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ABSTRACT 

Objective: The aim of this research was to investigate action mechanism of Indonesia herbal decoctions in the treatment of Type 2 Diabetes (T2D) 
using network pharmacology approaches. 

Methods: Drug target profile analysis via Markov clustering was performed to identify the potent antidiabetic ingredients in the four herbs. 
Network target base identification of multicomponent synergy was applied to predict the ingredients synergetic effect. The multi-level and 
integrated target networks were contracted to identify the herbs major ingredients and their presumed targets. Further enrichment analysis and 
molecular docking were performed to validate network targets. 

Results: 278 ingredients from the four herbs were linked to antidiabetic drugs with an overall clustering success rate of 98.58% and 5 ingredient 
pairs had significant synergetic effects. Enrichment analysis demonstrates herbs candidate presumed targets were frequently involved in the 
significant biological process and pathways associated with progression of Type 2 diabetes (T2D) diseases. Finally, molecular docking validation 
revealed there was high binding site similarity between momordicoside F2 (78%), beta-sitosterol (67%) and cis-N-Feruloyltyramine (67%) with 
miglitol drug. In addition, the four ligands presented the higher binding affinity to Maltase-glucoamylase (MGA) receptor an enzyme responsible for 
the digestion of dietary starch to glucose.  

Conclusion: This study revealed the pharmacological mechanism of action of Indonesia herbal decoctions in the treatment of Type 2 diabetes. The 
herbs major presumed target played a significant biological role in the progression of Type 2 diabetes (T2D) while major herbal ingredients 
indicates the potential of curing Type 2 diabetes by inhibiting Maltase-glucoamylase (MGA) activity. 
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INTRODUCTION 

Type 2 diabetes (T2D) or noninsulin-dependent diabetes mellitus 
(NIDDM) is a chronic metabolic disease characterized by elevated 
blood glucose level due to insufficient insulin secretion, insulin 
resistance or insulin impairment [1, 2]. International Federation of 
Diabetic (IFD) estimated 90% of 285 million people suffering from 
the diabetic disease are diagnosed with Type 2 diabetes [3]. 
Epidemiological studies have reported genetic and environmental 
factors might be the possible contributing factor to the loss of beta 
cell function in Type 2 diabetes patients [4]. This leads to 
impairment of insulin action and secretion causing hyperglycemia a 
condition characterized by glucotoxicity that marks the onset of 
Type 2 diabetes complications [5-7]. Therefore, to regulate glycemic 
homeostasis in Type 2 diabetes patient’s synthetic drugs such as 
metformin, alpha-glucosidase inhibitors, sulfonylureas, thiazolidine-
diones (TZDs), and insulin injections are often used [8-10]. Some of 
those drugs have indicated therapeutic activity to regulate blood 
glucose level. However, others have shown low efficacy with various 
side effects associated with flatulence and diarrhea in Type 2 
diabetes patients [11-13].  

Thus to overcome such side effects associated with synthetic drugs, 
herbal medicines are often used as the alternative drug for 
treatment of Type 2 diabetes [14]. Ingredients in herbal plants such 
Momordica charantia have indicated therapeutic activity by 
regulating the blood sugar level in diabetic mice and improving 
insulin resistance and hyperlipidemia in rats [15]. Blumeatin from 
Blumea balsamifera to have indicated antihyperglycemic effects on 
diabetic rats while berberine from Tinospora cordifolia has been 
reported to be effective in reducing blood glucose by enhancing 

insulin receptor expression [16-18]. Ingredients such gingerol and 
shogaol from Zingiber officinale have indicated to some activities of 
increasing insulin receptor signaling [19]. Despite those herbs 
indicating therapeutic activities on Type 2 diabetic, their mechanism 
of action remains unknown due to their numerous complex mixture 
that often bound transiently to multiple targets [20-22].  

In drug discovery, network pharmacology paradigms are often 
applied to understand the underlying pharmacological mechanism 
of action of a given drug to certain disease [23-26]. Recently, omic 
technologies and systems biology have been adopted to predict the 
combinatory drug effect in order to understand their 
pharmacological mechanism based on target analysis [27]. 
Furthermore, in networks pharmacology, both technologies are 
often integrated to reveal the relationship between drugs and their 
targets [28]. Basically, there are two types of the network 
pharmacology techniques; a bottom-up approach which entails the 
addition of well-known molecular drugs targets and the observed 
synergistic effects and the top-down approach which is a general 
reduction of given formula to the minimal elements but still 
maintain important properties [29].  

The aim of this paper, we developed a comprehensive systematic 
approach to investigate the pharmacological mechanisms of action 
of Indonesia herbal decoction (Zingiber officinale, Tinospora 

cordifolia, Blumea balsamifera and Momordica charantia) in the 
treatment of Type 2 diabetes. The protocol of our study includes; (i) 
Prediction of antidiabetic ingredients in the four Indonesia herbal 
decoction using drug target profile analysis via Markov clustering 
algorithm. (ii) Synergy prediction among the ingredients in the four 
herbs by network target base identification of multicomponent 
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synergy approach. (iii) Identification of candidate major presumed 
targets and their corresponding herbal ingredients by multi-level 
and integrated network target technique. (iv) Enrichment analysis 
for validation of the biological significance of major presumed 
targets as well as molecular docking validation of binding affinity 
major corresponding herbal ingredient. 

MATERIALS AND METHODS 

Materials 

The herbal ingredient data were obtained from IPB University ‘jamu’ 
Knapsack (http://jamu. ipb. ac. id) and other reliable literature on 
related herbal ingredients. Herein, 286 ingredient compounds (37 
Tinospora cordifolia, 71 Zingiber officinale, 35 Momordica charantia, 
and 143 Blumea balsamifera) were investigated for their 
antidiabetic properties. The chemical information on herbal 
ingredients such as structure, canonical names and chemical identity 
(CID) were downloaded from PubChem compound database [30, 
31]. The genes associated with Type 2 diabetes and therapeutic 
targets Food and Drug Administration (FDA) drugs were 
downloaded from OMIM Morbid Map [32] and DrugBank databases 
[33], respectively. PPI data were imported from four existing PPI 
databases, namely the Human Annotated and Predicted Protein 
Interaction Database (HAPPI) [34], Online Predicted Human 
Interaction Database (OPHID) [35], Human Protein Reference 
Database (HPRD) [36], Molecular Interaction Database (MINT) [37].  

Identification of antidiabetic herbal ingredients  

The antidiabetic ingredients from the four herbs were identified by 
network drug target profiles analysis via Markov clustering (MCL) 
algorithm. Herein, Food and Drug Administration (FDA) approved 
antidiabetics drugs (rosiglitazone, pioglitazone, repaglinide, 
tolrestat, miglitol, rimonabant, praminitide, phenformin and starsis) 
were used to construct ingredient-drug target network. The network 
was then partitioned using Markov clustering (MCL) algorithm to 
generate ingredient-drug target profiles. The optimal inflation and 
cutoff parameters for MCL algorithm were set to generate maximum 
cluster granularity. The reliability of the MCL algorithm was 
assessed by determining the misclassification rate: the number of 
misclassified antidiabetic ingredients/a total number of identified 
antidiabetic ingredients in other words when applicable the overall 
success rate: the fraction of times the MCL algorithm recovered the 
correct number of clusters × (1-the misclassification rate). 

Determination of synergetic effect among the herbal ingredients 

The ingredient synergetic effects were computed by network target 
based identification of multicomponent synergy (NIMS). In the 
proposed method, a set of genes or gene products affected by an 
agent (herbal ingredient) is termed agent genes, and the disease-
specific biological network serves as the background network to 
compute the synergy scores. Thus, the two elements ‘topology score’ 
(TS) and ‘agent score’ (AS) were used to evaluate ingredient 
interactions [38]. Topological scores were calculated from 
topological features of the Type 2 diabetes (T2D) disease network. 
From the network target perspective, the Achilles ‘heel of the 
biological network underlying a certain disease is more likely to 
become the attack points of herbal ingredients [39]. Therefore, we 
assume that the more important the agent gene as a network node 
is, the stronger synergetic effect the agent will produce the Type 2 
diabetes disease. Thus significant synergetic scores of the agent gene 
as a node in the network were computed based on the node 
importance values by integrating degree, betweenness, and 
closeness as the three network centrality indexes to measure the 
network properties of ingredient targets [40, 41]. Note that for 
synergy prediction we hypothesize that if an ingredient pair 
produces synergy, their agent genes should be adjacent in the 
network.  

Network construction and analysis 

The herbs, chemical ingredients, presumed targets and known 
therapeutic targets of Type 2 diabetes were used to construct 
protein-protein interaction (PPI) network (presumed targets), a 
multi-level interaction network of herb-chemical ingredients-

presumed target, lastly an integrated herb-chemical ingredient-
presumed target-known T2D therapeutic target network to 
understand the relationship between the herbs and their presumed 
targets. The PPI data were obtained from existing PPI databases 
mentioned in materials section then Cytoscape visualization 
software (Version 2.8.1, Boston, MA, USA) was the used to visualize 
the network [42].  

Defining network topological features set  

For the purpose of understanding of the relationship between the 
herbs, their ingredients and presumed targets as well as their 
therapeutic targets we defined the network topological features by 
considering reference node in the network to be node i and 
measured four main topological features. (i) Degree the number of 
edges connected to node i. (ii) Node betweenness the number of the 
shortest paths between two of nodes intersecting node i. (iii) 
Closeness the inverse of the farness or sum of the node i distances to 
all other nodes. The closeness centrality is also considered as a 
measure of how long it will take to sequentially spread information 
from node i to all the other nodes [43]. Based on that we used the 
degree, node betweenness, and closeness centralities to measure 
topological importance in our network, thus the larger degree or 
node betweenness or closeness centrality, the more important that 
ingredient, protein or therapeutic target in the network. (iv)The k-
core analysis is an iterative removal of least connected nodes from 
the networks. The maximum order of the core is defined as the 
highest k-core of the network enhance ‘K value’ is used to measure 
the centrality of node i in the network [44]. 

Herb-chemical ingredients-presumed target-known T2D target 
network 

The herb-chemical ingredient-presumed target-known T2D 
therapeutic target network was constructed by linking the four 
herbs their chemical ingredients, presumed targets and the known 
T2D therapeutic targets that interact with the presumed targets. 
Herein we consider the node was as a hub protein if its degree was 
more than 2-fold the median degree of all the nodes in a network. 
Then, the PPIs among the hub protein targets were used to construct 
the hub presumed target PPI network. We used four network 
topological features such as ‘Node degree’, ‘Closeness’, ‘Node 
betweenness’, and ‘K value’ previously defined in the feature set 
definitions to identify the major presumed targets, in case the four 
topological features sets have values higher than the corresponding 
median values. We further to generate a k-core network of the 
original integrated network by iteratively removing the least 
connected nodes from the network whose degree is less than k. 
Performing k-core analysis, we obtain a sub-network, which is a 
globally central region of the original network. 

Enrichment analysis of herbs major presumed targets acting on 
T2D disease 

The enrichment analysis based on PANTHER functional annotation 
system [45] and Diversity Visualization Integrated Database 
(DAVID) [46] was performed to validate the biological significance 
of major presumed targets with the P value<0.05 after Benjamini’s 
correction. A higher score indicates that the gene members are 
involved in more important (enriched) biological processes.  

Molecular docking of herbs major ingredients 

The binding affinities of the major herbal ingredients were validated 
by molecular docking using Autodock Vina software [47]. The 
Maltase-glucoamylase receptor (MGA) and major herbal ingredients 
(ligands) were selected based on their topological importance from 
the k-core sub-networks. The structures of the receptor (Maltose-
glucoamylase with PDB code 2QMJ) and the four ligands (beta-
sitosterol from the Zingiber officinale with CID code 222284, cis-N-
Feruloyltyramine from Tinospora cordifolia CID code 5280537, 
linderol from Blumea balsamifera with CID code 65373, and 
momordicoside F2 from Momordica charantia with CID code 
44445567) were downloaded from PubChem website. Both the 
ligands and receptor were initially prepared using Autodock Tools 
program [48]. For the empirical comparison, we used miglitol (also 
known as Glyset, a patented drug that capable of inhibiting the 
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alpha-glucosidase activity) as control ligand. All structures for 
receptor and ligands were saved in a. pdbqt format to meet the 
docking program requirement. The next step we set the grid 
coordinates as x =-27.643, y =-12.49 and y =-0.559 and the box size set 
as z = 30, y = 30 and x = 36, as well as the number of exhaustiveness, 
was set at 20 to compromise between the exhaustive search and global 
minimum for better docking results. The binding sites regions were 
visualised by LigPlot+v.1.4 program [49]. 

RESULTS AND DISCUSSION  

Identification of antidiabetic herbal ingredients  

The antidiabetic ingredients from the four herbs were determined 
based on the hypothesis that chemical ingredient in the four herbs and 
Food and Drug Association (FDA) approved antidiabetic drugs were 
likely to share similar target profiles, biological function, and 
pharmacological action as well as the mechanism of action. According 
to target profile analysis (fig. 1), 22 ingredients from zingiber officinal; 
25 ingredients from Momordica charantia; 13 ingredients from 
Tinospora cordifolia and 82 ingredients from Blumea balsamifera were 
identified from the clusters and were linked to known Food and Drug 

Association (FDA) antidiabetic drugs, this reveals that certain 
ingredients compounds were shared diverse pharmacological action 
with targeted antidiabetic drugs.  

Some of the identified ingredients were linked with diverse 
antidiabetic activities in previous studies for instance 5,7,3',5'-
tetrahydroxy flavanone and blumeatin from Blumea balsamifera to 
have been reported to be antioxidants that improve diabetes; 
guaifenesin from Tinospora cordifolia enhance the neurite 
outgrowth which might protect Type 2 diabetes (T2D) patients from 
neuropathy [50]. For instance, jatrorrhizine, berberine bisulfate, 
coptisine, epiberberine, oxyberberine, columbamine, and berberine 
were reported to have hypoglycemic and antidiabetic actions that 
regulate glucose metabolic effect and reduction of oxidative stress 
injury [51, 52].  

The results obtained in target profile analysis revealed our proposed 
Markov clustering (MCL) to be more effective for identification of 
antidiabetic compound in the four herbs with an overall success rate of 
98.58%. This demonstrated the reliability of our approach to provide a 
possible explanation for action mechanism and molecular basis of the 
four Indonesia herbs in the treatment of Type 2 diabetes. 

 

 

Fig. 1: The herbal ingredient-drug networks based on the target profile cluster analysis. Edges: the link between the herbal ingredients 
and FDA drugs; red square nodes: known FDA antidiabetic; the circle nodes herbal ingredients; green nodes: Zingiber officinale; blue 

nodes: Tinospora cordifolia; yellow nodes: Blumea balsamifera; barge node: Momordica charantia 

 

Synergetic effect among herbal ingredients  

For synergy prediction, berberine was used as the core agent 
(ingredient) due to its antidiabetic activity [53]. In the proposed 
method, a high score means a great probability of synergy and we 
measure the synergy of ingredients combination with independent 
mechanisms based on Bliss independent theory [54], so we roughly 
set the valid range of our score from 0 to 0.9. From the network, 16 
unique berberine-ingredient synergy scores were obtained and 
combination of berberine with momordicoside F2 (0.3976) from 
Momordica charantia, linderol (0.3071) from Blumea balsamifera 
and beta-sitosterol (0.4332) and (S)-10-Gingerol (0.4129) in 
Zingiber officinale as well as cis-N-Feruloyltyramine (0.3711) in 

Tinospora cordifolia presenting significant antidiabetic synergetic 
effect. Those synergetic effects might be due to their deferent 
antidiabetic mechanisms as the cluster analysis revealed those 
ingredients to have deferent target profiles. We further validate the 
synergy scores by comparing with Food and Drug Association (FDA) 
approved antidiabetic drugs we used in target profiles analysis. 
Related studies have reported the combination of repaglinide and 
pioglitazone to have an acceptable safety with greater reductions in 
glycemic parameters than treatment using either agent alone [55]. 
The proposed method demonstrates that the network target can 
nicely interpret the synergetic mechanism of ingredients 
combination in Indonesia herbal decoction by its latent network 
topology properties. 
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Herb-chemical ingredients-presumed target network 

The multi-level network of herb-chemical ingredients-presumed 
target revealed the relationships between the herbs and their 
presumed targets. The network (fig. 2) consists of 862 nodes (4 
ingredients, 282 chemical ingredients, and 576 presumed targets) 
and 1227 edges. The mean number of presumed targets per 
chemical ingredients was 2.042. Among 282 chemical ingredients, 7 
had high-degree distributions, and each hitting significant presumed 
targets two of them come from Tinospora cordifolia, such as 4-

Hydroxymephenyton and mangnoflorine; two from Zingiber 

officinale, such as 1,3-cineole and (-)-beta sitosterol and 
monordicoside F1 from Momordica charantia as well as alpha-
pinene and linderol from Blumea balsamifera. From the four herbs, 
Blumea balsamifera had the highest degree distribution, hitting 33 
presumed targets. Network analysis reveals 10 presumed targets 
were linked to Tinospora cordifolia, Zingiber officinale, and 
Momordica charantia herbs and 24 presumed targets were shared 
with among the four herbs this explains the functional relationship 
between herbs their ingredients and presumed targets. 

 

Fig. 2: Interaction network to understand the relationship among herbs, their ingredients and presumed targets visualized by Cytoscape. 
Edge; interaction between ingredients and their presumed targets; red rectangle node: Herbs, including Tinospora cordifolia, Zingiber 

officinale, Momordica charantia and Blumea balsamifera; circle nodes: Herbal ingredients; brown triangle nodes: Presumed targets for 
herbal ingredients; blue triangle: Presumed targets shared by the four herbs 

 

Herb-chemical ingredient-presumed target-known T2D 
therapeutic target network 

The integrated network (fig. 3A) built by reversed imbalanced herb-
ingredient-presumed target-known Type 2 diabetes (T2D) target 
network to understand the mechanism of action of the four herbal 
ingredients in the treatment of Type 2 diabetes (T2D). From the 
network, we identified 871 nodes (including 4 herbs and 282 
ingredients, as well as 576 presumed targets and 9 known 
therapeutic targets) with 1227 interactions. Based on the four 
topological features describe in materials and methods section we 
identified 54 major nodes linked to 31 ingredients contained in the 
four herbs, 24 presumed targets were shared, and 2 known 
therapeutic targets had the highest degree distribution furthermore, 

all the nodes had significant degree, betweenness, closeness and K 
value greater than the corresponding median values. To identify the 
herbs major presumed targets and ingredients acting on Type 2 
diabetes we performed the K-core analysis (fig. 3 B) by iteratively 
removing less connected nodes to obtain the global central region of 
original network (fig. 3 A). From the k-core sub-network, 68 nodes 
(31 chemical ingredients, 24 presumed targets, and 2 major T2D 
therapeutic targets) and 132 interactions were identified.  

From the sub-network linderol (d=3, NC=54.543%), momorcharaside 
F2 (d =5, NC=55.33%), cis-N-Feruloyltyramine (d=7, NC=24.0%), and 
beta-sitosterol (d=10, NC=31.0%) had the highest connectivity to 
major presumed targets and topological measurements (where d is 
the node degree and NC is the proportion neighbor connectivity). 
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Table 1: Herbal ingredient with significant antidiabetic synergistic effects 

Herbs Chemical ingredients  Synergy score P-value 
Zingiber officinale Beta-sitosterol  0.4332* 1.0E-03 
Zingiber officinale (S)-10-gingerol 0.4129* 1.0E-03 
Zingiber officinale [6]-shogaol 0.4810 9.9E-02 
Tinospora cordifolia Berberine bisulfate 0.3973 2.1E-02 
Tinospora cordifolia Cis-N-Feruloyltyramine  0.3711* 1.0E-03 
Tinospora cordifolia Columbamine 0.3987 2.3E-02 
Tinospora cordifolia Oxyberberine 0.4001 6.0E-03 
Blumea balsamifera Linderol  0.3071* 1.0E-03 
Blumea balsamifera Jatrorrhizine 0.3912 2.0E-03 
Blumea balsamifera Magnoflorine 0.4992 9.0E-03 
Blumea balsamifera Palmatine 0.5617 1.6E-02 
Blumea balsamifera Blumeatin 0.4110 1.9E-02 
Momordica charantia Momordicoside F2  0.3976* 6.0E-03 
Momordica charantia Goyaglycoside-B 0.4881 1.2E-02 
Momordica charantia Charantoside VII 0.4117 1.1E-02 
Momordica charantia Momordicoside I 0.3991 4.1E-02 

 *berberine-ingredient pairs with significant synergy scores 

 

 

A 
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Fig. 3: Network analysis for the identification of the underlying pharmacological mechanisms of the actions of the herbal decoctions 
acting on T2D. (A) Herb-ingredient-presumed targets-known Type 2 diabetic target network. (B) Major herbs-ingredients-presumed 

target-known T2D target network visualized by Cytoscape. Edge: interaction between herbal ingredients and their presumed targets; red 
rectangle node: four herbs including; Tinospora cordifolia, Zingiber officinale, Momordica charantia and Blumea balsamifera; circle nodes: 

herbal ingredients; brown triangle nodes: presumed targets of herbal ingredients: blue triangle; major presumed shared targets by the 
four herbs: pink diamond; known therapeutic targets for treatment of type 2 diabetes 

 

Enrichment analysis  

Enrichment analysis (table 2) revealed that herbs major presumed 
targets were frequently involved in various significant biological 
processes and pathways such as regulation of insulin receptor 
signaling pathway (9.16E-07), regulation of glucose metabolic 
process (2.96E-17), glucose homeostasis (3.75E-09), and regulation 
of insulin secretion (8.77E-05) and JAK/STAT signaling pathway 
(3.37E-11). Based on network analysis (fig. 3) major presumed 
targets including FOXO4, INS, AKT2 and TSC1 genes are linked to 
momordicoside F2 compound. FOXO4 gene is perceived to regulate 
insulin signaling pathway. On the other hand, INS gene reduces 
blood glucose concentration by enhancing cell permeability to 
monosaccharide’s, amino acids, and fatty acids which accelerate 
glycolysis, the pentose phosphate cycle, and glycogen synthesis in 
liver [56]. AKT2 genes regulate glucose uptake by mediating insulin-
induced translocation whereas TSC1 genes act as a tumor 

suppressor by negatively regulating mTORC1 signaling pathways 
[57]. Furthermore, FOXO1 and INSR targeted genes are linked to 
linderol and cis-N-Feruloyltyramine compound, FOXO1 is perceived 
as the target of insulin signaling and regulates metabolic 
homeostasis in response to oxidative stress and regulation of 
glucose metabolism while INSR as a receptor tyrosine kinase 
mediates the pleiotropic actions of insulin [58]. In addition, NPS INF 
and EDN1 genes are linked to beta-sitosterol compounds, studies 
have reported NPS genes to plays an important anorexigenic role 
while IFN effector genes to triggers interferon-stimulated genes 
(ISGs) which inhibit virus replication, on the other hand, EDN1 
genes have been reported to involve in endothelium-derived 
vasoconstriction [59]. On this basis, the major presumed targets of 
Indonesian herbal decoction are significantly associated with these 
biological processes and pathways might play a role in the 
understanding mechanism of action of Indonesia herbal decoction in 
treatment of Type 2 diabetes. 

 

B 
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Table 2: Top 10 significant biological processes and top 10 pathways associated with herbs major presumed targets 

Terms Counts Fold enrichment  P-value 
GO Biological process     
Regulation of inflammatory response (GO: 0050727) 12 12.19 3.96E-05 
Regulation of carbohydrate biosynthetic process (GO: 0043255) 14 68.09 2.56E-18 
Regulation of insulin receptor signaling pathway (GO: 0046626) 14 58.36 9.16E-07 
Regulation of glucose metabolic process (GO: 0010906) 17 57.07 2.96E-17 
Regulation of cellular response to insulin stimulus (GO: 1900076) 14 54.35 2.22E-08 
Regulation of glucose transport (GO: 0010827) 12 48.45 1.79E-13 
Glucose homeostasis (GO: 0042593) 11 25.87 3.75E-09 
Regulation of blood pressure (GO: 0008217) 10 24.18 9.27E-08 
Regulation of insulin secretion (GO: 0050796) 9 18.81 8.77E-05 
Regulation of lipid metabolic process (GO: 0019216) 13 18.73 1.25E-09 
PANTHER Pathways    
JAK/STAT signaling pathway (P00038) 7 >100 3.37E-11 
Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade (P00032) 10 46.73 1.46E-07 
Insulin/IGF pathway-protein kinase B signaling cascade (P00033) 12 45.13 8.70E-09 
PI3 kinase pathway (P00048) 10 28.04 1.78E-05 
Interleukin signaling pathway (P00036) 11 22.88 1.40E-08 
PDGF signaling pathway (P00047) 9 18.63 2.46E-07 
CCKR signaling map (P06959) 9 16.04 8.88E-07 
Gonadotropin-releasing hormone receptor pathway (P06664) 11 14.44 4.71E-08 
Wnt signaling pathway (P00057) 6 13.31 4.64E-02 
Angiogenesis (P00005) 7 12.27 2.87E-04 
 

Molecular docking validation  

Molecular docking technique, as a computational structure-based 
method is a powerful tool in drug discovery and design. This technique 
can help researchers discover the relationship between the 
constituents of Indonesian herbal decoctions and network targets 
[60]. Autodock Vina is high-throughput molecular docking tool with a 
fast and simple method to rapidly predict the binding affinity of a 
ligand, based on the geometry of a candidate ligand docked into a 
target receptor structure using empirical functions [61]. 

Binding sites profiles 

The four major ligands were selected based on their significant 
synergy score (table 1) and their topological importance in k-core 
subnetwork (fig. 3B). Based on Lipinski rules, which state that the 
drug compound should have a molecular size less than 500 Dalton 
[62] our docking analysis revealed beta-sitosterol (414 Dalton), cis-N-
Feruloyl-tyramine (313 Dalton), and linderol (362 Dalton) compounds 
had a molecular size less than Lipinski limit with only momordicoside 
F2 (618 Dalton) compound exceeding limit. Furthermore, the binding 

site profile analysis (fig. 4) revealed that momordicoside F2 had three 
residues involved in hydrogen bonding (H-bonding) in miglitol 
(Asp702, Leu727, and Glu719) residues, which switched to 
hydrophobic interactions in momordicoside F2. Residues of Glu704 
also switched its interaction from hydrophobic in miglitol to hydrogen 
bond in momordicoside F2. For beta-sitosterol, all its interactions with 
the Maltase-glucoamylase receptor (MGA) were classified as 
hydrophobic interaction and no any hydrogen bond were involved. 
The residues involved in hydrophobic interaction in beta-sitosterol 
included Asp702, Ile725, Lys724, Leu720, and Glu719. For cis-N-
Feruloyl-tyramine, six residues were involved in the interactions four 
residues (Glu719, Leu720, Asp702, and Lys724) in hydrophobic 
interaction whereas two residues in hydrogen bond interaction 
(Ile725 and Glu704) on the other hand for linderol, only one residue 
(Glu704) was involved in the hydrophobic interaction. Even though 
we docked linderol in same targeted grid box used for other three 
ligands, docking analysis reveals its tendency to bind to the different 
regions probably due to its small molecular size (362 Dalton) or grid 
size of targeted receptor thus only Glu704 residue was actively 
involved in the hydrophobic interaction. 
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Fig. 4: Binding sites similarities of herbs major ingredient (beta-sitosterol, momordicoside F2, cis-N-Feruloyltyramine, and linderol) 
compared with miglitol visualized by LigPlot+v.1.4 program 

 

 

Fig. 5: The binding affinity of herbs major ingredient compounds compared with miglitol drug (control ligand) 

 

Furthermore, when we compare the binding site's similarity of the 
four ligands to miglitol a patent antidiabetic drug (table 3), 
momordicoside F2 presents the best binding site similarity(BSS) of 
78% (7 out of 9 residues) among the four ligands followed by beta-
sitosterol and cis-N-Feruloyltyramine both scoring 67% (6 out of 9 
residues). Lastly, linderol was the only ligand that scored lowest 
binding sites similarity 11% (1 out of 9 residues) when compared to 
miglitol binding sites. 

Binding affinity  

The binding affinity of each ligand to Maltase-glucoamylase (MGA) 
target was assessed to evaluate their Gibbs free energy (fig. 5).  

Docking analysis revealed that momordicoside F2 had the best 
binding affinity (-7.80 kcal/mole) followed by beta-sitosterol (-6.80 
kcal/mole) and cis-N-Feruloyltyramine (-6.50 kcal/mole). However, 
linderol turned out to have the same binding affinity with miglitol (-
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5.30 kcal/mole) which indicated its possibility of having similar pharmacological functions with miglitol drug. 

 

Table 3: Binding sites profile analysis of the herbs major ingredients compared with miglitol drug 

Herb Ligands HIR a HBR b LHFG 
c 

HBL 
d(Å)  

BSS e 
(%) 

 Miglitol (control drug) Hsd728,Gly726, Leu720,Glu704, Lys724 Asp702 
Leu727 
Ile725 
Glu719 

O2 
O2 
O3 
O3 
O4 

3.23 
2.97 
3.17 
2.92 
2.75 

 
100 

Zingiber officinale  
(jahe) 

Beta-sitosterol Arg710,Val709, Trp711,Asp702, 
Ile725,Glu704, Lys724,Met718, Pro721, Leu720, 
Lys724,Glu719  
 

 
__ 

 
__ 

 
__ 

 
67 

Tinospora cordifolia  
(bratawali)  

cis-N-Feruloyltyramine Val709,Trp711, Glu719, Leu720, 
Arg710,Asp702, 
Lys724 
 

Gln708 
Ser707 
Tyr626 
Ile725 
Glu704 

O4 
O1 
O2 
O2 
O2 
 

2.77 
3.10 
3.14 
2.80 
2.88 
 

 
67 

Momordica charantia  
(pare) 

Momordicoside F2 Ser707,Lys724,  
Trp711, Asp702, Val709,Arg710, 
Leu720, Pro721, Glu719, Leu727 

Gln708 
Glu704 
Tyr626 
Ile725 
 

O5 
O4 
O7 
O7 
O7 
 

3.04 
3.06 
2.85 
3.02 
2.99 
 

 
78 

Blumea balsamifera  
(sembung) 

Linderol Glu704,Tyr703, Lys817, Ile629, Thr632, Asn628  
Hsd625 
Glu815 

O3 
O6 
O1 
O2 

3.10 
3.16 
3.12 
3.03 

 
11 

a: HIR hydrophobic interaction residue; b: HBR hydrogen bonding residues; c: LHFG ligand hydrogen bonding group; d: HBL hydrogen bond length; 
e: BSS binding site similarity 

 

CONCLUSION 

This paper presents a comprehensive systematic approach 
integrating target profile analysis, synergy prediction, network 
analysis, and target validation to reveal the relationships between 
ingredients contained in the four Indonesia herbal decoctions and 
their presumed targets and Type 2 diabetes related pathway 
systems. From our results target profile analysis via Markov 
clustering (MCL) provided clues to possible antidiabetic ingredients 
in the four herbs to investigate their pharmacological mechanisms to 
the treatment of Type 2 diabetes with an overall success rate of 
98.58%. Synergy prediction by network target based identification 
of multicomponent synergy revealed there were herbal ingredients 
with significant antidiabetic synergetic effects.  

The multi-level and integrated network targets of herbs, their 
presumed targets and known Type 2 diabetes therapeutic targets 
revealed the herbs major ingredients and their presumed targets 
acting on Type 2diabetes therapeutic targets. Enrichment analysis 
revealed major presumed targets were frequently involved in 
significant biological processes and pathways related to the 
progression of Type 2 diabetes (T2D). For molecular docking 
validation momordicoside F2 (78%), beta-sitosterol (67%) and cis-
N-Feruloyltyramine (67%) presented higher binding site similarity 
when compared with miglitol drug indicating their potential to 
develop antidiabetic drugs although linderol had low binding site 
similarity probably due to its smaller molecular size (362 Dalton) or 
the size of grid box used for docking all the ligands. Furthermore, all 
the four ligands indicated higher binding affinity and inhibitory 
properties to Maltase-glucoamylase (MGA) receptor. Thus the 
docking results reveal the pharmacological mechanism of action of 
Indonesia herbal decoction in treatment of Type 2diabetes with 
momordicoside F2, beta-sitosterol, cis-N-Feruloyltyramine and 
linderol indicating the potential of curing Type 2 diabetes disease 
(T2D). Since our preliminary study was purely based on network 
pharmacology techniques and bioinformatics analysis, further 
experimental studies are required to test the hypotheses. 
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