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ABSTRACT 

Objective: The goal of this preliminary work was to observe the impact of the prolonged reduced-pressure condition prior to labeling stage on the 

F-18 Fluorocholine labeling yield at the end of synthesis. 

Methods: At this present work, the condition inside the reactor vial prior to labeling stage was manipulated. In the first technique of syntheses of F-

18 Fluorocholine, the condition inside the reactor vial was set at 0 atmospheric pressure (0 atm) while in the second technique the condition inside 

the reactor was set at reduced-pressure (between-0.65 to-0.85 bars) with the delay time of 120 seconds. At the end of the synthesis, the impact of 

the prolonged reduced-pressure condition prior to precursor labeling was measured in terms of labeling yield of F-18 Fluorocholine.  

Results: With the second technique, the labeling yield of F-18 Fluorocholine was elevated from 9.7% (the first technique) to 24.3%. 

Conclusion: This preliminary work indicates that delay in a reduced-pressure condition prior to labeling step has greatly improved the labeling 

yield of F-18 Fluorocholine at the end of synthesis. Using this approach, the labeling yield of F-18 Fluorocholine was elevated from 7.5% to 24.3%. 
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N-methyl-(C-11) choline (C-11 choline) was the first choline derivative 

labeled with positron emitter isotopes [1]. Since then, C-11 choline 

proved to be an effective marker in various tumors located in brain, 

lungs, urinary bladder, and most significantly in prostate [1-5]. However, 

due to the short half-life of radioisotope carbon-11 compared to 

radioisotope fluorine-18, it becomes a limiting factor to those centres 

which are not cyclotron-bounded. For this reason, fluorinated labeled 

choline, N,N-dimethyl-N-(F-18)-fluoromethyl-2-hydroxyethyl ammonium 

or known as F-18 Fluorocholine, has been developed as a substitute for 

choline derivatives in Positron Emission Tomography (PET) imaging 

technique [6-8]. Due to its high positron emission abundance, low 

positron energy, the small ion radius and its ease of production, fluorine-

18 (F-18) become the most extensively used radioisotope for PET 

imaging technique. In addition, the half-life of fluorine-18 is relatively 

long enough to allow for multistep synthesis and transportation to 

remote hospitals without an on-site cyclotron [9-10].  

In 2001, DeGrado had successfully synthesised F-18 Fluorocholine 

using the reactive intermediate, F-18 fluorobromomethane (F-18 

CH2Br) [11-13]. DeGrado’s work was followed by Iwata in 2002 

but using F-18 fluoromethyl triflate, a different reactive 

intermediate [14]. In 2008, Kryza and co-workers had successfully 

synthesised F-18 Fluorocholine using a similar approach as 

DeGrado but eliminated the use of semi-preparative HPLC column 

for purification [15].  

In this attempt, F-18 Fluorocholine were synthesised in accordance 

with Kryza method on an automated synthesis platform, GE 

TracerLab MXFDG [15]. It is known the limiting factor that affects the 

F-18 Fluorocholine production around the globe, is due to its 

relatively low yield. Therefore, this preliminary works attempt to 

investigate whether a prolonged reduced-pressure condition prior 

to labeling step will affect the yield of F-18 Fluorocholine. 

  

 

Fig. 1: Synthesis of F-18 fluorocholine 

 

At the present works, two techniques were employed to observe 

the impact of the prolonged reduced-pressure condition on the 

yield of F-18 Fluorocholine. In the first technique, during the 

syntheses of F-18 Fluorocholine (n = 3), succeeding to F-18 ions 

elution to reactor vial, the condition inside the reactor was set at 0 

atmospheric pressure (0 atm). Meanwhile, in the second 
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technique, the condition inside the reactor was set at reduced 

pressure (between-0.65 to-0.85 bars) with 120 seconds of 

additional time. 

The synthesis time for F-18 Fluorocholine was 50±5 min. The 

labeling yield of F-18 Fluorocholine at the end of synthesis for both 

techniques was found to be significantly different (table 1). 

 

Table 1: Overview of F-18 fluorocholine RCY (%) 

Synthesis (Technique) 1 2 3 

1st technique 7.5 9.1 9.7 

2nd technique 19.8 19.8 24.3 

For Technique 1, the highest labeling yield was only 9.7% (decay not corrected) and was found to be lower than the average labeling yield for Group 

2, 21.3%. 

 

In most of the published works, the F-18 Fluorocholine had a 

relatively low yield, between 5 to 15%. It was acknowledged that the 

yield of F-18 Fluorocholine is not largely dependent upon the initial 

amount of fluorine-18 activity transferred from cyclotron [15]. 

Nevertheless, the yield relied upon the fluorination conditions of 

dibromomethane [15]. However, the amount of dibromomethane 

added into the reactor did not certainly increase the yield as similar 

yield was noticed when the amounts of dibromomethane used 

varied from 200 to 400 µl [15].  

At the present work, the highest yield for F-18 Fluorocholine when 

the reactor at 0 atm was only 9.7%. Though it was still within the 

range of 5 to 10% in most of the studies, the labeling yield has been 

greatly improved when the conditions inside the reactor prior to 

labeling stage was set at reduced-pressure with an additional time of 

120 seconds. The F-18 Fluorocholine yield was elevated at 24.3%. 

When the conditions inside the reactor vial prior to labeling stage 

was set at a reduced-pressure (-0.65 to-0.85 bars) with an additional 

time of 120 seconds, there was a possibility that prolonged 

azeotropic drying condition led to F-18 ions to be properly dried and 

allowed for removal of excessive water in form of residues that 

might possibly still present in acetonitrile solution even after 

successive azeotropic drying cycles. As a result, only the very 

reactive F-18 ions in evaporated acetonitrile were left inside the 

reactor prior to precursor labeling. 

  

 

Fig. 2: Percentage of labeling yield of F-18 fluorocholine 

 

In a work presented by Lasne on 2002 and later was supported by 

Cai on 2008, both agreed that in the presence of water although in 

the form of residue will make the F-18 ions are highly solvated and 

hydrogen bonded [16-17]. This, in turn, decreases the 

nucleophilicity of F-18 ions and making it unreactive [16-17]. Thus, 

it shows that prolonged reduced-pressure prior to labeling of 

dibromomethane with F-18 ions greatly affect the labeling yield of F-

18 Fluorocholine. Using this approach, the labeling yield of F-18 

Fluorocholine was elevated from 7.5% to 24.3%. However, 

additional work is needed to understand whether this technique is 

applicable to other F-18 radiolabeling syntheses.  

Limitations of the study 

As the F-18 Fluorocholine in this preliminary work was syntheses in 

limited number, hence the extent of the present work may be 

conducted on a large scale and also to include the quality control 

analysis, particularly the radiochemical purity analysis. 
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