pharmaceutical Technology, University of High Uruguay Regional Integrated (URI), Santiago, 97700-000, Rio Grande do Sul, Brazil, 5 Microbiology and Parasitology Department, Health Sciences Center, Federal University of Santa Maria (UFSM), Santa Maria, 97105-900, Rio Grande do Sul, Brazil, 6 Laboratory of Applied Biotechnology and Applied Microbiology, Institute of Science and Technology of Food, Federal University of Rio Grande do Sul

Email: rodvaucher@hotmail.com

ABSTRACT

Objective: Investigate the influence of the antimicrobial peptides P34 and nisin on the expression of genes associated with components of the cell surface of Listeria monocytogenes and Listeria seeligeri.

Methods: Antimicrobial activity was determined by addition of peptide P34 and nisin (12.5 µg/ml) onto Brain Heart Infusion agar (BHI) plates previously inoculated with indicator strains (L. monocytogenes ATCC 7644 or L. seeligeri AC 82/A) after incubation for 24 h at 37 °C or 240 h at 4 °C. Ribonucleic acid (RNA) was directly extracted from bacterial colonies at the border of the inhibition zones, and the expression levels of genes D-alanine-D-alanyl carrier protein ligase (dltA), putative phospholipid lysylase (Mo 1659) and ELIABαβγ of mannose-specific PTS (mptA) were determined using real-time PCR.

Results: A non-significant increase in the levels of transcription of genes dltA, lmo 1695 and mptA was observed for L. monocytogenes treated with peptide P34 or nisin. Both peptides caused a similar decrease in dltA gene expression in L. seeligeri. The expression of gene lmo 1695 significantly decreased (about 2000-fold) after treatment with the peptide P34 at 37 °C, while at 4 °C a reduction of 12-fold and 5-fold was detected for P34 and nisin, respectively. A significant decrease in mptA gene expression was observed by exposure to peptide P34 (31.872-fold) and nisin (16.047-fold) for 24 h at 37 °C.

Conclusion: The results suggest that both peptide P34 and nisin influence the expression of genes related with the cell-surface/cell-membrane structure of L. seeligeri and in lesser extent L. monocytogenes.

Keywords: Bacteriocin, L. monocytogenes, L. seeligeri, Gene expression

INTRODUCTION

The genus Bacillus encompasses a number of industrially important species that have been recognised for years and are considered safe for biotechnological purposes. Bacillus subtilis, Bacillus thuringiensis, Bacillus steatorrhophilus, Bacillus licheniformis, Bacillus megaterium and Bacillus cereus are examples of typical producers [1-12].

Bacteriocins and bacteriocin-like substance (BLS) are antimicrobial peptides produced by diverse bacteria and are often effective against closely related species [4, 13]. Currently, BLS have gained increasing attention due to their potential use as natural preservatives in the food industry, due to activity against many pathogenic bacteria and the highest activity against Listeria species [14, 15]. An example is a nisin, a non-toxic bacteriocin hydrolyzed by digestive enzymes that have been used for over 50 y as a food preservative in different countries without the substantial development of bacterial resistance [16, 17]. Until recently, it was believed that bacteria could not acquire resistance to antimicrobial peptides, so these substances would be strong candidates for new preservative in foods [18-20]. The development of resistance to antimicrobial peptides from previously sensitive strains has been viewed as difficult not impossible, but some studies have revealed that certain genes can provide increased resistance to antimicrobial peptides [21].

Studies on the structure, activity and gene expression of Listeria species indicate that the use of bacteriocins can induce the development of resistance in some target bacterial strains [22-24]. These studies have suggested that the interaction of class II bacteriocins is highly dependent on ELIABαβγ and that the mechanism of resistance to class II bacteriocins can be observed in strains of L. monocytogenes, in which resistance seems to be associated to reduced expression of a mannose-specific phosphotransferase system (ELIABαβγ PTS, encoded by mptA) [25]. The expression of genes like dltA and lmo 1695, which can potentially influence the cell-surface charge by D-alanyl-esterification of teichoic acid and lysylation of membrane phospholipids, has been investigated as well. In addition, it has been described cross-resistance to class I and class II bacteriocins [26, 27], and the combined use of different bacteriocins can be successful to reduce the appearance of resistant strains.

A novel antimicrobial peptide was produced by a Bacillus sp. isolated from aquatic environments of Brazilian Amazon basin [28], with the potential to be used as food preservative. This peptide, named as P34, was purified and characterised as described elsewhere [29]. The peptide P34 is active against Gram-positive and Gram-negative bacteria, including pathogenic and spoilage microorganisms, with remarkable inhibitory activity on L. monocytogenes [30]. As the peptide P34 targets the cell envelope of L. monocytogenes, it is conceivable that P34 may also influence the expression of some genes after direct incubation with Listeria species. Thus, the aim of this study was to investigate the influence of antimicrobial peptide P34 on the gene expression of L. monocytogenes and L. seeligeri after direct plate inoculation.
MATERIALS AND METHODS

Bacterial strains and media

Listeria monocytogenes ATCC 7644 and *L. seeligeri* AC 82/4 and *Bacillus* sp. strain P34, belonging to our own culture collection (UFRGS, Porto Alegre, Brazil), were grown in Brain Heart Infusion (BHI; Oxoid, Basingstoke, UK) broth or agar. Bacterial strains were maintained as stock cultures were frozen at -21 °C in BHI broth supplemented with 20% glycerol. For the production of the peptide, *Bacillus* sp. strain P34 was grown in BHI broth and detection of antimicrobial activity was performed in BHI agar plates.

Peptide P34

The peptide P34 was purified as described elsewhere [29]. Briefly, *Bacillus* sp. was cultivated in 500 ml Erlenmeyer flasks containing 200 ml of BHI broth for 24 h at 30 °C in a rotary shaker at 180 rpm (LAC-INA-800, Láctea). Cells were harvested by centrifugation at 10,000 x g for 15 min at 12 °C, and the resulting supernatant was filtered through 0.22 µm membranes (Millipore, Bedford, MA, USA). The peptide was purified from the supernatant by ammonium sulfate precipitation and sequential liquid chromatography on Sephadex G-100 and DEAE-Sepharose (Pharmacia Biotech, Uppsala, Sweden). The purification factor was 175-fold and the concentration used was 12.5 µg ml⁻¹. Nisin (Nisaplin®; Danisco, Copenhagen, Denmark) was suspended in 0.02 mol l⁻¹ HCl and then diluted in phosphate buffer saline (PBS; 35 mmol l⁻¹ phosphate buffer, 150 mmol l⁻¹ NaCl, pH 7.4) to obtain a solution of 12.5 µg ml⁻¹. The concentrations of peptide P34 and nisin were determined by the Folin-phenol reagent method [31], using a calibration curve developed with bovine serum albumin as the protein standard.

Detection of antimicrobial activity

Antimicrobial activity was determined essentially as described elsewhere [32]. Briefly, aliquots of 20 µl of purified peptide P34 and nisin were applied on cellulose disks (6 mm) on BHI agar plates previously inoculated with indicator strain suspension (*Listeria monocytogenes ATCC 7644* or *L. seeligeri* AC 82/4), which corresponded to 0.5 McFarland turbidity standard solution. The plates were incubated for 24 h at 37 °C for bacteriological incubator (MA 032/3, Marconi, Piracicaba, SP, Brazil) or 24 h at 4 °C. After incubation, inhibition zones around the disks were measured. PBS was used as a negative control. The experiments were performed in triplicate (n=3) and the expressed values as mean±SD of three independent experiments.

Relative levels transcript of genes for real-time PCR quantification

Bacterial cells of *Listeria monocytogenes ATCC 7644* and *L. seeligeri* AC 82/4 were removed directly at the border around the inhibition zones after 24 h and 240 h of incubation of negative control, peptide P34, and nisin, respectively. The cell concentration was adjusted spectrophotometrically by 0. D. 600 nm for a final concentration of 2 x 10⁶ cells/ml. The TRIZOL® (Invitrogen, Carlsbad, CA) reagent was utilised for total RNA extraction, according to the manufacturer’s instructions. Then, the extracted RNA was treated with RNase-free DNase (Invitrogen, Carlsbad, CA), its quality was assessed by running samples on a 1% formaldehyde-agarose gel, and quantified spectrophotometrically. The primers used in this study were previously described by [12, 47] were named: *βf A F 5’GCAGATGATCAATGGGACCGT3’, *βf R 5’CCTGGA-ACCTCTTGAAGATTTT3’, *mso 1695 F 5’GGATTGACTA-TGCGTGTCA3’, *mso 1695 R 5’ TCCGGCGTTTGAAGTAA3’, *mpet 4 F 5’CAGAGCTTATGGCAGTTG3’, *mpet 4 R 5’GGGAACAGTCTGGAATCT3’, *rpoD F 5’ACGGAAAAGTTCTGGGAATCT3’ and *rpoD R 5’TGGCTCAGATGATGCTTC3’. The real-time PCR amplification reaction was carried using SYBR® Green One-Step qRT-PCR with Rox (Invitrogen, Carlsbad, CA), according to the manufacturer’s instructions. cDNA was synthesized from 0.5 µg of total RNA of *L. monocytogenes* ATCC 7644 or *L. seeligeri* AC 82/4, using the forward and reverse primers (100 µM) specific for each target gene. Amplification conditions were: 48 °C for 30 min, 95 °C for 2 min and 95 °C for 10 min, followed by 40 cycles at 95 °C for 15 s and 60 °C for 1 min. All PCR reactions were run on the 7500 Real-Time PCR System (Applied Biosystems®, USA). The assays were accomplished in duplicated (n=2) for each gene, and include cDNA of the samples and control without template on three independent experiments.

The data were analysed using Sequence Detection System (SDS) software version 1.6.3. Results were obtained as Ct (threshold cycle) values. The mean (Ct) value was calculated for each triplicate reaction in two independent experiments. The (ΔCt) values were calculated and normalised by subtracting the mean (Ct) value of *L. monocytogenes ATCC 7644*; *L. seeligeri* was more sensitive than *L. monocytogenes* when exposed to conventional bacteriocins such as nisin, pediocin PA-1 and bavaricin [35, 36]. Under the experimental conditions of this work, *Listeria monocytogenes* was more sensitive than *L. seeligeri* after the incubation time of 24 h at 37 °C and 240 h at 4 °C, as shown in table 1. This study showed that nisin produced larger inhibitory halos than the peptide P34 against the strain of *L. seeligeri*, although both substances were inhibitory to the *Listeria* strains tested. Our results for the antimicrobial activity were similar to a previously published study [37].

<table>
<thead>
<tr>
<th>Indicator strain</th>
<th>Conditions</th>
<th>Inhibition zone (mm)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listeria monocytogenes ATCC7644</td>
<td>24 h incubation at 37 °C</td>
<td>0</td>
</tr>
<tr>
<td>Control</td>
<td>9.0±0.2</td>
<td></td>
</tr>
<tr>
<td>P34</td>
<td>10.0±0.3</td>
<td></td>
</tr>
<tr>
<td>240 h incubation at 4 °C</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>12.0±0.2</td>
<td></td>
</tr>
<tr>
<td>P34</td>
<td>12.0±0.3</td>
<td></td>
</tr>
<tr>
<td>24 h incubation at 37 °C</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>10.0±0.3</td>
<td></td>
</tr>
<tr>
<td>Nisin</td>
<td>12.0±0.3</td>
<td></td>
</tr>
<tr>
<td>240 h incubation at 4 °C</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>9.0±0.2</td>
<td></td>
</tr>
<tr>
<td>Nisin</td>
<td>10.0±0.1</td>
<td></td>
</tr>
</tbody>
</table>

* Diameter of the inhibition zone in mm around the disk. The experiments were performed in triplicate (n=3) and the expressed values as mean±SD of three independent experiments.
Based on the inhibition of *L. monocytogenes* and *L. seeligeri* by peptide P34 and nisin, the expression of three different genes of *Listeria* genus, namely *dltA*, *imo1695*, and *mptA*, were evaluated by real-time PCR. It has been reported that changes in cell surface may occur after the interaction of class IIa bacteriocins with specific receptors of bacterial cell wall, which could be associated with an increase in the transcription level of certain genes in some strains of *L. monocytogenes* [38]. Another gene investigated was the *mptA*, which has been reported as a mannose permease, named EII_{\text{A}}^{\text{mtn}}, belonging to the phosphotransferase system (PTS). The PTS is responsible for the transport and concomitant phosphorylation of sugars inside both Gram-negative and Gram-positive bacteria [39].

The values of ΔC_{t} and $\Delta \Delta C_{t}$ to calculate the relative expression levels ($2^{-\Delta \Delta C_{t}}$) of strains of *L. monocytogenes* and *L. seeligeri*, are shown in table 2.

Table 2: Calculated and analysed relative transcript levels of genes by real-time PCR quantification after incubation of *L. monocytogenes* ATCC 7644 (A) and *L. seeligeri* AC 82/4 (B) with antimicrobial peptides

A

<table>
<thead>
<tr>
<th>Gene</th>
<th>Time and temperature of incubation</th>
<th>Group</th>
<th>ΔC_{t}</th>
<th>$\Delta \Delta C_{t}$</th>
<th>2$^{-\Delta \Delta C_{t}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>dltA</td>
<td>24 h at 37 °C</td>
<td>Control</td>
<td>0.12±0.045</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P34</td>
<td>1.27±0.042</td>
<td>1.16±0.003</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nisin</td>
<td>1.99±0.142</td>
<td>1.87±0.097</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>240 h at 4 °C</td>
<td>Control</td>
<td>0.54±0.065</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P34</td>
<td>0.80±0.082</td>
<td>0.25±0.017</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nisin</td>
<td>1.84±0.097</td>
<td>1.29±0.032</td>
<td>0.40</td>
</tr>
<tr>
<td>imo1695</td>
<td>24 h at 37 °C</td>
<td>Control</td>
<td>1.18±0.052</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P34</td>
<td>3.92±0.167</td>
<td>2.21±0.135</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nisin</td>
<td>4.05±0.121</td>
<td>2.87±0.069</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>240 h at 4 °C</td>
<td>Control</td>
<td>1.28±0.057</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P34</td>
<td>1.52±0.071</td>
<td>0.25±0.014</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nisin</td>
<td>2.92±0.139</td>
<td>1.65±0.082</td>
<td>0.31</td>
</tr>
<tr>
<td>mptA</td>
<td>24 h at 37 °C</td>
<td>Control</td>
<td>-0.23±0.076</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P34</td>
<td>0.26±0.057</td>
<td>0.49±0.019</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nisin</td>
<td>1.60±0.154</td>
<td>1.92±0.078</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>240 h at 4 °C</td>
<td>Control</td>
<td>-0.45±0.057</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P34</td>
<td>0.27±0.086</td>
<td>0.72±0.029</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nisin</td>
<td>1.65±0.128</td>
<td>2.10±0.071</td>
<td>0.23</td>
</tr>
</tbody>
</table>

*Relative gene expression considered significant for values ≤ 3 or ≥ 3. The experiments were performed in duplicated (n=2) for each gene on three independent experiments. *dltA* (D-Alanine-D-alanyl carrier protein ligase), *imo1695* (Putative phospholipid lysinylase) and *mptA* (EIIAB_{\text{mann}} of mannose-specific PTS).*

A significant change in the gene expression level was considered when a three-fold decreased or increased expression was obtained in comparison to the control. Our results showed a non-significant increase in the transcription levels of genes *dltA*, *imo1695* and *mptA* after incubation of *L. monocytogenes* with peptide P34 and nisin for 24 h at 37 °C or 240 h at 4 °C.

For the expression levels of *dltA* and *imo1695*, our results are consistent with those proposed by [40], who also found no significant changes in expression of these genes in wild-type strains of *L. monocytogenes*. The *L. monocytogenes* used in this study is a collection strain (ATCC) and the decrease of *mptA* gene expression has been reported only for resistant or mutant strains of *L. monocytogenes* [38, 40, 41]. Therefore the result of a non-significant increase in *mptA* gene expression in *L. monocytogenes* ATCC 7644 is consistent with the literature.

In the strain of *L. seeligeri*, a significant decrease of *dltA* gene expression was observed, with similar values to the peptide P34 and nisin after incubation for 24 h at 37 °C. The expression of this gene was highly suppressed after incubation for 240 h at 4 °C, and the treatment with nisin resulted in lower *dltA* expression as compared with the peptide P34. The *L. imo1695* showed a significant decrease in its expression (2336-fold) when *L. seeligeri* was treated with the peptide P34 for 24 h at 37 °C. A significant decrease of *imo1695* gene expression was observed after incubation with peptide P34 and nisin for 24 h at 37 °C. Under this condition, the
gene \textit{Imo1695} was two times less expressed by nisin treatment as compared with the peptide P34.

A significant decrease in \textit{mptA} gene expression was also observed for \textit{L. seeligeri} after incubation with peptide P34 and nisin for 24 h at 37 °C. This gene was 31.872-fold less expressed after treatment with the peptide P34 as compared with the control. In addition, the expression of this gene was significantly lower after treatment with nisin. Interestingly, the inoculation of the plate with the peptide P34 and nisin and further incubated for 240 h at 4 °C showed a non-significant increase of gene expression. \textit{Listeria} thrives at refrigeration temperatures and therefore is feasible that the exposition to low temperature would influence the expression of genes related with energetic metabolisms, such as \textit{mptA}. Recently, the influence of P34 on specific gene expression of \textit{L. monocytogenes} after the inoculation in Minas Frescal cheese was investigated. A significant increase in the expression of the genes \textit{dltA}, \textit{Imo1695} and \textit{mptA} was observed after 96 h in the presence of peptide P34 at 5 °C [12].

Previous studies have shown that a 1000-fold increased resistance to class IIa bacteriocins in \textit{L. monocytogenes} and \textit{Enterococcus faecalis} resulted from the loss of \textit{mptA} expression [38, 42, 43]. The cell wall of \textit{L. monocytogenes} is composed by a thick peptidoglycan layer containing two types of anionic polymers: teichoic acids (TA), which are covalently linked to the peptidoglycan, and lipoteichoic acids (LTAs), which are poly phosphoglycerol substituted with a D-alanyl ester or a glycosyl residue and anchored in the membrane by their glycolipid moieties [44]. Some authors suggest that bacteriocin-induced lysis could be due to the release of autolytic enzymes that are usually electrostatically bound to anionic polymers (TA and LTAs) of the cell wall, which are displaced by cationic bacteriocins from their binding sites [45-47].

CONCLUSION

In this study, we observed a non-significant influence of peptide P34 and nisin on the expression of \textit{L. monocytogenes} genes after the plate activity assay. However, in \textit{L. seeligeri} the peptide P34 and nisin significantly influenced the expression of genes (\textit{dltA}, \textit{Imo1685}, and \textit{mptA}) after incubation for 24 h at 37 °C. After an incubation period of 240 h at 4 °C, it was observed the more significant changes in gene expression (\textit{dltA} and \textit{Imo1685}) in \textit{L. seeligeri}, but no significant change was observed for \textit{mptA} gene. These results indicate the influence of nisin and peptide P34 on the expression of structural cell-surface/cell-membrane-associated genes.

ACKNOWLEDGEMENT

Authors thank Sérgio Salla Chagas from the Laboratory of Molecular Biology of LANAGRO/RS, Ministry of the Agriculture (Brazil), to facilitate the equipment for real-time PCR studies. This work received financial support of CNPq, Brazil.

CONFLICT OF INTERESTS

Declared none

REFERENCES

How to cite this article