**Original Article** 

# SYNTHESIS AND *IN-VITRO* STUDY OF NOVEL (*Z*)-1-BENZHYDRYL-4-CINNAMYLPIPERAZINE DERIVATIVES AS POTENTIAL ANTICANCER AGENTS

### S. SHIVAPRAKASH, K. R. KIRAN, LATHA DIWAKAR, G. CHANDRASEKARA REDDY\*

Vittal Mallya Scientific Research Foundation, # 94/3 & 94/5, 23<sup>rd</sup> Cross, 29<sup>th</sup> Main, BTM II Stage, Bangalore 560076, India. Email: gcreddy@vmsrf.org

#### Received: 07 Nov 2014 Revised and Accepted: 05 Dec 2014

# ABSTRACT

**Objective:** The objective of this study was to synthesize *Z*- 1-benzhydryl-4-cinnamylpiperazines by novel stereo selective synthetic method and evaluation of their anticancer properties.

**Methods:** A series of novel (*Z*)-1-benzhydryl-4-cinnamylpiperazine derivatives (**9a-j**) were synthesized, starting from benzophenones in six steps. Wittig condensation of appropriate benzyltriphenyl phosphonium halides with various 1-benzhydryl- 4-(2-ethanal) piperazines (**3a-j**), and column purification over silica gel afforded pure *Z*- 1-benzhydryl-4-cinnamylpiperazines.

**Results:** The structures of newly synthesized compounds **9a-j** were established by <sup>1</sup>H & <sup>13</sup>C NMR and mass spectral analysis. The anticancer potential (MTT assay) of synthesized compounds was tested against human cervical cancer (HeLa) and murine microglial (BV-2) cell lines. Results indicated that the most of the *Z*-derivatives exhibited moderate to good anticancer activity on both the cell lines over their *E*- antipodes.

**Conclusion:** Compound **9i** (*cis*- flunarizine) exhibited exceptionally superior activity against both HeLa and BV-2 cell lines with IC<sub>50</sub> value of 13.23 $\pm$ 3.51  $\mu$ M and 23.1 $\pm$ 4.12  $\mu$ M respectively. Hence, this compound may be considered to be a potential lead molecule for further development

Keywords: Benzophenones, Cinnamylpiperazine derivatives, Wittig reaction, Cinnarizine, Anticancer activity.

#### INTRODUCTION

In spite of considerable progress in recent years, cancer remains one of the most difficult diseases to treat and is responsible for about 13% of deaths all over the world. This incidence is increasing due to the ageing of the population in most countries, especially in the developed countries. Further metastasis that sets in may cause about 90% of cancer deaths. Currently, surgery and radiotherapy are the methods used in the treatment of cancer. Another effective way frequently preferred for the treatment of cancer is the systemic chemotherapy. In general, 5-fluorouracil (5-FU) in combination with other anti-cancer agents is used in the treatment of the aerodigestive tract, breast, head, and neck, especially in colorectal cancers therapies with oxaliplatin and irinotecan [1-3]. Cytotoxic and anti- hormonal drugs are the main chemotherapeutics used to reduce the proliferation of malignant cells. On the other hand, significant side-effects along with growth of tumor-cell population are often encountered during chemotherapy [4-7]. Strategies have been working out in many laboratories to look for newer chemical agents, one such example is piperazine and piperazine related compounds which displayed the wide variety of biological activities [8, 9] including apoptosis inducing effects on some cancer cells[10]. In addition, some piperazine compounds with substituent group at position 3 on the piperazine ring can strongly act as a selective  $\kappa$ opioid receptor agonists [11, 12].

Many piperazine sulfonamide derivatives exhibit MMP-3 enzyme inhibition and carbonic anhydrase inhibition activities [13, 14]. In many cases, piperazine derivatives reduce growth inhibition in human erythroleukemia K562 cells and myeloid leukemia HL-60 cells [15]. Also, inhibit topoisomarase II activity [16].Sampson J. J. et al. reported that, some piperazine derivatives induce apoptosis in U937 cells [17]. The N-Alkyl, N-sulfonyl and N-benzoyl substitution of benzhydrylpiperazine derivatives showed antimicrobial and anticancer properties[18-20]. In few occasions' compounds with cinnamoyl group often employed in the design of anticancer drugs [21, 22].Encouraged by these literature data and therapeutic value of the piperazine scaffolds prompted us to synthesize some novel piperazine compounds having 1, 4-disubstitutions. Herein, we synthesized various (Z)-1-benzhydryl-4-cinnamylpiperazine derivatives and studied their in-vitro anticancer activity.

### MATERIALS AND METHODS

#### Chemistry

All chemicals purchased were of LR grade from Sigma-Aldrich, Merck, and Loba-chemie; solvents used were of the commercial grade. Melting points were determined on Acro melting point (using a calibrated thermometer). apparatus Thin-laver chromatography (TLC) was run on silica gel pre-coated on aluminium sheet (silica gel 60 F<sub>254</sub>. Merck). Chromatographic separation of mixtures was performed in open glass columns packed with silica gel (Merck Grade 7734, 70-230 mesh) and eluted with ethyl acetate/hexane solvent mixture. Analytical HPLC was recorded with Shimadzu (CLASS-VP) equipped with LC-10AT VP highpressure pumps, a SPD-M10A VP photodiode array detector, a CTO-10AS VP oven and a SCL-10A VP controller (RP column: Atlantis-T3, 5.0 µm, 4.6x150 mm; Mobile phase: 1% ammonium acetate and 0.2% acetic acid in acetonitrile- gradient elution; UV detector: 230 nm). The Mass spectra were recorded on GCMS-QP2010S (direct probe) instrument and high-resolution mass spectral (HRMS) data were obtained on the Micromass Q-Tof micro instrument using electrospray ionization (ESI). <sup>1</sup>H and [13]C NMR spectra were recorded on a Bruker spectrometer 400 MHz and 100 MHz respectively using CDCl3 as solvent and TMS as an internal reference.

# General procedure for the synthesis of benzyl triphenyl phosphonium salts (4-8)

A mixture of appropriate benzyl halides (1.0 equiv) and triphenylphosphine (1.0 equiv) in toluene was heated under reflux for 10-12 h. the reaction mixture was cooled slowly to room temperature; the precipitated solid were filtered under suction. Finally, be washed with toluene and air dried to afford corresponding benzyltriphenyl phosphonium halides **4-8** as white to off- white solid.

# General procedure for the synthesis of (Z)-1-[Bis-(4-chlorophenyl)-methyl]-4-(cinnamyl) piperazine (9a)

Compound **1a** (3 g, 9.3 mmol) in DMF (6 mL) was added into a mixture of chloroacetaldehyde dimethylacetal (1.28 g, 10.3 mmol), anhydrous  $K_2CO_3$  (1.42 g, 10.3 mmol) and KI (0.08 g, 0.46 mmol) at

room temperature. The reaction mixture was then heated under stirring at 85-90 °C for 6-7 h. Progress of the reaction was monitored by TLC. After the completion of reaction, the mixture was quenched into ice water, and extracted with hexane at room temperature. Organic layer was separated, dried over anhydrous sodium sulphate and concentrated under vacuum. The pure viscous oily material 2a, thus obtained after column purification was taken in 48% aq. HBr (15 mL) and stirred at room temperature for 1-1.5 h. The reaction mixture was then quenched into ice water, basified with dilute NaOH solution and extracted with dichloromethane. The compound 3a present in dichloromethane (30 mL) was dried over anhydrous sodium sulfate, benzyltriphenyl phosphonium chloride (4) (4.0 g, 10.4 mmol) was added. The mixture was cooled to 5 °C; t-BuOK (2.6 g, 23.3 mmol) was added under N2 atmosphere with continuous stirring. After completion of reaction, the mixture was guenched into water. Organic layer was separated, dried over anhydrous sodium sulphate and concentrated under vacuum. The crude was then subjected to column purification over SiO<sub>2</sub> using EtOAc / hexane as an eluent to afford **9a** as a viscous liquid. Overall Yield: 2.10 g (51%). <sup>1</sup>H NMR: δ 7.16 - 7.54 (m, 13 H, Ar-H), 6.56 (d, J =11.8 Hz, 1 H), 5.75 (dt, J =11.8, 6.6 Hz, 1 H), 4.17 (s, 1 H), 3.27 (dd, J = 6.6, 1.8 Hz, 2 H), 2.47 (bs, 4 H), 2.39 (bs, 4 H). [13]C NMR: δ 140.79, 137.10, 131.84, 129.30, 129.14, 128.91, 128.79, 128.59, 128.16, 126.91, 74.67, 56.10, 53.38, 51.75. HRMS calculated for C<sub>26</sub>H<sub>27</sub>Cl<sub>2</sub>N<sub>2</sub> [M+H]<sup>+</sup> 437.1551; found 437.1551.

#### (Z)-1-[Bis-(4-methylphenyl)-methyl]-4-(cinnamyl) piperazine (9b)

The procedure was similar to the one as described for **9a**, but compound **1b** (3 g, 10.7 mmol) was taken as starting material and the benzyltriphenyl phosphonium chloride (**4**) was used during Wittig reaction. The compound **9b** obtained as a viscous liquid. Overall Yield: 2.20 g (52%). <sup>1</sup>H NMR:  $\delta$  7.02 - 7.42 (m, 13 H, Ar-H), 6.55 (d, *J* = 11.8 Hz, 1 H), 5.77 (dt, *J* = 11.8, 6.6 Hz, 1 H), 4.13 (s, 1 H), 3.27 (dd, *J* = 6.6, 1.8 Hz, 2 H), 2.45 (bs, 4 H), 2.42 (bs, 4 H), 2.25 (s, 6 H, Ar-CH<sub>3</sub>). [13]C NMR:  $\delta$  140.09, 136.36, 131.34, 130.22, 129.45, 129.15, 128.90, 128.14, 127.74, 126.86, 75.65, 56.17, 53.52, 51.89, 21.03. HRMS calculated for C<sub>28</sub>H<sub>33</sub>N<sub>2</sub> [M+H]<sup>+</sup> 397.2644; found 397.2641.

# (Z)-1-[(4-Bromophenyl) phenyl methyl]-4-(cinnamyl) piperazine (9c)

The procedure was similar to the one as described for **9a**, but compound **1c** (3 g, 9.1 mmol) was taken as starting material and the benzyltriphenyl phosphonium chloride (**4**) was used during Wittig reaction. The compound **9c** obtained as a viscous liquid. Overall Yield: 2.0 g (49%). <sup>1</sup>H NMR:  $\delta$  7.19 - 7.46 (m, 14 H, Ar-H), 6.56 (d, *J* = 11.8 Hz, 1 H), 5.76 (dt, *J* = 11.8, 6.5 Hz, 1 H), 4.18 (s, 1 H), 3.27 (dd, *J* = 6.5, 1.8 Hz, 2 H), 2.46 (bs, 4 H), 2.42 (bs, 4 H). [13]C NMR:  $\delta$  142.06, 141.90, 137.07, 131.57, 131.42, 129.56, 129.27, 128.86, 128.56, 128.11, 127.82, 127.13, 126.85, 120.62, 75.45, 56.08, 53.38, 51.75. HRMS calculated for C<sub>26</sub>H<sub>28</sub>BrN<sub>2</sub> [M+H]\* 447.1436; found 447.1433.

# (Z)-1-(Diphenylmethyl)-4-(4'-methoxycinnamyl) piperazine (9d)

The procedure was similar to the one as described for **9a**, but compound **1d** (3 g, 11.9 mmol) was taken as starting material and the benzyltriphenyl phosphonium halide (**5**) was used during Wittig reaction. The compound **9d** obtained as a viscous liquid. Overall Yield: 2.20 g (46%). <sup>1</sup>H NMR:  $\delta$  7.38 - 7.40 (m, 4 H, Ar-H), 7.22 - 7.25 (m, 4 H, Ar-H), 7.13 - 7.19 (m, 4 H, Ar-H), 6.85 - 6.88 (m, 2 H, Ar-H), 6.48 (d, *J* = 11.6 Hz, 1 H), 5.67 (dt, *J* = 11.6, 3.2 Hz, 1 H), 4.21 (s, 1 H), 3.80 (s, 3 H, Ar-OCH<sub>3</sub>), 3.26 (dd, *J* = 2.4, 0.8 Hz, 2 H), 2.49 (bs, 4 H), 2.43 (bs, 4 H). [13]C NMR:  $\delta$  158.45, 142.75, 130.69, 130.12, 129.79, 128.40, 127.90, 127.80, 126.83, 113.52, 76.16, 56.20, 55.21, 53.47, 51.86. HRMS calculated for C<sub>27</sub>H<sub>31</sub>N<sub>2</sub>O [M+H]<sup>+</sup> 399.2436; found 399.2437.

# (Z)-1-(Diphenylmethyl)-4-(3', 5'-dimethoxycinnamyl) piperazine (9e)

The procedure was similar to the one as described for **9a**, but compound **1e** (3 g, 11.9 mmol) was taken as starting material and the benzyltriphenyl phosphonium halide (**6**) was used during Wittig reaction. The compound **9e** obtained as a viscous liquid. Overall

Yield: 2.28 g (44%). <sup>1</sup>H NMR:  $\delta$  7.39 (d, *J* =8.0 Hz, 4 H, Ar-H), 7.23 (t, *J* =3.6 Hz, 4 H, Ar-H), 7.14 (t, *J* =6.8 Hz, 2 H, Ar-H), 6.49 (d, *J* =11.6 Hz, 1 H), 6.41 (s, 2 H, Ar-H), 6.36 (s, 1 H, Ar-H), 5.76 (dt, *J* =11.6, 6.8 Hz, 1 H), 4.21 (s, 1 H), 3.77 (s, 6 H, Ar-OCH<sub>3</sub>), 3.26 (d, *J* = 6.4Hz, 2 H), 2.49 (bs, 4 H), 2.43 (bs, 4 H). [13]C NMR:  $\delta$  160.46, 142.72, 138.97, 131.44, 129.73, 128.38, 127.87, 126.82, 107.02, 99.04, 76.13, 56.12, 55.25, 55.23, 53.42, 51.85. HRMS calculated for C<sub>28</sub>H<sub>33</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 429.2542; found 429.2539.

# (Z)-1-(Diphenylmethyl)-4-(3', 4'-dimethoxycinnamyl) piperazine (9f)

The procedure was similar to the one as described for **9a**, but compound **1f** (3 g, 11.9 mmol) was taken as starting material and the benzyltriphenyl phosphonium halide (**7**) was used during Wittig reaction. The compound **9f** obtained as a white solid, mp 104-06 °C. Overall Yield: 2.38 g (46%). <sup>1</sup>H NMR:  $\delta$  7.39 (d, *J* = 7.2 Hz, 4 H, Ar-H), 7.22 - 7.26 (m, 4 H, Ar-H), 7.13 - 7.17 (m, 2 H, Ar-H), 6.79 - 6.87 (m, 3 H), 5.69 (dt, *J* = 11.6, 6.8 Hz, 1 H), 4.21 (s, 1 H), 3.88 (s, 3 H, Ar-OCH<sub>3</sub>), 3.26 (dd, *J* = 6.8, 1.6 Hz, 2 H), 2.52 (bs, 4 H), 2.43 (bs, 4 H). [13]C NMR:  $\delta$  148.50, 148.03, 142.75, 131.27, 130.11, 128.40, 127.89, 127.85, 126.85, 121.54, 112.37, 110.83, 76.16, 56.18, 55.86, 55.83, 53.48, 51.89. HRMS calculated for C<sub>28</sub>H<sub>33</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 429.2542; found 429.2544.

#### (Z)-1-(Diphenylmethyl)-4-(3', 4'-methylenedioxycinnamyl) piperazine (9g)

The procedure was similar to the one as described for **9a**, but compound **1g** (3 g, 11.9 mmol) was taken as starting material and the benzyltriphenyl phosphonium halide (**8**) was used during Wittig reaction. The compound **9g** obtained as a viscous liquid. Overall Yield: 2.47 g (40%). <sup>1</sup>H NMR:  $\delta$  7.39 (d, *J* = 6.8 Hz, 4 H, Ar-H), 7.24 (t, *J* = 7.2 Hz, 4 H, Ar-H), 7.14 (t, *J* = 7.2 Hz, 2 H, Ar-H), 6.68 - 6.78 (m, 3 H, Ar-H), 6.44 (d, *J* = 12.0 Hz, 1 H), 5.94 (s, 2 H), 5.67 (dt, *J* = 12.0, 6.4 Hz, 1 H), 4.21 (s, 1 H), 3.24 (dd, *J* = 6.4, 1.6 Hz, 2 H), 2.49 (bs, 4 H), 2.43 (bs, 4 H). [13]C NMR:  $\delta$  147.40, 146.38, 142.75, 131.25, 130.87, 128.40, 128.33, 127.90, 126.84, 122.70, 109.13, 108.01, 100.94, 76.17, 56.16, 53.48, 51.87. HRMS calculated for C<sub>27</sub>H<sub>29</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>\*</sup> 413.2229; found 413.2230.

### (Z)-1-(Diphenylmethyl)-4-(cinnamyl) piperazine (9h)

The procedure was similar to the one as described for 9a, but compound 1h (3 g, 11.9 mmol) was taken as starting material and the benzyltriphenyl phosphonium halide (4) was used during Wittig reaction.

The compound **9h** obtained as a white solid, mp 90-92 °C. Overall Yield: 2.30 g (52%). <sup>1</sup>H NMR:  $\delta$  7.10 - 7.42 (m, 15 H, Ar-H), 6.55 (d, *J* =12.0 Hz, 1 H), 5.77 (dt, *J* =12.0, 6.6 Hz, 1 H), 4.22 (s, 1 H), 3.28 (dd, *J* = 6.6, 1.80 Hz, 2 H), 2.46 (bs, 8 H). [13]C NMR:  $\delta$  142.8, 137.1, 131.6, 129.5, 128.9, 128.4, 128.1, 127.9, 126.9, 126.8, 76.2, 56.2, 53.5, 51.9. HRMS calculated for C<sub>26</sub>H<sub>29</sub>N<sub>2</sub> [M+H]\* 369.2331; found 369.2335.

### (Z)-1-[Bis-(4-fluorophenyl)-methyl]-4-(cinnamyl) piperazine (9i)

The procedure was similar to the one as described for **9a**, but compound **1i** (3 g, 10.4 mmol) was taken as starting material and the benzyltriphenyl phosphonium halide (**4**) was used during Wittig reaction. The compound **9i** obtained as a pale yellow viscous liquid. Overall Yield: 2. 0 g (46%). <sup>1</sup>H NMR:  $\delta$  7.20 - 7.35(m, 9 H, Ar-H), 6.87-6.98 (m, 4 H, Ar-H), 6.50 (d, *J* =12 Hz, 1 H), 5.76 (dt, *J* =12.0, 6.6 Hz, 1 H), 4.20(s, 1 H), 3.27 (dd, *J* = 6.6, 1.8 Hz, 2 H), 2.47 (bs, 4 H), 2.40 (bs, 4 H). [13]C NMR:  $\delta$  163.1, 160.6, 138.3, 137.1, 132.6, 132.5, 131.5, 129.3, 129.2, 128.9, 128.2, 126.9, 115.5, 115.3, 74.5, 56.1, 53.4, 51.7. HRMS calculated for C<sub>26</sub>H<sub>27</sub>F<sub>2</sub>N<sub>2</sub> [M+H]+ 405.2142; found 405.2145.

# (Z)-1-[(4-Chlorophenyl) phenyl methyl]-4-(cinnamyl) piperazine (9j)

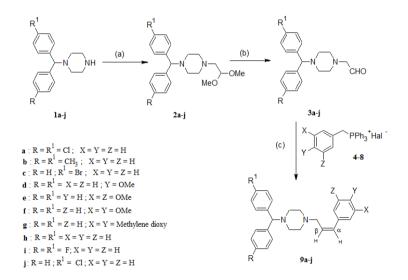
The procedure was similar to the one as described for **9a**, but compound **1j** (3 g, 10.4 mmol) was taken as starting material and the benzyltriphenyl phosphonium halide (**4**) was used during Wittig reaction. The compound **9j** obtained as a viscous liquid. Overall Yield: 1. 9 g (45%). <sup>1</sup>H NMR:  $\delta$  7.13 - 7.37 (m, 14 H, Ar-H), 6.56 (d, *J* = 12.0 Hz, 1 H), 5.76 (dt, *J* = 12.0, 6.6Hz, 1 H), 4.20 (s, 1 H), 3.27 (dd, *J* = 6.6, 1.8 Hz, 2 H), 2.48 (bs, 4 H), 2.43 (bs, 4 H). [13]C NMR:  $\delta$  142.1,

141.4, 137.1, 132.5, 131.4, 129.3, 129.2, 128.9, 128.6, 128.5, 128.1, 127.8, 127.1, 126.8, 75.4, 56.1, 53.4, 51.8. HRMS calculated for  $C_{26}H_{28}ClN_2$  [M+H]<sup>+</sup> 403.194; found 403.1940.

#### Anticancer assay

Cell lines were maintained in Dulbecco's Modified Eagle's Medium (Sigma- Aldrich Inc., USA) supplemented with 10% fetal bovine serum (Gibco BRL., USA) in a CO<sub>2</sub> incubator at 37 °C. The cytotoxicity of the compounds was measured by MTT assay. Two human cancer cell lines HeLa (cervical) and BV-2 (murine microglial) were placed in a 96-well plate at the density of 10,000 cells per well. After 24 h, cells were treated with various concentrations of compounds from 100  $\mu$ M serially diluted up to 3.13  $\mu$ M using cinnarizine, flunarizine and clocinizine as positive controls. The cells were further incubated for 48 h, 20  $\mu$ l of MTT (5 mg/ml stock, Sigma- Aldrich Inc., USA) was added to each well and incubated for another three hours. The purple formazan crystals formed was read at 570 nm in a spectrophotometer [Spectra Max 340]. The cell death was calculated as follows:

#### Cell death =100- [(test absorbance/ control absorbance) x100]


The test result is expressed as the concentration of a test compound which inhibits the cell growth 50% (IC<sub>50</sub>).

## **RESULTS AND DISCUSSION**

### Chemistry

The procedure outlined in Scheme 1 illustrates the synthesis of (*Z*)-1-diphenylmethyl-4-cinnamylpiperazine derivatives **9a-j** starting from the corresponding benzhydrylpiperazines **1a-j**. This in turn obtained from appropriate benzophenones in three steps as described in our earlier procedure [23]. The process comprises the reduction of benzophenone with NaBH<sub>4</sub>, conversion of alcohol obtained into benzhydryl chlorides using conc. HCl in toluene and finally treatment with anhydrous piperazine gave compounds **1a-j**, which are key intermediates for many known drugs. Further, reaction with equimolar amounts of chloroacetaldehyde dimethylacetal and anhydrous K<sub>2</sub>CO<sub>3</sub> in DMF gave compounds **(2a-j)** which on treatment with aq. HBr (48%) at room temperature afforded the corresponding aldehydes **(3a-j)**.

Finally, Wittig reaction of these aldehydes with appropriate benzyltriphenyl phosphonium halides **4-8** (Table 1) in presence of t-BuOK in dichloromethane followed by column purification over silica gel using EtOAc/hexane (1:9) mixture as eluent, afforded mainly (*Z*)-1-benzhydryl-4-cinnamylpiperazines **(9a-j)**. All the newly synthesized compounds were characterized by <sup>1</sup>H & <sup>13</sup>C NMR and mass spectral analysis.



Scheme 1: Synthesis of (Z)-1-benzhydryl-4-cinnamylpiperazine derivatives (9a-j). Reagents and conditions: (a) Chloroacetaldehyde dimethylacetal, K<sub>2</sub>CO<sub>3</sub>, DMF, 85-90 °C, 6-7 h; (b) HBr 48% in water, rt, 1-1.5 h; (c) Wittig salts (4-8); *t*-BuOK, CH<sub>2</sub>Cl<sub>2</sub>, 5 °C, ~3-4 h or till completion of reaction by TLC

| Compound | Hal | Х                   | Y   | Z   | Yield <sup>#</sup> (%) |  |
|----------|-----|---------------------|-----|-----|------------------------|--|
| 4        | Cl  | Н                   | Н   | Н   | 95                     |  |
| 5        | Br  | Н                   | OMe | Н   | 88                     |  |
| 6        | Br  | OMe                 | Н   | OMe | 92                     |  |
| 7        | Cl  | OMe                 | OMe | Н   | 78                     |  |
| 8        | Cl  | 3, 4-Methylene diox | У   | Н   | 72                     |  |

#isolated yield.

#### **Biological studies: Anticancer activity**

Further, compounds **(9a-j)** were subjected for their *in vitro* anticancer activity against human cervical cancer (HeLa) and murine microglial (BV-2) cell lines using MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay as per standard protocol [24]. The IC<sub>50</sub> value of each compound was calculated by the excel curve software and the results are summarized in table 2. Cinnarizine, Flunarizine and Clocinizine drugs which are (*E*) – geometrical isomers were taken as internal reference standards and camptothecin (CPT) as positive control. Results from the table

indicated that all the *Z*-derivatives displayed moderate to good anticancer activity on both the cell lines. Against HeLa cell line, the compounds **9f** and **9g** with vicinal dioxy system (*meta-, para*position) on cinnamyl ring displayed poor anticancer activity.

However, these compounds showed good anticancer effect on BV-2 cell line. Similarly, compounds **9d** and **9e** exhibited moderate to good inhibitory effect on both the cell lines. In the case of compounds **9h**, **9i** and **9j**, which are antipodes of cinnarizine, flunarizine and clocinizine drugs showed good inhibition against both cell lines. Further, compounds **9a**, **9b** and **9c** with no substitution on cinnamyl ring Table 2: IC<sub>50</sub> values of compounds 9a-j on HeLa and BV-2 cell lines

exhibited moderate to good anticancer activity on both the cell lines. It is noteworthy to mention that of all compounds, the difluoro derivative

(9i) found to exhibit significant activity against both the cell lines with  $IC_{50}$  values were very close to the standard drug camptothecin.

| Compound                          | $IC_{50} (\mu M)^{+} \pm SD^{*}$ |                |  |  |
|-----------------------------------|----------------------------------|----------------|--|--|
| -                                 | HeLa cell line                   | BV-2 cell line |  |  |
| 9a                                | 42.68 ±4.91                      | 53.14 ±2.92    |  |  |
| 9b                                | 32.25 ±4.54                      | 40.84 ±3.82    |  |  |
| 9c                                | 40.15 ±3.73                      | 26.3 ±7.56     |  |  |
| 9d                                | 42.72 ±3.61                      | 33.81 ±1.65    |  |  |
| 9e                                | 41.17 ±2.69                      | 36.0 ±3.79     |  |  |
| 9f                                | >200                             | 29.35 ±6.7     |  |  |
| 9g                                | >200                             | 34.03 ±1.89    |  |  |
| 9h (cis-Cinnarizine)[23]          | 34.54 ±5.57                      | 41.62 ±0.58    |  |  |
| 9i (cis-Flunarizine)[23]          | 13.23 ±3.51                      | 23.1 ±4.12     |  |  |
| 9j ( <i>cis</i> -Clocinizine)[23] | 14.97 ±5.40                      | 37.28 ±0.3     |  |  |
| Cinnarizine#                      | >200                             | 64.99 ±3.09    |  |  |
| Flunarizine#                      | >200                             | 45.7 ±0.27     |  |  |
| Clocinizine#                      | >200                             | 56.0 ±3.14     |  |  |
| CPT                               | 9.57±1.17                        | 14.9±1.21      |  |  |

\* The values obtained in at least three separate assays done in triplicate ±SD – Standard deviation, ^ The *IC*<sub>50</sub> value defined as the concentration at

which 50% survival of cells was observed, # Internal reference drugs.

### CONCLUSION

In summary, we have synthesized series of novel (*Z*)-1-benzhydryl-4-cinnamylpiperazine derivatives (**9a-j**) and evaluated for their *in vitro* anticancer potential against HeLa and BV-2 cell lines. The preliminary study indicated that newly synthesized *Z*- derivatives exhibited moderate to good anticancer activity at micro molar level against selected cancer cell lines. Compounds **9h**, **9i** and **9j**, which are antipodes of cinnarizine, flunarizine and clocinizine exhibited good inhibition against both cell lines. Significant finding is that compound **9i** (*cis*-flunarizine) exhibited potent anticancer effect against both HeLa (IC<sub>50</sub> = 13.23±3.51 µM) and BV-2 (IC<sub>50</sub> = 23.1 ±4.12 µM) cell lines and stands in close proximity with camptothecin. Hence, compound **9i** would stand out as a lead molecule for further study.

#### ACKNOWEDMENT

We express our sincere thanks to Dr. Anil Kush, CEO Vittal Mallya Scientific Research Foundation Bangalore for his keen interest and encouragement.

# CONFLICT OF INTERESTS

Declared None

# REFERENCES

- 1. Machover D. A comprehensive review of 5-fluorouracil and leucovorin in patients with metastatic colorectal carcinoma. Cancer 1997;80:1179-87.
- 2. Adjei AA. A review of the pharmacology and clinical activity of new chemotherapy agents for the treatment of colorectal cancer. Br J Clin Pharmacol 1999;48:265-77.
- 3. Papamichael D. The use of thymidylate synthase inhibitors in the treatment of advanced colorectal cancer: current status. Stem Cells 2000;18:166-75.
- Filosa R, Pedut A, Caprariis P, Saturnino C, Festa M, Petrella A, et al. Synthesis and antiproliferative properties of N3/8disubstituted 3,8-diazabicyclo[3.2.1]octane analogues of 3,8bis[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl-piperazine. Eur J Med Chem 2007;42:293-306.
- Caballero J, Fernandez M. Artificial neural networks from MATLAB in medicinal chemistry. Bayesian-regularized genetic neural networks (BRGNN): application to the prediction of the antagonistic activity against human platelet thrombin receptor (PAR-1). Curr Top Med Chem 2008;8:1580-605.
- 6. Parmar VS, Sharma NK, Husain M, Watterson AC, Kumar J, Samuelson LA, et al. Synthesis, characterization and *in vitro*

anti-invasive activity screening of polyphenolic and heterocyclic compounds. Bioorg Med Chem 2003;11:913-29.

- Savikin K, Zdunic G, Jankovic T, Stanojkovic T, Juranic Z, Menkovic N. *In vitro* cytotoxic and antioxidative activity of Cornus mas and Cotinus coggygria. Nat Prod Res 2009;23:1731-9.
- Berkheij M, van der SL, Sewing CJ, den Boer D, Terpstra JW, Hiemstra H, *et al.* Synthesis of 2-substituted piperazines via direct α-lithiation. Tetrahedron Lett 2005;46:2369–71.
- Guo CC, Tong RB, Li KL. Chloroalkyl piperazine and nitrogen mustard porphyrins: synthesis and anticancer activity. Bioorg Med Chem 2004;12:2469–75.
- Yi EY, Jeong EJ, Song HS, Lee MS, Kang DW, Joo JH, *et al*. Antiangiogenic and anti-tumor apoptotic activities of SJ-8002, a new piperazine derivative. Int J Oncol 2004;25:365–72.
- Naylor A, Judd DB, Lloyd JE, Scopes DI, Hayes AG, Birch PJ. A potent new class of. kappa.-receptor agonist: 4-substituted 1-(arylacetyl)-2-[(dialkylamino) methyl] piperazines. J Med Chem 1993;36:2075-83.
- Soukara S, Maier CA, Predoiu U, Ehret A, Jackisch R, Wünsch B. Methylated Analogues of Methyl (*R*)-4-(3, 4-Dichlorophenylacetyl)-3-(pyrrolidin-1-ylmethyl) piperazine-1-carboxylate (GR-89,696) as Highly Potent κ-Receptor Agonists: Stereoselective Synthesis, Opioid-Receptor Affinity, Receptor Selectivity, and Functional Studies. J Med Chem 2001;44:2814-26.
- Chern JH, Shia KS, Hsu TA, Tai CL, Lee CC, Lee YC, *et al.* Design, synthesis, and structure-activity relationship of pyrazolo [3,4d] pyrimidines: a novel class of potent enterovirus inhibitors. Bioorg Med Chem Lett 2004;14:2519–25.
- Amin EA, Welsh WJ. Three-dimensional quantitative structure-Activity relationship (3D-QSAR) models for a novel class of piperazine-based stromelysin-1 (MMP-3) inhibitors: applying a "divide and conquer" strategy. J Med Chem 2003;44:3849–55.
- Gillet R, Jeannesson P, Sefraoui H, Arnould-GueArin M, Kirkiacharian LS, Jardillier JC, Pieri F. Piperazine derivatives of butyric acid as differentiating agents in human leukemic cells. Cancer Chemother Pharmacol 1998;41:252–5.
- Braybrooke JP, O'Byrne KJ, Propper DJ, Blann A, Saunders M, Dobbs N, *et al.* A phase II study of razoxane, an antiangiogenic topoisomerase II inhibitor, in renal cell cancer with assessment of potential surrogate markers of angiogenesis. Clin Cancer Res 2000;6:4697–704.
- Sampson JJ, Donkor IO, Huang TL, Adunyah SE. Novel piperazine induces apoptosis in U937 cells. Int J Biochem Mol Biol 2011;2:78–88.
- 18. Narendra Sharath Chandra JN, Sadashiva CT, Kavitha CV, Rangappa KS. Synthesis and *in vitro* antimicrobial studies of

medicinally important novel *N*-alkyl and *N*-sulfonyl derivatives of 1-[bis(4-fluorophenyl)-methyl]piperazine. Bioorg Med Chem 2006;14:6621–27.

- Ananda Kumar CS, Nanjuda Swamy S, Thimmegowda NR, Benaka Prasad SB, Yip GW, Rangappa KS. Synthesis and evaluation of 1-benzhydryl-sulfonyl-piperazine derivatives as inhibitors of MDA-MB-231 human breast cancer cell proliferation. Med Chem Res 2007;16:179–87.
- 20. Ananda Kumar CS, Benaka Prasad SB, Viyana K, Chandrappa S, Thimmegowda R, Sunil Kumar YC, *et al.* Synthesis and *in vitro* antiproliferative activity of novel 1-benzhydrylpiperazine derivatives against human cancer cell lines. Eur J Med Chem 2009;44:1223–9.
- 21. Ahn BZ, Sok DE. Michael acceptors as a tool for anticancer drug design. Curr Pharm Design 1996;2:247-62.
- Zou HB, Dong SY, Zhou CX, Hu LH, Wu YH, Li HB, *et al.* Design, synthesis, and SAR analysis of cytotoxic sinapyl alcohol derivatives. Bioorg Med Chem 2006;14:2060-71.
- 23. Shivaprakash S, Reddy GC. Stereoselective synthesis of 1benzhydryl-4-cinnamylpiperazine derivatives *via* the Wittig reaction. Synth Comm 2014;44:600-9.
- 24. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63.