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ABSTRACT  

The azodye ligands were synthesized from the coupling of 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one with aniline derivatives and characterized by 
elemental analyses, IR and NMR spectroscopy. Dioxouranium (VI) complexes of the prepared ligands were characterized by elemental analyses, 
conductance, thermal analysis and spectral (UV, IR and NMR) results. IR spectra show that the ligands behave as a monobasic bidentate 
coordinating via the hydrazo nitrogen atom and CO of the pyrazole ring. Thermal studies to verify the status of water molecules inside or outside 
the coordination sphere of the central metal ion. The optimized bond lengths, bond angles and the calculated quantum chemical parameters for the 
ligands were investigated. The coordination geometries and electronic structures are determined from a framework for the modeling of the 
complexes. The force constants, FUO (10-8 N/Ao) and the bond lengths, RUO (Ao) have been calculated from an asymmetric stretching frequency of O-
U-O group. 

Keywords: Supramolecular structures, Azodye complexes, Dioxouranium (VI), Molecular parameters. 

 

INTRODUCTION 

In recent years, UO2(II) complexes of azodyes ligands have received 
much attention because of their rich electrochemical and 
photophysical properties as well as their potential applications in 
various supramolecular structures as electronics and 
photomolecular devises [1-5]. Multinuclear systems of this kind can 
be developed by covalent linking of building blocks with spacers. 
The size, shape and electronic nature of the bridge controls the 
electronic communication between the chromophores and thereby 
the molecule as a whole [6-9].  

Azodye ligands play a key role in understanding the coordination 
chemistry of transition metal ions [5,10]. Hydrogen bonding now is 
one of the key interactions in the process of molecular aggregation 
and recognition in nature [6,11,12] and it can be used to design and 
assemble supramolecular architectures. The development of the 
field of bioinorganic chemistry has interest in azo dye complexes, 
since it has been recognized that many of these complexes may 
serve as models for biologically important species [13,14]. Both the 
azo dyes and their metal complexes find applications in dye 
industry. In some cases, the complexes assume more importance due 
to technical reasons, like better fiber affinity, and light [15] fastness. 

El-Sonbati et al. [7,11,12] reported on hydrogen bonded 
supramolecular quinoline azodyes and/or hydrazono ligands 
moiety, which can be viewed as hydride structure, composed of a 
carbonyl/azomethine function and OH/=N-NH group, which has 
mutual electronic and steric influence on the hydrogen bonding 
formation dependent on the conformation of the molecules, 
determined by the two competitive conjugated π – π* and n – π* 
systems and the steric effect. This paper is an extension of previous 
studies [7,11] in the coordination compounds for several reasons: (i) 
molecular materials with peculiar electric or optical properties can 
form intermolecular interactions, required for the desired structural 
control, differ in nature and they can be provided by, for example, 
hydrogen bond [12,16] or charge transfer processes [8,10]; (ii) the 
oxygen bridge with varied stereochemistries has attracted much 
attention due to their interesting spectral properties and their use in 
biological processes. 

This work deals with synthesis and characterization of azodyes 
obtained by the coupling of 3-methyl-1-phenyl-1H-pyrazol-5(4H)-
one with aniline derivatives and their UO2(II) complexes. 
Coordination behavior of the ligands towards UO2(II) ions was 

investigated using spectroscopic techniques. The present study, not 
only aims at the synthesis and characterization of a series of 
supramolecular metal chelates, but also demonstrates the enhanced 
effectiveness of charge density on the chelating ring. It also pointed 
out to the substituents effect on metal ion.  

MATERIALS AND METHODS 

Materials and physical measurements 

The standard chemicals, aniline and its derivatives were purchased 
from Aldrich chemical company and used as received without 
further purification. C, H and N were determined on Automatic 
Analyzer CHNS Vario ELIII, Germany. Spectroscopic data of the 
ligands and UO2(II) complexes were obtained using the following 
instruments: FT-IR spectra (KBr discs, 4000-400 cm-1) by Jasco-
4100 spectrophotometer; the 1H NMR spectrum by Bruker WP 300 
MHz using DMSO-d6 as a solvent containing TMS as the internal 
standard; the absorbance measurements by UV-visible 
spectrophotometer (Perkin-Elmer AA800 Model AAS). The uranium 
content was determined by igniting a definite mass of the complex at 
800 oC and weighing the residue as U3O8 [17].  

Thermogravimetric analysis (TGA) measurements were made using 
a DuPont 950 thermobalance. Ten milligram samples were heated at 
10o/min in a dynamic nitrogen atmosphere (70 ml/min); the sample 
holder was boat-shaped, 10 × 5 × 2.5 mm deep; the temperature 
measuring thermocouple was placed within 1 mm of the holder. The 
molecular structures of the investigated compounds were optimized 
by HF method with 3-21G basis set.  

The molecules were built with the Perkin Elmer ChemBio Draw and 
optimized using Perkin Elmer ChemBio3D software [18]. El-Sonbati 
equation [19] has been manipulated by using a computer program 
developed in our laboratories using C language. 

Preparation of 4-(3-derivatives phenylazo)-3-methyl-1-
phenylpyrazol-5-one (HLn) 

In a typical preparation [20], 25 ml of distilled water containing 0.01 
mol hydrochloric acid were added to m-derivatives of aniline (0.01 
mole). The resulting mixture was stirred and cooled to 0 ºC. A 
solution of 0.01 mole sodium nitrite in 20 ml of water was added 
dropwise.  

Formed diazonium chloride was consecutively coupled with an 
alkaline solution of 0.01 mole 3-methyl-1-phenyl-1H-pyrazol-5(4H)-
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one as shown in Scheme 1. The colored precipitate, which formed 
immediately, was filtered and washed several times with water. The 
experimental details are given in Scheme 1. 
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Scheme 1: Formation mechanism of 4-(3-derivatives 
phenylazo)-3-methyl-1-phenylpyrazol-5-one. 

 

Preparation of UO2 (II) complexes 

For the synthesis of uranyl complexes; a solution of 
UO2(CH3COO)2.2H2O in approximately 50 ml of absolute ethanol was 
mixed with an appropriate amount of the ligands (HLn) to give a 
molar ratio of 1:1 or 1:2. Reflux was continued for 2-3 hrs. The 
complexes were filtered off and washed with hot ethanol. All 
precipitates were dried at 40oC. Table 1 shows the details of 
elemental analysis of the isolated complexes. 

RESULTS AND DISCUSSION 

Molecular parameters 

Based on MO theory [21] the energy terms of the molecular orbital 
became more closely spaced as the size of the conjugated system 
increases. Therefore, with every additional conjugated double bond 
the energy difference between the highest occupied and the lowest 
vacant π-electron level became smaller and the wavelength of the 
first absorption band corresponds to this transition is increased. The 
azo group can act as a proton acceptor in hydrogen bonds [10,22]. 
The optimized structures of the ligands (HLn) are given in Fig. 1. The 
selected geometrical structures of the investigated ligands (HLn) 
were calculated by optimizing their bond lengths and bond angles 
(Tables 2-4). The C(9)-N(8) bond with length 1.273 Å for all ligands 
(HLn) is a normal imine bond. From Tables 2-4 the computed net 
charges on active centers, it is found that the most negative charges 
in ligands are N(11) & O(24), N(11) & O(17) and N(11) & O(23) for 
HL1, HL2 and HL3, respectively. Quantum chemical parameters such 
as the highest occupied molecular orbital energy (EHOMO), the lowest 
unoccupied molecular orbital energy (ELUMO) and HOMO–LUMO 
energy gap (ΔE) for the investigated molecules were calculated. 

In Fig. 2 the HOMO–LUMO energy gap, ΔE, which is an important 
stability index, is applied to develop theoretical models for 
explaining the structure and conformation barriers in many 
molecular systems [23,24]. The value of ΔE for HL1, HL2, and HL3 was 
found 0.0655, 0.1024 and 0.1026 a. u., respectively, so ligand (HL1) 
more stable and highly reactive than the other ligands (HL2) and 
(HL3) (Table 5). Ligand (HL1) is more reactive than ligands (HL2) and 
(HL3) as reflected from energy gap values.  

The calculated quantum chemical parameters are given in Table 5. 
Additional parameters such as ∆E, absolute electronegativities, χ, 
chemical potentials, Pi, absolute hardness, η, absolute softness, σ, 
global electrophilicity, ω [25], global softness, S, and additional 
electronic charge, ∆Nmax, have been calculated according to the 
following equations [25,26]: 

 

Table 1: Elemental analysis data for the ligands (HLn) and their UO22+ complexesa (for molecular structures see Scheme 1)b. 

Exp. (calc.) (%) 
C H N metal 

Code Compoundc 
 

63.55 4.42 17.72 - 
(63.35) (4.35) (17.39) 
32.51 2.72 8.33 34.23 
(32.39) (2.56) (7.96) (33.81) 

 
 
1 

HL1 
 
[UO2L1(OH2)(OAc)]2H2O 
 

65.49 4.85 19.42 - 
(65.31) (4.76) (19.05) 
30.53 2.66 7.24 33.64 
(30.34) (2.53) (8.87) (33.43) 

 
 
2 

HL2 
 
[UO2L2(OH2)(OAc)]4H2O 

66.41 5.31 18.38 - 
(18.23) (5.20) (66.18) 
34.03 3.34 8.65 35.73 
(33.88) (3.12) (8.32) (35.36) 

 
 
3 

HL3 
 
[UO2L3(OH2)(OAc)]H2O 
 

43.97 2.88 12.23 25.89 
(43.87) (2.80) (12.04) (25.59) 

4 [UO2(L1)2]H2O 

43.44 3.06 13.42 27.54 
(43.39) (2.98) (13.82) (27.23) 

5 [UO2(L2)2]H2O 

45.41 3.45 12.65 26.54 
(45.23) (3.33) (12.42) (26.39) 

6 [UO2(L3)2]2H2O 

a Microanalytical data as well as metal are in good agreement with the stoichiometry of the proposed , complexes., b The excellent agreement 
between calculated and experimental data supports the assignment in the present work.,c  HL1-HL3 are the ligand as given in Scheme 1 and L1-L3 are 
anions. 
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Fig. 1: The calculated molecular structures of the investigated compounds (HLn). 

 HOMO LUMO 
HL1 

  
HL2 

  
HL3 

  
Fig. 2: The Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) of the investigated 

compounds (HLn). 
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Table 2: The selected geometric parameters for HL1 

Bond lengths (Å) Bond angles (o) Bond angles (o) 
O(25)-H(38) 0.968 
C(22)-H(37) 1.099 
C(21)-H(36) 1.104 
C(20)-H(35) 1.102 
C(19)-H(34) 1.103 
C(18)-H(33) 1.103 
C(14)-H(32) 1.114 
C(14)-H(31) 1.113 
C(14)-H(30) 1.113 
C(6)-H(29) 1.103 
C(4)-H(28) 1.103 
C(2)-H(27) 1.101 
C(1)-H(26) 1.104 
C(1)-C(6) 1.34 
C(5)-C(6) 1.346 
C(4)-C(5) 1.349 
C(3)-C(4) 1.349 
C(2)-C(3) 1.346 
C(1)-C(2) 1.341 
C(17)-C(22) 1.35 
C(21)-C(22) 1.343 
C(20)-C(21) 1.339 
C(19)-C(20) 1.339 
C(18)-C(19) 1.343 
C(17)-C(18) 1.352 
C(3)-C(23) 1.368 
N(7)-H(16) 1.038 
O(15)-H(16) 1.006 
N(11)-C(17) 1.281 
C(10)-O(15) 1.224 
C(13)-C(14) 1.495 
C(13)-C(9) 1.332 
N(12)-C(13) 1.27 
N(11)-N(12) 1.25 
C(10)-N(11) 1.272 
C(9)-C(10) 1.359 
N(8)-C(9) 1.273 
N(7)-N(8) 1.25 
C(5)-N(7) 1.275 
C(23)-O(25) 1.36 
C(23)-O(24) 1.218 

 

H(38)-O(25)-C(23) 111.618 
H(36)-C(21)-C(22) 120.172 
H(36)-C(21)-C(20) 119.498 
C(22)-C(21)-C(20) 120.329 
H(35)-C(20)-C(21) 120.619 
H(35)-C(20)-C(19) 120.618 
C(21)-C(20)-C(19) 118.763 
H(34)-C(19)-C(20) 119.598 
H(34)-C(19)-C(18) 120.209 
C(20)-C(19)-C(18) 120.192 
H(37)-C(22)-C(17) 122.393 
H(37)-C(22)-C(21) 115.188 
C(17)-C(22)-C(21) 122.419 
H(33)-C(18)-C(19) 115.662 
H(33)-C(18)-C(17) 121.817 
C(19)-C(18)-C(17) 122.521 
C(22)-C(17)-C(18) 115.775 
C(22)-C(17)-N(11) 123.712 
C(18)-C(17)-N(11) 120.512 
H(16)-O(15)-C(10) 109.113 
C(17)-N(11)-N(12) 124.253 
C(17)-N(11)-C(10) 130.222 
N(12)-N(11)-C(10) 105.526 
H(32)-C(14)-H(31) 108.417 
H(32)-C(14)-H(30) 108.508 
H(32)-C(14)-C(13) 109.943 
H(31)-C(14)-H(30) 107.938 
H(31)-C(14)-C(13) 110.665 
H(30)-C(14)-C(13) 111.285 
C(13)-N(12)-N(11) 113.35 
C(14)-C(13)-C(9) 129.119 
C(14)-C(13)-N(12) 123.239 
C(9)-C(13)-N(12) 107.633 
O(15)-C(10)-N(11) 136.755 
O(15)-C(10)-C(9) 111.996 
N(11)-C(10)-C(9) 111.248 
C(13)-C(9)-C(10) 102.241 
C(13)-C(9)-N(8) 136.609 
C(10)-C(9)-N(8) 121.15 
N(7)-H(16)-O(15) 156.281 
C(9)-N(8)-N(7) 113.265 
  

 

H(16)-N(7)-N(8) 108.194 
H(16)-N(7)-C(5) 122.63 
N(8)-N(7)-C(5) 129.176 
H(29)-C(6)-C(1) 117.848 
H(29)-C(6)-C(5) 121.572 
C(1)-C(6)-C(5) 120.58 
C(6)-C(5)-C(4) 118.017 
C(6)-C(5)-N(7) 121.087 
C(4)-C(5)-N(7) 120.896 
C(3)-C(23)-O(25) 121.361 
C(3)-C(23)-O(24) 121.637 
O(25)-C(23)-O(24) 117.002 
H(28)-C(4)-C(5) 117.544 
H(28)-C(4)-C(3) 119.997 
C(5)-C(4)-C(3) 122.459 
C(4)-C(3)-C(2) 117.88 
C(4)-C(3)-C(23) 121.649 
C(2)-C(3)-C(23) 120.471 
H(27)-C(2)-C(3) 122.725 
H(27)-C(2)-C(1) 116.606 
C(3)-C(2)-C(1) 120.669 
H(26)-C(1)-C(6) 119.704 
H(26)-C(1)-C(2) 119.901 
C(6)-C(1)-C(2) 120.395 

 
Negative charge 

N(7) -0.4271 
N(8) -0.492 
C(10) -0.0238 
N(11) -0.158 
N(12) -0.492 
O(24) -0.57 
O(25) -0.65 

 
 

 

Table 3: The selected geometric parameters for HL2 

Bond lengths (Å) Bond angles (o) Bond angles (o) 
C(22)-H(35) 1.103 
C(20)-H(33) 1.103 
C(19)-H(32) 1.103 
O(17)-H(31) 0.971 
C(14)-H(30) 1.114 
C(14)-H(29) 1.114 
C(14)-H(28) 1.113 
C(6)-H(27) 1.103 
C(4)-H(26) 1.104 
C(2)-H(25) 1.103 
C(1)-H(24) 1.103 
C(1)-C(6) 1.342 
C(5)-C(6) 1.346 
C(4)-C(5) 1.347 
C(3)-C(4) 1.345 
C(2)-C(3) 1.343 
C(1)-C(2) 1.341 
C(18)-C(23) 1.35 
C(22)-C(23) 1.343 
C(21)-C(22) 1.339 
C(20)-C(21) 1.339 
C(19)-C(20) 1.343 

H(35)-C(22)-C(23) 120.178 
H(35)-C(22)-C(21) 119.489 
C(23)-C(22)-C(21) 120.334 
H(34)-C(21)-C(22) 120.626 
H(34)-C(21)-C(20) 120.614 
C(22)-C(21)-C(20) 118.76 
H(33)-C(20)-C(21) 119.603 
H(33)-C(20)-C(19) 120.206 
C(21)-C(20)-C(19) 120.192 
H(36)-C(23)-C(18) 122.386 
H(36)-C(23)-C(22) 115.201 
C(18)-C(23)-C(22) 122.413 
H(32)-C(19)-C(20) 115.655 
H(32)-C(19)-C(18) 121.821 
C(20)-C(19)-C(18) 122.524 
C(23)-C(18)-C(19) 115.778 
C(23)-C(18)-N(11) 123.705 
C(19)-C(18)-N(11) 120.518 
H(16)-O(15)-C(10) 109.102 
C(18)-N(11)-N(12) 124.225 
C(18)-N(11)-C(10) 130.258 
N(12)-N(11)-C(10) 105.517 

H(16)-N(7)-C(5) 122.416 
N(8)-N(7)-C(5) 129.271 
H(27)-C(6)-C(1) 117.977 
H(27)-C(6)-C(5) 121.381 
C(1)-C(6)-C(5) 120.642 
C(6)-C(5)-C(4) 117.875 
C(6)-C(5)-N(7) 121.762 
C(4)-C(5)-N(7) 120.364 
H(31)-O(17)-C(3) 109.105 
H(26)-C(4)-C(5) 120.219 
H(26)-C(4)-C(3) 117.174 
C(5)-C(4)-C(3) 122.607 
C(4)-C(3)-C(2) 117.938 
C(4)-C(3)-O(17) 120.738 
C(2)-C(3)-O(17) 121.323 
H(25)-C(2)-C(3) 119.484 
H(25)-C(2)-C(1) 119.698 
C(3)-C(2)-C(1) 120.818 
H(24)-C(1)-C(6) 120.04 
H(24)-C(1)-C(2) 119.839 
C(6)-C(1)-C(2) 120.12 
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C(18)-C(19) 1.352 
C(3)-O(17) 1.361 
N(7)-H(16) 1.038 
O(15)-H(16) 1.006 
N(11)-C(18) 1.281 
C(10)-O(15) 1.224 
C(13)-C(14) 1.495 
C(13)-C(9) 1.332 
N(12)-C(13) 1.27 
N(11)-N(12) 1.25 
C(10)-N(11) 1.272 
C(9)-C(10) 1.359 
N(8)-C(9) 1.273 
N(7)-N(8) 1.25 
C(5)-N(7) 1.275 

 

H(30)-C(14)-H(29) 108.472 
H(30)-C(14)-H(28) 108.291 
H(30)-C(14)-C(13) 110.017 
H(29)-C(14)-H(28) 108.095 
H(29)-C(14)-C(13) 110.219 
H(28)-C(14)-C(13) 111.659 
C(13)-N(12)-N(11) 113.367 
C(14)-C(13)-C(9) 128.89 
C(14)-C(13)-N(12) 123.485 
C(9)-C(13)-N(12) 107.624 
O(15)-C(10)-N(11) 136.757 
O(15)-C(10)-C(9) 111.996 
N(11)-C(10)-C(9) 111.247 
C(13)-C(9)-C(10) 102.244 
C(13)-C(9)-N(8) 136.557 
C(10)-C(9)-N(8) 121.199 
N(7)-H(16)-O(15) 156.233 
C(9)-N(8)-N(7) 113.159 
H(16)-N(7)-N(8) 108.312 
  

 

Negative charge 
N(7) -0.4271 
N(8) -0.492 
C(10) -0.0238 
N(11) -0.158 
N(12) -0.492 
O(17) -0.5325 

 
 

 

Table 4: The selected geometric parameters for HL3 

Bond lengths (Å) Bond angles (o) Bond angles (o) 
C(24)-H(39) 1.113 
C(24)-H(38) 1.113 
C(24)-H(37) 1.113 
C(22)-H(36) 1.099 
C(21)-H(35) 1.104 
C(20)-H(34) 1.102 
C(19)-H(33) 1.103 
C(18)-H(32) 1.103 
C(14)-H(31) 1.114 
C(14)-H(30) 1.113 
C(14)-H(29) 1.113 
C(6)-H(28) 1.103 
C(4)-H(27) 1.102 
C(2)-H(26) 1.104 
C(1)-H(25) 1.103 
C(1)-C(6) 1.34 
C(5)-C(6) 1.345 
C(4)-C(5) 1.349 
C(3)-C(4) 1.349 
C(2)-C(3) 1.347 
C(1)-C(2) 1.34 
C(17)-C(22) 1.35 
C(21)-C(22) 1.343 
C(20)-C(21) 1.339 
C(19)-C(20) 1.339 
C(18)-C(19) 1.343 
C(17)-C(18) 1.352 
C(3)-O(23) 1.375 
N(7)-H(16) 1.038 
O(15)-H(16) 1.006 
N(11)-C(17) 1.281 
C(10)-O(15) 1.224 
C(13)-C(14) 1.495 
C(13)-C(9) 1.332 
N(12)-C(13) 1.27 
N(11)-N(12) 1.25 
C(10)-N(11) 1.272 
C(9)-C(10) 1.359 
N(8)-C(9) 1.273 
N(7)-N(8) 1.25 
C(5)-N(7) 1.275 
O(23)-C(24) 1.409 

 

H(39)-C(24)-H(38) 111.979 
H(39)-C(24)-H(37) 108.087 
H(39)-C(24)-O(23) 110.392 
H(38)-C(24)-H(37) 108.107 
H(38)-C(24)-O(23) 110.382 
H(37)-C(24)-O(23) 107.745 
H(35)-C(21)-C(22) 120.173 
H(35)-C(21)-C(20) 119.494 
C(22)-C(21)-C(20) 120.333 
H(34)-C(20)-C(21) 120.624 
H(34)-C(20)-C(19) 120.613 
C(21)-C(20)-C(19) 118.763 
H(33)-C(19)-C(20) 119.602 
H(33)-C(19)-C(18) 120.209 
C(20)-C(19)-C(18) 120.189 
H(36)-C(22)-C(17) 122.388 
H(36)-C(22)-C(21) 115.199 
C(17)-C(22)-C(21) 122.413 
H(32)-C(18)-C(19) 115.659 
H(32)-C(18)-C(17) 121.817 
C(19)-C(18)-C(17) 122.525 
C(22)-C(17)-C(18) 115.777 
C(22)-C(17)-N(11) 123.708 
C(18)-C(17)-N(11) 120.515 
H(16)-O(15)-C(10) 109.103 
C(17)-N(11)-N(12) 124.236 
C(17)-N(11)-C(10) 130.256 
N(12)-N(11)-C(10) 105.508 
H(31)-C(14)-H(30) 108.424 
H(31)-C(14)-H(29) 108.498 
H(31)-C(14)-C(13) 109.945 
H(30)-C(14)-H(29) 107.943 
H(30)-C(14)-C(13) 110.652 
H(29)-C(14)-C(13) 111.293 
C(13)-N(12)-N(11) 113.371 
C(14)-C(13)-C(9) 129.123 
C(14)-C(13)-N(12) 123.241 
C(9)-C(13)-N(12) 107.626 
O(15)-C(10)-N(11) 136.742 
O(15)-C(10)-C(9) 111.997 
N(11)-C(10)-C(9) 111.261 
C(13)-C(9)-C(10) 102.232 

 

C(13)-C(9)-N(8) 136.599 
C(10)-C(9)-N(8) 121.168 
N(7)-H(16)-O(15) 156.276 
C(9)-N(8)-N(7) 113.215 
H(16)-N(7)-N(8) 108.241 
H(16)-N(7)-C(5) 122.491 
N(8)-N(7)-C(5) 129.269 
H(28)-C(6)-C(1) 118.102 
H(28)-C(6)-C(5) 121.668 
C(1)-C(6)-C(5) 120.23 
C(6)-C(5)-C(4) 118.124 
C(6)-C(5)-N(7) 121.338 
C(4)-C(5)-N(7) 120.538 
C(3)-O(23)-C(24) 119.007 
H(27)-C(4)-C(5) 117.744 
H(27)-C(4)-C(3) 118.876 
C(5)-C(4)-C(3) 123.381 
C(4)-C(3)-C(2) 116.16 
C(4)-C(3)-O(23) 125.47 
C(2)-C(3)-O(23) 118.37 
H(26)-C(2)-C(3) 119.037 
H(26)-C(2)-C(1) 118.804 
C(3)-C(2)-C(1) 122.159 
H(25)-C(1)-C(6) 120.068 
H(25)-C(1)-C(2) 119.985 
C(6)-C(1)-C(2) 119.946 

 
Negative charge 

N(7) -0.4271 
N(8) -0.492 
C(10) -0.0238 
N(11) -0.158 
N(12) -0.492 
O(23) -0.3625 

 
 

 

Structure of the UO2 (II) complexes 

The physical and analytical data of the azodye ligands (HLn) and 
their corresponding dioxouranium (VI) complexes are listed in Table 
1. Comparing the IR spectra of the complexes with the spectra of the 
free ligands elucidated the mode of binding of the ligands to the 

dioxouranium (VI) ions. The complexes have the general formula 
[UO2(Ln)(OH2)(OAc)] and [UO2(Ln)2].  

The principal ligands (HLn) undergoes mono deprotonation to form 
an anion (Ln) in uranyl complexes and acts as a monobasic bidentate 
ligand coordinating via the hydrazo N and CO of pyrazole ring 
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forming two binding chelating sites, thus occupying two positions of 
an octahedral geometry (Fig. 3).  

The acetate and aqua groups occupy the sixth position. All 
complexes exhibited non-conducting properties in DMF solution.  

The formation of the complexes may be represented by the following 
reactions:  

UO2(OAc)2 + HLn → [UO2Ln(OAc)(OH2)] (1:1, ~ 2h) (A) 

UO2(OAc)2 + 2HLn → [UO2(Ln)2] (1:2, ~ 3h) (B) 
  

Table 5: The calculated quantum chemical parameters for HLn 

Compound EHOMO 
(a. u.) 

ELUMO 
(a. u.) 

ΔE 
(a. u.) 

χ 
(a. u.) 

η 
(a. u.) 

σ 
(a. u.)-1 

Pi 
(a. u.) 

S  
(a. u.)-1 

ω 
(a. u.) 

∆Nmax 

HL1 -0.1445 -0.0789 0.0655 0.1117 0.0327 30.525 -0.1117 15.263 0.1904 3.4097 

HL2 -0.08787 0.014516 0.10239 0.0367 0.0512 19.534 -0.0367 9.767 0.0131 0.7164 

HL3 -0.0881 0.0145 0.10261 0.0368 0.0513 19.492 -0.0368 9.746 0.0132 0.7170 

 

H2OOH2

U

N

O OAcO

O

 

U

N

O N

O

O

O

 
(A) (B) 

Fig. 3: Structures of (A) and (B) products obtained from the reaction of 1:1 and 1:2 molar ratios, respectively. 
 

Infrared spectra 

By comparing the IR spectra of the organic ligands (HL1-HL3) and 

their dioxouranium (VI) complexes, the following features can be 

pointed out:  

(1) In the spectra of the ligands (HL1-HL3), no characteristic 

absorption bands assignable to NH2 function. This confirms the 

formation of azo compounds. 

(2) The strong band observed at 1130–1140 cm-1, which may be 

assigned to υ(N-N) vibration modes [12,27] is affected on 

complexation. It is blue shifted and appeared as a weak band. 

(3) In all complexes a broad band in the region 3480–3150 cm-1 is 

observed. Such region is attributed to different probabilities: (a) it is 

due to either free OH or NH; (b) bonded –OH group or –NH group; or 

(c) due to presence of water molecules. 

(4) No characteristic absorption band of the -N=N- function owing 

to the formation of the hydrazone. The sharp, medium intensity 

band of C=N (hydrazone) appears at 1595–1575 cm-1 for ligands. 

Additionally, the band due to υ(C=N) (attached to the hydrazo 

group), was shifted to frequencies lower by 10-30 cm-1, due to 

chelation with the UO2(II) ions [28]. 

(5) The spectra of the ligands exhibit a strong band at ~ 1650 cm-1, 

which is indicative to υCO. However, the broad band located at 3430 

cm-1 leads to characterize the υNH rather than hydrogen bonded –

OH with -N=N-. This is rather confirmed from the observation of 

Karabatoses [29] where the hydrazone formed is more than the azo 

structure for similar compounds.  

(6) The band due to υCO (of the pyrazolone ring) which appeared in 

the spectra of the ligands were shifted to a higher frequencies by 25-

10 cm-1 for all complexes. The change in the carbonyl band position 

[30, 31] in the IR spectra of the metal complexes indicate that the 

carbonyl group in the hydrazopyrazolone compounds is coordinated 

to the metals ions (Fig. 3). 

(7) The disappearance of the υ(NH) stretching frequency for ligands 

on chelate formation may be caused by coordination of the hydrazo-

nitrogen to the metal ion upon complexation (Fig. 4). 

(8) Introduction of a hydrazo group instead of N=N leads to a 

change in the coordination mode of the azo group from the azo-

nitrogen to the amine nitrogen (NH) (Fig. 4). 

(9) Coordination of the carbonyl oxygen and the amine nitrogen in 

the chelate ring is supported by the appearance of new bands which 

are assigned to U–N and U–O.  

(10) The ligand orbitals of hydrazo pyrazolones are group 

theoretically, energetically and occupationally suitable for 

participation in both donor (U→L) and acceptor (L→U) π-

interactions with the uranyl ion [32]. Convincing evidence [32] has 

been adduced that U→L π-bonding makes a significant contribution 

to the bonding in uranyl complexes. This idea is supported by our 

thermal stability measurements. 

(11) The absence of any peak attributed to the -N=N- moiety, 

implies that the ligands exist predominantly in solution as the form 

shown in Fig. 4 (1C). However, in solution and in the presence of 

UO2(II) ion these compounds exist in a tautomeric equilibrium 

(1B)↔(1C). The main change is observed in the azo stretching 

vibration, thus suggesting that the form shown in Fig. 4 (1C) 

prevails. This tautomeric form losses hydrazono proton when 

complexed with UO2 ion as mononegative chelating agents produces 

the N=N/NH mode of the free ligands. New bands assigned to υ(NH) 

in the free ligands is absent, suggesting the cleavage of 

intramolecular hydrogen bonding of υNH group and coordination of 

nitrogen to the metal ion. 

(12) The UO2(II) complexes exhibits distinct bands at ~ 1635 and 

1385 cm-1 assignable to υ(C=O) of the coordinated acetate [4,6,22], 

this is further supported by the appearance of δ(O-C-O) wagging 

modes of acetate around 680 and 620 cm-1 [33]. According to the 

structure shown in (Fig. 1) the HLn ligand takes its usual anionic (Ln) 

to chelate UO2(II) through N-of hydrazo group and oxygen atom of 

carbonyl group (Fig. 4) as the potential binding sites, whereas the 

acetate/aqua anion just fit the remaining free coordination position. 

(13) A sharp, intense band ~ 900 cm-1 in the spectra of all uranyl 

complexes is assigned to the asymmetric uranyl stretching 

frequency υ(U=O) [ 4,6,7,22]. 

(14) Bands corresponding to those at 605-615 and 420-460 cm-1 in 

the uranyl complexes were present in nearly all spectra and were 
the principal bands in the far IR region, exhibiting appreciable 

substituted sensitivity. Their assignment to υ(U-O) was therefore 
preferred. Such classes of compounds as illustrated in Scheme 1 

have different types of hydrogen bonding (Fig. 4) [3,7,12,34], as 
follows:  

1. Intramolecular H-Bonding of the type O-H…. N between the –OH 

group and –N=N- group (1B). 

2. Intramolecular H-Bonding of the type N–H…. O between the –NH 

group and C=O group (1C). 

3. Intermolecular H-Bonding of the O – H…. N (1D) or N – H…. O (1E). 

The case (2) is more favored than (1), due to the presence of a broad 
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band located at 875–975 cm-1, which could be taken as a good 
evidence for the intermolecular H-Bonding. 
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Fig. 4: General formula and proton numbering of the 4-(3-
derivatives phenylazo)-3-methyl-1-phenylpyrazol-5-one (HLn). 

 

1H NMR spectra 

The 1H NMR spectra of the ligand (HL3) and its complex (3) have 
been recorded in DMSO-d6 using TMS as the internal standard. A 
broad signal in complex (3) observed at 11.20 ppm is attributed to 
the NH proton and disappear in the presence of D2O. Further, the CH 
signal vanishes and a new –C=N and -NH signal appears upon 
complexation i. e. the coordination of nitrogen atom of the 
hydrazone group with the metal ion [35-37]. This signal disappears 
upon addition of D2O i. e. change from azo-keto form to hydrazone-
keto form. 

Electronic spectra 

The U. V. spectra of the uranyl complexes exhibit a band in the 
20300 – 18800 cm-1 region assigned to 1E+g → 3πu transition. This 
band is similar to the O-U-O symmetric stretching frequency for the 
first excited state [37]. The bands observed in the spectra of the 
ligands as well as the uranyl complexes in the 47200 – 47800, 43100 
– 43500 and 34400 – 36400 cm-1 regions are assigned to Ph – Ph*, π 
– π* (Phenyl) and n – π* transitions, respectively. Another band at 
~34900 cm-1 in the spectra of the ligands is assigned to complex 
formation with UO22+ [37]. 

Thermal analysis 

Thermal analyses of the UO2 (II) complexes (1-3) were used to get 
information about the thermal stability of the complexes as well as 
to verify the status of water molecules inside or outside the 
coordination sphere of the central metal ion. 

The determined temperature ranges, % losses in mass and thermal 
effects accompanying the changes in the solid complexes on heating 
are given in Table 6, which revealed the following findings:  

(i) The first decomposition within the temperature range 100-130 
oC may be attributed to the liberation of hydrated molecule. 

(ii) The second and third steps are found in the temperature range 
130-200 o corresponding to the coordinated water molecules and 
the coordinated OAc could be eliminated within the range 230-260 
oC [33]. 

(iii) The fourth step occur within the temperature range 280 – 570 
oC, which may be attributed to the loss of organic part. The 
remaining mass loss is regarded U3O8 as residue. 

Stereochemistry and the structure of the uranyl complexes (1-3) 

The isolation of HLn complexes with UO2(CH3COO)2.2H2O involving 
1:1/1:2 UO2(II):ligand ratio (Table 1) illustrates clearly that the 
ligands under study does not introduce sufficiently severe steric 
hindrance as to preclude the formation of [UO2(Ln)(OH2)(OAc)] / 
[UO2(Ln)2] complexes, but its steric feature and arrangement in 
space can also favorable influence the stabilization of complexes. 

 The IR spectra of all complexes show two bands attributed to the 
asymmetric and symmetric stretching frequencies. A group 
theoretical consideration [37] shows that a linear and symmetrical 
triatomic UO2(II) ion possessing D∞h symmetry gives rise to three 
fundamental modes of vibrations. 

In the equatorial bonding, the more effective overlap of O-U-O group 
orbital by nitrogen more than oxygen in the ligands leads to lower υ3 
values for UO2(II) complexes. The force constant of U-O bond in the 
present investigation has been calculated following McGlynn et 

al.[38], and the U-O bond distance for the corresponding complexes 
are evaluated using the Jones equation [39,40] where RU-O = 1.08 F-

1/3 + 1.17. The evaluated values are given in Table 7, and such a 
report is also found for other uranyl complexes, which is due to the 
presence of electron donating or electron withdrawing substituents 
in the equatorial position. El-Sonbati equation [19] has been used to 
determine the symmetric stretching frequency. The symmetric 
stretching frequencies are in turn used to evaluate the force constant 
and bond-bond interaction with neglect of the ligand. The variation 
of bond length in the complexes is due to presence of electron 
releasing or electron withdrawing substituents in the equatorial 
position. 

 

Table 6: Thermogravimetric analysis of some uranyl complexes of ligands (HLn) 

Code* Complexes Temp. range 
(ºC) 

Mass loss (%) Effect 
type 

Assignment 
Calc. Found 

1 [UO2(LI)(OAc)(OH2)]2H2O 110-120 5.11 4.98 Endo Loss of two H2O molecules 
  130-170 2.70 2.63 Exo Loss of one coordinated H2O molecule 
  235-260 9.08 8.88 Exo Loss of OAc group 
  330-340 25.21 24.87 Exo Loss of organic part (COOH-C6H4-N2) 
  350-550 64.71 64.53 Exo Loss of rest of ligand (phenyl pyrazolon) and formation of 

metal oxide 
2 [UO2(L2)(OAc)(OH2)]4H2O 100-110 10.11 9.78 Endo Loss of four H2O molecule 
  160-190 2.81 2.75 Endo Loss of one coordinated H2O molecule 
  260-310 9.49 9.32 Exo Loss of OAc group 
  330-430 21.49 21.33 Exo Loss of organic part (HO-C6H4-N2) 

  450-560 64.71 64.43 Exo Loss of rest of ligand (phenyl pyrazolon) and formation of 
metal oxide 

3 [UO2(L3)(OAc)(OH2)]H2O 105-130 2.68 2.47 Endo Loss of one H2O molecule 
  160-198 2.75 2.66 Endo Loss of one coordinated H2O molecule 
  210-260 9.28 9.17 Exo Loss of OAc group 
  280-470 49.57 49.12 Exo Decomposition of complex and formation of metal oxide 

* See Table 1 and Scheme 1., a The excellent agreement between calculated and experimental data supports the assignment in the present work 
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Table 7: Variation force constant (mdyn/Aº) U-O bond distances (Aº) and frequencies (cm-1) ν1 and ν3 of the isolated UO22+ complexes. 

r3 (fxU-O)o (ν1*)c ro (fsU-O)o rt (fsU-O)t r2 r1 fU-O υ3 υ1 Complexa 
1.759558 6.1474 823.95 1.752826 6.3629 1.747888 6.5274 1.723928 1.743288 6.6858 900 826 1 
1.760723 6.1111 823.98 1.754601 6.3051 1.749846 6.4615 1.727866 1.745421 6.6117 895 822 2 
1.761865 6.0758 824.3 1.75684 6.2332 1.75204 6.3887 1.731835 1.747573 6.5381 890 817 3 

a The serial number corresponds to that used in the Table 1 and Scheme 1.,1,2 Internuclear distance U-O calculated by using Badger equation and 
Jones equation. ,b U-O Force constant and UO-UO- interaction constant with neglect the interaction of the UO bonds with the ligands, , (FUO. UO- =bond-
bond interactions)., c Symmetric stretching frequencies evaluated by using El-Sonbati equation., (FsU-O)t Is the true value of force constant., (FsU-O)a Is 
the constant calculated with neglect of the ligands., mF*U-O Is the bond force constant which evaluated by using El-Sonbati equation., rt Internuclear 
distance U-O calculated by using the value of force constant., ro Internuclear distance U-O calculated by using the asymmetric stretching frequency 
with neglect of the ligands., r3 Internuclear distance U-O calculated by using the symmetric stretching frequency evaluated buy using El-Sonbati 
equation. 

 

Uranyl ion UO2(II) is quite peculiar both in its own structure and in 
its coordination compounds [39,40]. The reaction reveals its identity 
over wide range of vibrations in experimental conditions and can be 
considered from the geometric point of view, as a single particle. In 
the present investigation, the υ(U-O) in all the complexes has been 
shown at 890-900 and 815-830 cm-1 regions these bands are 
assigned to υ3 and υ1, respectively (Table 7). The υ3 values decrease 
as the donor characteristicly increases as is observed for π-electron 
substituents, where the basicity of the donating atom increases. 

The experimental results reveal an excellent linear relation between 
υ1 and υ3 with the slope corresponding to (1 + 2 MO/MU)1/2 (where 
MO and MU are the masses of oxygen and uranium atoms, 
respectively) (Fig. 5). 

The objective in using El-Sonbati equation from which the U-O bond 
force constant is deduced, should be eventually serve as a fairly 
accurate measure for the U-O bond distance in given compounds. 
The force constant for the U-O bond [FU-O 10-8 N/Ao], (FSU-O)t, and (FSU-

O)O` when neglecting the interaction of the U-O bonds with the 
ligands and the U-O bond distance [rU-O Ao] is determined (Table 7). 
A plot of υ1 + υ3 and/or υ3 versus force constant for the U-O (FU-O 10-8 

N/Ao or F*U-O 10-8/Ao) and the U-O bond distance (rU-O Ao or r3 U-O Ao) 
gives a straight line with an increase in the value of υ1 + υ3 and/or υ3 
decrease, which accompanied by increase in the force constant of the 
U-O bond (Figs. 6 and 7). Also, plotting r1, r2, r3 and rt (bond distance, 
rU-O) versus υ3 gives straight lines with increase in the value of υ3 

which accompanied by decrease in rU-O (Fig. 8). The calculation 
results also showed an inverse relationship between υ3 and rU-O. 
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Fig. 5: The relation between ν1 vs. ν3 (cm-1). 
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Fig. 6: The relation between ν3 vs. and a) FU-O (10-8 N/Ao) and b) 
r1 (Ao). 
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Fig. 7: The relation between r3 (Ao) and FxU-O (10-8 N/Ao) with ν3 
(cm-1). 
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Fig. 8: The relation between ν3 vs. a) r1, b) r2 and c) r3. 

 

CONCLUSION 

In this work, the azodye ligands were synthesized from the coupling 
of 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one with aniline derivatives 
and characterized by elemental analyses, IR and NMR spectroscopy. 
Dioxouranium (VI) complexes of the prepared ligands were 
characterized by elemental analyses, conductance, thermal analysis 
and spectral (UV, IR and NMR) results. The results of the 
investigation support the suggested structures of the uranyl 
complexes and the ligands behave as a monobasic bidentate 
coordinating via the hydrazo nitrogen atom and CO of the pyrazole 
ring. The thermal studies verify the status of water molecules inside 
or outside the coordination sphere of the central metal ion. The 
optimized bond lengths, bond angles and the calculated quantum 
chemical parameters for the ligands were investigated. The value of 
ΔE for HL1, HL2 and HL3 was found 0.0655, 0.1024 and 0.1026 a. u., 
respectively, so the ligand (HL1) more stable and highly reactive 
than the other ligands (HL2) and (HL3). The force constants, FUO (10-8 

N/Ao) and the bond lengths, RUO (Ao) have been calculated from 
asymmetric stretching frequency of O-U-O group.  
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