ABSTRACT

Objective: The literature survey revealed that various methods are reported for determination of Irbesartan and Hydrochlorothiazide alone or in combination with other drugs. So, the main objective of our study was to develop simple, accurate and reproducible methods for the simultaneous estimation of Irbesartan and Hydrochlorothiazide in a combined dosage form.

Methods: The method for the simultaneous determination of Irbesartan and Hydrochlorothiazide by spectroscopy has been developed. The simple, accurate and precise method includes Area Under the Curve (AUC) method. On response to the effect of solvent on spectral behaviors of Irbesartan and Hydrochlorothiazide, methanol was selected as solvent. Irbesartan shows maximum absorbance at 224 nm and Hydrochlorothiazide shows maximum absorbance at 271 nm. For the AUC method, the wavelength ranges between 225 -230 nm and 258-265 nm respectively were selected with reference to the absorbance curves plotted between the wavelengths of 200-400 nm. This method allows rapid analysis of two drug combinations.

Results: The result of analysis was validated statistically by recovery study following ICH method validation guideline. Tablet containing both drugs was assayed using the method developed, showing a good accuracy and precision.

Conclusion: It can therefore be concluded that use of this method can save more time and money and it can be used in small laboratories with accuracy.

Keywords: Spectroscopy, Irbesartan, Hydrochlorothiazide, Area Under Curve Method.

INTRODUCTION

Irbesartan (fig. 1) and Hydrochlorothiazide (fig. 2) are the combination angiotensin II receptor blocker and diuretic. The angiotensin II receptor blocker works by relaxing the blood vessels. The effect of diuretics on lowering the blood pressure is still unknown, but it helps the kidneys to eliminate fluid and sodium from the body. Irbesartan (Irb) is a non-peptide compound, chemically described as a 2-butyl-3-[p-(o-1H-tetrazol-5-ylphenyl) benzyl]-1,3-diazaspiro[4.4] non-1-one. Its empirical formula is C_{25}H_{28}N_{6}O, and its structural formula (15) is in fig. A hydrochlorothiazide (HCTZ; fig. 2) diuretic often considered as the prototypical member of this class. It reduces the re-absorption of electrolytes from the renal tubules. Thus results in increased excretion of water and electrolytes, including sodium, potassium, chloride, and magnesium. It has been used in the treatment of several disorders including edema, hypertension, diabetes insipidus, and hypoparathyroidism. (14)
dissolved in methanol (98% v/v) and further diluted with the methanol to get the standard solutions Irb and HCTZ of 100.0 µg/ml each.

Method: Area under curve method

In the simultaneous equation using AUC method, the area under curves of the spectrums were measured at the selected wavelength ranges, 225-230 nm and 258-265 nm and calibration curves were plotted by taking concentration on x-axis and AUC at 225-230 nm and 258-265 nm on Y-axis. The 'X' values were determined as, X= Area under curve of component (from 225-230 nm and 258-265). A set of two simultaneous equations of Irbesartan and Hydrochlorothiazide using these 'X' values as follows,

\[A_1 = 0.0010C_{Irb} + 0.0011C_{HCTZ} \]

\[A_2 = 0.0004C_{Irb} + 0.0011C_{HCTZ} \]

Where, \(C_{Irb} \) and \(C_{HCTZ} \) are the concentrations of Irb and HCTZ set of two simultaneous equations of Irbesartan and HCTZ were transferred to a 100 ml conical flask. These were dissolved in methanol (98% v/v) and further diluted with the methanol to get the standard solutions Irb and HCTZ of 150.0 µg/ml for Irb and 1.25 µg/ml for HCTZ. After appropriate dilutions, made up to the mark with methanol to obtain a concentration of 15 µg/ml for Irb and 1.25 µg/ml for HCTZ. The absorbances were measured and the concentration of each analyte was determined with the equations generated from the calibration curve for respective drugs. The developed method was validated by following ICH Q2B (R1) guidelines. The following parameter were studied for validation.

Validation of methods

Linearity

For all the methods, 6-point (2-20 µg/ml Irb and 0.5-10 µg/ml HCTZ) to calculate the equation of the line by using the least-squares regression method.

Accuracy

Recovery study was performed by standard addition method at three levels i.e., 80%, 100% and 120%. Known amounts of pure Irbesartan and HCTZ were added to pre-analyzed sample of marketed formulation and they were subjected to analysis by the proposed method. A result of recovery study is shown in table 1.

Precision

Precision study was performed to find out intra-day and inter-day variations. The results of precision studies are reported in table 2 and values of standard deviation less than 2% indicates high degree of precision.

Limit of Detection (LOD) and Limit of Quantitation (LOQ)

The LOD and LOQ were separately determined based on the calibration curves. The standard deviation of the y-intercepts (e) and slope of the regression lines (S) were used. These values were calculated using following formula

\[LOD = 3.3 \times \sigma \]

\[LOQ = 10 \times \sigma \]

Ruggedness

Ruggedness of the proposed methods was determined by analyzing aliquots from homogenous slot in different laboratories by different analyst using similar operational and environmental conditions.

RESULTS AND DISCUSSION

The proposed method for simultaneous estimation using AUC of Irb and HCTZ in combined dosage form was found to be accurate, simple and rapid. Hence, it can be used for routine analysis of two drugs in the combined dosage forms. There was no interference from tablet excipients was observed in these methods. The values of % RSD for simultaneous determination (Tablet) were found to be

Table 1: Results of recovery study

<table>
<thead>
<tr>
<th>Drug</th>
<th>% added</th>
<th>Conc in µg/ml</th>
<th>Std added in µg/ml</th>
<th>Total</th>
<th>Amt recovered</th>
<th>SD</th>
<th>%RSD</th>
<th>%recovery</th>
<th>SD</th>
<th>%RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irb</td>
<td>80</td>
<td>6</td>
<td>4.8</td>
<td>10.8</td>
<td>10.7066</td>
<td>0.085</td>
<td>0.787</td>
<td>99.1352</td>
<td>0.325</td>
<td>0.328</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>12.0100</td>
<td>0.0665</td>
<td>0.5536</td>
<td>100.083</td>
<td>0.5548</td>
<td>0.5536</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>6</td>
<td>7.2</td>
<td>13.2</td>
<td>12.9866</td>
<td>0.1209</td>
<td>0.9365</td>
<td>98.3833</td>
<td>1.7637</td>
<td>1.7746</td>
</tr>
<tr>
<td>HCTZ</td>
<td>80</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>12.0100</td>
<td>0.0665</td>
<td>0.5536</td>
<td>100.083</td>
<td>0.5548</td>
<td>0.5536</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>12.0100</td>
<td>0.0665</td>
<td>0.5536</td>
<td>100.083</td>
<td>0.5548</td>
<td>0.5536</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>6</td>
<td>7.2</td>
<td>13.2</td>
<td>12.9866</td>
<td>0.1209</td>
<td>0.9365</td>
<td>98.3833</td>
<td>1.7637</td>
<td>1.7746</td>
</tr>
</tbody>
</table>

Table 2: Precision study

<table>
<thead>
<tr>
<th>Conc(µg/ml)</th>
<th>mean conc±SD</th>
<th>%RSD</th>
<th>mean conc±SD</th>
<th>%RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irb</td>
<td>mean conc±SD</td>
<td>%RSD</td>
<td>mean conc±SD</td>
<td>%RSD</td>
</tr>
<tr>
<td>4</td>
<td>3.99±0.0503</td>
<td>1.2593</td>
<td>3.95±0.0608</td>
<td>1.5399</td>
</tr>
<tr>
<td>10</td>
<td>10.093±1.096</td>
<td>1.0868</td>
<td>9.96±0.0611</td>
<td>0.6139</td>
</tr>
<tr>
<td>18</td>
<td>18.06±1.708</td>
<td>0.9461</td>
<td>17.96±0.13</td>
<td>0.7238</td>
</tr>
<tr>
<td>HCTZ</td>
<td>mean conc±SD</td>
<td>%RSD</td>
<td>mean conc±SD</td>
<td>%RSD</td>
</tr>
<tr>
<td>1</td>
<td>0.990±0.0094</td>
<td>0.9507</td>
<td>0.986±0.0030</td>
<td>0.3045</td>
</tr>
<tr>
<td>4</td>
<td>3.966±0.0351</td>
<td>0.8809</td>
<td>3.966±0.0550</td>
<td>1.3884</td>
</tr>
<tr>
<td>10</td>
<td>10.01±0.200</td>
<td>0.1998</td>
<td>9.97±0.0624</td>
<td>0.6251</td>
</tr>
</tbody>
</table>
(0.274-1.25), (0.2214-1.11 %) for Irb and HCTZ and correlation coefficient was 0.999. The result of recovery studies for tablet was found to be in the range of 98.38-100.83, 99.740-100.04 % for Irb and HCTZ respectively. Values are reported in table 1. It indicates that there is no interference due to excipients present in the formulation. It can be easily and conveniently adopted for routine quality control analysis. This method is accurate, simple, rapid, precise, reliable, sensitive, reproducible, economic and validated as per ICH guidelines.

CONCLUSION

The results of above mentioned study indicate that the proposed UV spectroscopic method is simple, rapid, precise and accurate. The developed UV spectroscopic method was found suitable for determination of Irb and HCTZ as bulk drug and in marketed solid dosage formulation without any interference from the excipients. Statistical analysis proves that this method was repeatable and selective for the analysis of Irb and HCTZ. It can therefore be concluded that use of this method can save more time and money and it can be used in small laboratories with accuracy.

ACKNOWLEDGEMENT

The authors are thankful to Sanofi Aventis(Goa) Pvt. Ltd. For providing gift samples of Irbesartan and CTX Life sciences Pvt Ltd for Hydrochlorthiazide. The authors are thankful to Adina college of pharmaceutical science, Sagar (m.p.) for providing necessary facility for the work.

CONFLICT OF INTERESTS

Declared None

REFERENCES