SYNTHESIS AND DOCKING STUDIES OF 2-(NITROOXY)-ETHYL-2-(SUBSTITUTED-2,5-DIPHENYL-OXAZOLE)-ACETATE AS ANTI-INFLAMMATORY AGENTS WITH ANALGESIC AND NITRIC OXIDE RELEASING PROPERTIES

ANIKET P. SARKATE, DEVANAND B. SHINDE*

Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
Email: dhsanikets09@gmail.com

Received: 08 Jul 2015 Revised and Accepted: 08 Aug 2015

ABSTRACT

Objective: The objective of the reported study was to develop new chemical entities as potential anti-inflammatory agents with analgesic and nitric oxide releasing properties.

Methods: The compounds were designed with the help of docking studies. In the synthetic study the target compounds were obtained by reacting 2-(substituted-2,5-diphenyl-oxazole)-acetic acid (2a-2v) with nitro-oxy ethyl bromide in the presence of dimethyl formamide and potassium carbonate to give 2-(nitrooxy) ethyl 2-(substituted-2,5-diphenyl-oxazole) acetate derivatives (3a-3v). The synthesized derivatives were characterized with the help of different analytical techniques and further evaluated for anti-inflammatory, analgesic and nitric oxide releasing activity.

Results: With the help of docking study it was proven that compounds 3a, 3c, 3g, 3l and 3r showed significant G-score. In the anti-inflammatory and analgesic study also, compounds 3a, 3c, 3g, 3l and 3r exhibited promising activity. All the synthesized compounds exhibited significant nitric oxide releasing properties both in-vitro and in-vivo.

Conclusion: Compounds 3a, 3c, 3g, 3l and 3r exhibited prominent anti-inflammatory and analgesic activity.

Keywords: Oxazole, Docking, Anti-inflammatory, Analgesic, Nitric oxide.

INTRODUCTION

Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) are mainly used for reduction in the inflammation and fever. Selective Cyclooxygenase-2 (COX-2) inhibitors show less or no GI damage and bleeding compared with conventional NSAIDs [1]. As per reports, the selective COX-2 inhibitors cause significant adverse effects on the renal and cardiovascular systems. To minimize the side effects of NSAIDs, recent strategies adopted the use of the dual LOX/COX inhibitors, COX inhibitors with a nitric oxide-releasing functional group and other approaches [2-4].

Oxazole derivatives have raised considerable attention to medicinal research. Among the numerous heterocyclic moieties of biological and pharmacological interest, the oxazole ring is endowed with various activities, such as analgesic, anti-inflammatory [5], hypoglycemic [6] and antibacterial [7] activities. Oxazoles are also one of the key building elements of the natural products.

In the present work, synthetic approaches based on chemical modification of NSAIDs have been taken with the aim of improving safety profile and in turn therapeutic window of the resultant NSAIDs. Our previous studies had described the synthesis of hybrid molecules with nitric oxide-releasing group that resulted in an increased anti-inflammatory activity with reduced GI-ulcerogenicity [1]. In our attempt to continue to discover new, safer, and potent agents for the treatment of inflammatory diseases, we have synthesized compounds containing pharmacophore of 2, 5 diaryl oxazole ring with nitric oxide-releasing group to accentuate potency and reduce toxicities associated with the traditional NSAIDs. The compounds designed so were found to possess much significant anti-inflammatory activity with analgesic and nitric oxide releasing properties.

MATERIALS AND METHODS

Synthetic studies

All the compounds were synthesized using the reported literature procedures. Synthetic procedures were set and optimized as and were required. All the chemicals and solvents were purchased from avra chemicals and sigma-aldrich. Melting points were uncorrected and recorded on omnitel digital melting point apparatus. IR spectra were recorded on bruker alpha E FTIR spectrophotometer. H NMR and recorded on varian 400MHz spectrometer by using TMS as internal standard and DMSO as a solvent. Mass spectra were recorded on scinpor Q-TOF.

General procedure for the synthesis of substituted benzoyl propionic acid (1a-1v)

In a 250 ml RBF, 0.68 mol of succinic anhydride and 4.5 mol of benzene were placed. In the reaction mixture 1. 5 mol of powdered, anhydrous aluminum chloride were added all at once. The reaction mixture was refluxed, with continued stirring, for half an hour. After heating, cold water was added drop wise to the reaction mixture. The excess benzene was removed by steam distillation and the hot solution was at once poured into a beaker. After the mixture was cold the liquid was decanted from the precipitated solid and acidified with concentrated hydrochloric acid. Desired product was separated and filtered.

Synthesis of nitrooxy ethyl bromide

2-bromooethanol (10 mmol) was added drop wise to a solution of 70% HNO\textsubscript{3} (1.1 ml) and 95% H\textsubscript{2}SO\textsubscript{4} (2.4 ml) at 0 °C, and the reaction was allowed to proceed at the same temperature for 1 h with stirring. The resulting suspension was poured into water (50 ml), extracted with CH\textsubscript{2}Cl\textsubscript{2} (3 × 200 ml), and dried over MgSO\textsubscript{4}, and the solvent was removed to give the nitrooxy alkyl bromide [8].

General procedure for the synthesis of 2-(substituted-2,5-diphenyl-oxazole)-acetic acid (2a-2v)

To a solution of benzylamine (1.5 mmol) in DMF (3 ml) was successively added iodine (1.2 mmol), benzyl propionic acid (1 mmol), Cu (0.65 mmol), H\textsubscript{2}O (0.1 mmol), TBHP (2 mmol). After the reaction mixture was stirred for 5 h at room temperature, other portion of benzylamine (0.5 mmol) were added to the reaction system again. Upon completion, the reaction mixture was extracted with EtOAc, dried over Na\textsubscript{2}SO\textsubscript{4}. Then the organic phase was concentrated in vacuum and purified by silica gel column chromatography to afford the desired product [9].
Analytical data

2-(nitrooxy) ethyl-2-(5-(4-chlorophenyl)-2-(4-fluorophenyl) oxazol-4-yl) acetate (3a)
White solid; IR: 3082, 1747, 1525, 1521, 1620 cm\(^{-1}\); \(\delta\) H NMR (400 MHz, DMSO): \(\delta = 6.49 \pm 6.84\) ppm; MS: m/z 421[M+H]. Elemental analysis: Found C(54.96), H(3.61), N(6.79). Calculated C(54.96), H(3.61), N(6.79).

2-(nitrooxy) ethyl-2-(5-(4-chlorophenyl)-2-(4-fluorophenyl) oxazol-4-yl) acetate (3b)
White solid; IR: 3025, 1721, 1523, 1521, 1629 cm\(^{-1}\); \(\delta\) H NMR (400 MHz, DMSO): \(\delta = 6.49 \pm 6.84\) ppm; MS: m/z 421[M+H]. Elemental analysis: Found C(54.96), H(3.61), N(6.79). Calculated C(54.96), H(3.61), N(6.79).

2-(nitrooxy) ethyl-2-(5-(4-chlorophenyl)-2-(4-fluorophenyl) oxazol-4-yl) acetate (3c)
White solid; IR: 3025, 1721, 1523, 1521, 1629 cm\(^{-1}\); \(\delta\) H NMR (400 MHz, DMSO): \(\delta = 6.49 \pm 6.84\) ppm; MS: m/z 421[M+H]. Elemental analysis: Found C(54.96), H(3.61), N(6.79). Calculated C(54.96), H(3.61), N(6.79).

2-(nitrooxy) ethyl-2-(5-(4-chlorophenyl)-2-(4-fluorophenyl) oxazol-4-yl) acetate (3d)
White solid; IR: 3025, 1721, 1523, 1521, 1629 cm\(^{-1}\); \(\delta\) H NMR (400 MHz, DMSO): \(\delta = 6.49 \pm 6.84\) ppm; MS: m/z 421[M+H]. Elemental analysis: Found C(54.96), H(3.61), N(6.79). Calculated C(54.96), H(3.61), N(6.79).

2-(nitrooxy) ethyl-2-(5-(4-chlorophenyl)-2-(4-fluorophenyl) oxazol-4-yl) acetate (3e)
White solid; IR: 3025, 1721, 1523, 1521, 1629 cm\(^{-1}\); \(\delta\) H NMR (400 MHz, DMSO): \(\delta = 6.49 \pm 6.84\) ppm; MS: m/z 421[M+H]. Elemental analysis: Found C(54.96), H(3.61), N(6.79). Calculated C(54.96), H(3.61), N(6.79).
CH₂), 4.5 [t, 2H, CH₂], 6.9 [s, 1H, CH], 7.0 [s, 1H, CH], 7.2 [d, 2H, CH], 7.5 [d, 2H, CH], 7.7 [s, 1H, CH]. MS: m/z 373 [M+H⁺]. Elemental analysis: Found C(58.05). H (4.29), N (7.55) Calculated C (58.06). H (4.33), N (7.52).

2-(Nitroxy) ethyl-2-(2-pyrindyl-2-yl)-5-(p-tolyl) oxazol-4-yl acetate (3q)

Grey solid; IR: 3029, 2810, 1749, 1530, 1559, 1655 cm⁻¹: 1HNMR (400 MHz, DMSO): δ= 2.2 [s, 3H, CH₃], 3.6 [s, 2H, CH₂], 4.2 [t, 2H, CH₂]. 4.7 [1H, CH], 7.1 [d, 2H, CH], 7.4 [s, 1H, CH], 7.5 [d, 2H, CH]. 7.6 [d, 2H, CH], 7.7 [d, 2H, CH], 7.9 [s, 1H, CH], 8.0 [d, 2H, CH]. MS: m/z 383 [M+H⁺]. Elemental analysis: Found C (59.55). H (4.49). N (10.97) Calculated C (59.53). H (4.47), N (10.96).

2-(Nitroxy) ethyl-2-(2-phenyl-5-(p-tolyl) oxazol-4-yl) acetate (3r)

White solid; IR: 3041, 2822, 1730, 1529, 1560, 1660 cm⁻¹: 1HNMR (400 MHz, DMSO): δ= 2.2 [s, 3H, CH₃], 3.6 [s, 2H, CH₂], 4.2 [t, 2H, CH₂]. 4.7 [1H, CH], 7.2 [d, 2H, CH], 7.4 [s, 1H, CH], 7.5 [d, 2H, CH], 7.6 [d, 2H, CH], 8.1 [d, 2H, CH]. MS: m/z 383 [M+H⁺]. Elemental analysis: Found C (62.80). H (4.72). N (7.31) Calculated C (62.82). H (4.74). N (7.33).

2-(Nitroxy) ethyl-2-(2-(4-ethoxyphenyl)-5-(p-tolyl) oxazol-4-yl)acetate (3s)

White solid; IR: 3051, 2819, 1720, 1530, 1566, 1228, 1645 cm⁻¹: 1HNMR (400 MHz, DMSO): δ= 1.4 [t, 3H, CH₃], 2.25 [s, 3H, CH₃], 3.6 [2H, CH₂], 3.9 [2H, CH₂], 4.2 [t, 2H, CH₂], 4.4 [q, 2H, CH₂], 7.1 [d, 2H, CH], 7.3 [d, 2H, CH]. 7.5 [d, 2H, CH]. 8.0 [d, 2H, CH]. MS: m/z 427 [M+H⁺]. Elemental analysis: Found C (61.99). H (5.17). N (6.59) Calculated C (61.97). H (5.20). N (6.57).

2-(Nitroxy) ethyl-2-(5-(p-tolyl)-2-(4-(trifluoromethyl) phenyl) oxazol-4-yl) acetate (3t)

White solid; IR: 3070, 2823, 1719, 1509, 1535, 1229, 1605 cm⁻¹: 1HNMR (400 MHz, DMSO): δ= 2.3 [s, 3H, CH₃], 3.6 [s, 2H, CH₂], 4.2 [t, 2H, CH₂], 4.9 [t, 2H, CH₂], 7.0 [d, 2H, CH], 7.2 [d, 2H, CH], 7.5 [d, 2H, CH]. 7.9 [d, 2H, CH]. MS: m/z 467 [M+H⁺]. Elemental analysis: Found C (54.10). H (3.69). N (6.03) Calculated C (54.08). H (3.67). N (6.01).

2-(Nitroxy) ethyl-2-(5-(p-tolyl)-2-(4-(trifluoromethyl) thio) phenyl) oxazol-4-yl acetate (3u)

Yellow solid; IR: 3029, 2844, 1730, 1530, 1565, 1625 cm⁻¹: 1HNMR (400 MHz, DMSO): δ= 2.25 [s, 3H, CH₃], 3.6 [s, 2H, CH₂], 4.1 [t, 2H, CH₂], 4.3 [t, 2H, CH₂], 7.2 [d, 2H, CH], 7.5 [d, 2H, CH]. 7.6 [m, 4H, CH₃], 7.9 [m, 4H, CH₃]. MS: m/z 483 [M+H⁺]. Elemental analysis: Found C (52.30). H (3.57). N (5.83) Calculated C (52.28). H (3.55). N (5.81).

2-(Nitroxy) ethyl 2-(2-(4-(difluoromethyl) phenyl)-5-(p-tolyl) oxazol-4-yl)acetate (3v)

Buff solid; IR: 3023, 2822, 1729, 1525, 1450, 1252, 1657 cm⁻¹: 1HNMR (400 MHz, DMSO): δ= 2.3 [s, 3H, CH₃], 3.6 [s, 2H, CH₂], 4.3 [t, 2H, CH₂], 4.7 [t, 2H, CH₂], 7.05 [s, 1H, CH], 7.1 [d, 2H, CH], 7.2 [d, 2H, CH], 7.6 [d, 2H, CH]. 7.9 [d, 2H, CH]. MS: m/z 449 [M+H⁺]. Elemental analysis: Found C (56.26). H (4.07). N (6.27) Calculated C (56.25). H (4.05). N (6.25).

Pharmacology

All the method for pharmacological work has been performed as per our previously published work [1].

Docking methodology

Molecular docking studies were performed using Glide v6.2 (Schrödinger, LLC). The coordinates for COX-2 enzyme were taken from RCSB Protein Data Bank (PDB Id: 1CXZ) and prepared for docking using protein preparation wizard. Water molecules in the structure were removed and termini were capped by adding ACE and NMA residue. The bond orders and formal charges were added for hetero groups and hydrogens were added to all atoms in the structure. Side chains that were not close to the binding cavity and do not participate in salt bridges were neutralized. After preparation, the structures were refined to optimize the hydrogen bond network using OPLS.2005 force field. This helps in reorientation of the side chain hydroxyl group. The minimization was terminated when the energy converged or the RMSD reached a maximum cut off of 0.30 Å. Grids were then defined around refined structure by centering on ligand using default box size. The extra precision (XP) docking mode for compounds, optimized by Ligprep, was performed on the generated grid of protein structure [10].

RESULTS AND DISCUSSION

Chemistry

The synthesis of target compounds 3a-3v is shown in scheme 1-2. Succinic anhydride was reacted with substituted benzene in the presence of aluminium chloride to afford substituted benzylo propionic acid (1a-1v). Nitro-oxy ethyl bromide was prepared from bromoethanol in the presence of nitric acid and sulfuric acid. Substituted benzylo propionic acid was reacted with substituted benzyl amines in the presence of TBHP, copper acetate, iodine and dimethyl formamide to give 2-(substituted-2,5-diphenyl-oxazolo)-acetic acid (2a-2v). The target compounds were obtained by reacting 2-[substituted-2,5-diphenyl-oxazolo]-acetic acid with nitro-oxy ethyl bromide in the presence of dimethyl formamide and potassium carbonate to give 2-(nitroxy)-ethyl-2-(substituted-2,5-diphenyl-oxazolo)-acetate derivatives (3a-3v, table 1). The structures of various synthesized compounds were assigned on the basis of results of different chromatographic and spectral studies. The physical data, FTR, 1HNMR, mass spectral data and elemental analysis data for all the synthesized compounds are given in experimental protocols.

Scheme 1: Synthesis of intermediate nitro-oxy ethyl bromide. Reagents and conditions (a) 70% HNO₃, 95% H₂SO₄, 0 °C, 1 h

Scheme 2: Synthesis of compounds 3a-3v. Reagents and conditions (a) AlCl₃ (b) Substituted benzyl amines, TBHP, Cu(OAC)₂, I₂, DMF, rt for 6 h (c) 0-N0-CH₂-CH₃-Br, DMF, K₂CO₃, 25 °C, 24 h

Pharmacology

The synthesized compounds were subjected to the evaluation of anti-inflammatory, analgesic and nitric oxide-releasing properties. Celecoxib was used as reference standard.

Anti-inflammatory activity

Anti-inflammatory activity of the synthesized compounds was evaluated by carragenan-induced rat paw edema model (table 2). Out of the synthesized compounds 3a, 3c, 3g, 3i and 3r (66.82-69.26%) exhibited very significant anti-inflammatory activity compared to standard drug celecoxib (69.26 % at 3 h). Thus, the compounds having a substitution of fluoro and methoxy group on aryl ring and substitution of chloro and a methyl group at R position (3a, 3c and 3l) show equipotent activity with celecoxib. Compound 3g and 3r also shows equipotent activity in which aryl ring is unsubstituted and chloro and a methyl group at R position. Compound 3d and 3e shows decreased anti-inflammatory activity (In compound 3d, aryl ring is replaced by a furan ring, whereas R position is substituted by chloro group). As compared to our previously reported work [1], there is significant rise in the anti-inflammatory activity of the current work.
Table 1: Characterization data for synthesized compounds (3a-3v)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Entry</th>
<th>Ar</th>
<th>R</th>
<th>MF</th>
<th>MW</th>
<th>% yield</th>
<th>MP (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3a</td>
<td>4-FC6H5</td>
<td>4-Cl</td>
<td>C6H5·CF3·NO2</td>
<td>420</td>
<td>85</td>
<td>198-199</td>
</tr>
<tr>
<td>2</td>
<td>3b</td>
<td>4-CH3O·C6H4</td>
<td>4-Cl</td>
<td>C6H5·CH3·Cl·NO2</td>
<td>432</td>
<td>83</td>
<td>209-210</td>
</tr>
<tr>
<td>3</td>
<td>3c</td>
<td>3-CH3O·C6H4</td>
<td>4-Cl</td>
<td>C6H5·CH3·Cl·NO2</td>
<td>432</td>
<td>74</td>
<td>222-223</td>
</tr>
<tr>
<td>4</td>
<td>3d</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·NO2</td>
<td>446</td>
<td>70</td>
<td>233-234</td>
</tr>
<tr>
<td>5</td>
<td>3e</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·NO2</td>
<td>392</td>
<td>65</td>
<td>185-186</td>
</tr>
<tr>
<td>6</td>
<td>3f</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·NO2</td>
<td>403</td>
<td>67</td>
<td>205-206</td>
</tr>
<tr>
<td>7</td>
<td>3g</td>
<td>C6H5</td>
<td>4-Cl</td>
<td>C6H5·Cl·NO2</td>
<td>402</td>
<td>90</td>
<td>213-215</td>
</tr>
<tr>
<td>8</td>
<td>3h</td>
<td>4-C6H4OC6H4</td>
<td>4-Cl</td>
<td>C6H5·Cl·NO2</td>
<td>446</td>
<td>80</td>
<td>228-229</td>
</tr>
<tr>
<td>9</td>
<td>3i</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·CF·NO2</td>
<td>486</td>
<td>83</td>
<td>246-247</td>
</tr>
<tr>
<td>10</td>
<td>3j</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·CF·NO2</td>
<td>502</td>
<td>79</td>
<td>240-241</td>
</tr>
<tr>
<td>11</td>
<td>3k</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·CF·NO2</td>
<td>468</td>
<td>86</td>
<td>230-231</td>
</tr>
<tr>
<td>12</td>
<td>3l</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·CF·NO2</td>
<td>400</td>
<td>92</td>
<td>193-194</td>
</tr>
<tr>
<td>13</td>
<td>3m</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·CF·NO2</td>
<td>412</td>
<td>81</td>
<td>221-222</td>
</tr>
<tr>
<td>14</td>
<td>3n</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·CF·NO2</td>
<td>412</td>
<td>71</td>
<td>179-180</td>
</tr>
<tr>
<td>15</td>
<td>3o</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·CF·NO2</td>
<td>426</td>
<td>67</td>
<td>185-186</td>
</tr>
<tr>
<td>16</td>
<td>3p</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·CF·NO2</td>
<td>372</td>
<td>65</td>
<td>167-168</td>
</tr>
<tr>
<td>17</td>
<td>3q</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·CF·NO2</td>
<td>383</td>
<td>68</td>
<td>177-179</td>
</tr>
<tr>
<td>18</td>
<td>3r</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·CF·NO2</td>
<td>382</td>
<td>88</td>
<td>152-153</td>
</tr>
<tr>
<td>19</td>
<td>3s</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·CF·NO2</td>
<td>426</td>
<td>77</td>
<td>199-200</td>
</tr>
<tr>
<td>20</td>
<td>3t</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·CF·NO2</td>
<td>466</td>
<td>82</td>
<td>224-225</td>
</tr>
<tr>
<td>21</td>
<td>3u</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·CF·NO2</td>
<td>492</td>
<td>84</td>
<td>236-237</td>
</tr>
<tr>
<td>22</td>
<td>3v</td>
<td>4-Cl</td>
<td>4-Cl</td>
<td>C6H5·Cl·CF·NO2</td>
<td>448</td>
<td>86</td>
<td>210-211</td>
</tr>
</tbody>
</table>

Table 2: Results of anti-inflammatory activity of synthesized compounds (3a-3v) against carrageenan-induced rat paw edema model in rats

<table>
<thead>
<tr>
<th>Comp Code</th>
<th>Change in paw volume in (ml) after drug treatment (±SEM)</th>
<th>Anti-inflammatory activity (% Inhibition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.79±0.031**</td>
<td>1.97±0.019**</td>
</tr>
<tr>
<td>Celexobin</td>
<td>0.68±0.060**</td>
<td>0.66±0.056**</td>
</tr>
<tr>
<td>3a</td>
<td>0.70±0.029**</td>
<td>0.66±0.088**</td>
</tr>
<tr>
<td>3b</td>
<td>0.86±0.019**</td>
<td>0.83±0.033**</td>
</tr>
<tr>
<td>3c</td>
<td>0.79±0.047**</td>
<td>0.76±0.099**</td>
</tr>
<tr>
<td>3d</td>
<td>1.10±0.022**</td>
<td>1.13±0.082**</td>
</tr>
<tr>
<td>3e</td>
<td>1.11±0.085**</td>
<td>1.14±0.021**</td>
</tr>
<tr>
<td>3f</td>
<td>0.77±0.024**</td>
<td>0.74±0.029**</td>
</tr>
<tr>
<td>3g</td>
<td>0.75±0.025**</td>
<td>0.71±0.028**</td>
</tr>
<tr>
<td>3h</td>
<td>0.83±0.031**</td>
<td>0.80±0.035**</td>
</tr>
<tr>
<td>3i</td>
<td>0.87±0.036**</td>
<td>0.85±0.039**</td>
</tr>
<tr>
<td>3j</td>
<td>0.81±0.033**</td>
<td>0.78±0.069**</td>
</tr>
<tr>
<td>3k</td>
<td>0.82±0.044**</td>
<td>0.79±0.061**</td>
</tr>
<tr>
<td>3l</td>
<td>0.69±0.022**</td>
<td>0.67±0.077**</td>
</tr>
<tr>
<td>3m</td>
<td>0.90±0.055**</td>
<td>0.86±0.039**</td>
</tr>
<tr>
<td>3n</td>
<td>0.91±0.063**</td>
<td>0.89±0.030**</td>
</tr>
<tr>
<td>3o</td>
<td>1.01±0.090**</td>
<td>1.04±0.077**</td>
</tr>
<tr>
<td>3p</td>
<td>1.06±0.065**</td>
<td>1.10±0.095**</td>
</tr>
<tr>
<td>3q</td>
<td>1.05±0.023**</td>
<td>1.08±0.020**</td>
</tr>
<tr>
<td>3r</td>
<td>0.73±0.076**</td>
<td>0.71±0.082**</td>
</tr>
<tr>
<td>3s</td>
<td>1.02±0.064**</td>
<td>1.00±0.064**</td>
</tr>
<tr>
<td>3t</td>
<td>0.90±0.079**</td>
<td>0.87±0.077**</td>
</tr>
<tr>
<td>3u</td>
<td>1.11±0.075**</td>
<td>1.07±0.025**</td>
</tr>
<tr>
<td>3v</td>
<td>0.80±0.060**</td>
<td>0.77±0.057**</td>
</tr>
</tbody>
</table>

Data analyzed by one way ANOVA followed by Dunnett’s ‘t’ test, (n = 6), * P<0.05, ** P<0.01 significant from control ns not significant

Analgesic activity

The analgesic activity of the synthesized compounds was studied by using acetic acid-induced writhing test in mice (table 3). The analgesic effect of compounds 3a, 3g, 3i and 3r (63.90-66.71%) were found to be equipotent compared to standard drug celecoxib (66.75%) similar to anti-inflammatory activity. Compound 3d shows least analgesic activity similar to anti-inflammatory activity. As compared to our previously reported work [1], there is significant rise in the analgesic activity of the current work.

Nitrergic oxide-release study

In isolated wistar rat aorta rings, compounds 3a-3v competitively inhibited norepinephrine-induced contraction effects, causing a shift to the right of the norepinephrine concentration response curves. Emax (μg/ml) values were calculated from the cumulative concentration response curves. In order to prove the involvement of nitrergic oxide in the relaxation process, nitrergic oxide-releasing properties of synthesized compounds were assessed in phosphate buffer, pH 7.4, in the presence of L-cysteine, relative to nitrergic oxide.
released from standard sodium nitrite solution (table 4). From in vitro nitric oxide releasing data, it is observed that compound 3c shows potent nitric oxide releasing properties, whereas compound 3b shows less nitric oxide releasing properties. From nitric oxide releasing activity of rat aortic muscle, it is observed that compound 3g shows potent EC₅₀ values whereas compound 3e shows less EC₅₀ value. As compared to our previously reported work [1], we got better EC₅₀ and % NO release values of the current work.

Table 3: Results of analgesic activity of synthesized compounds (3a–3v) against acetic acid-induced writhing test in mice

<table>
<thead>
<tr>
<th>Compound Code</th>
<th>No of Writhes in 5-15 min after treatment (mean±SE)</th>
<th>% Inhibition</th>
<th>Compound Code</th>
<th>No of Writhes in 5-15 min after treatment (mean±SE)</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>27.37±0.47**</td>
<td>-</td>
<td>3k</td>
<td>10.67±0.32**</td>
<td>61.01</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>9.01±0.35**</td>
<td>66.75</td>
<td>3l</td>
<td>9.11±0.10**</td>
<td>66.71</td>
</tr>
<tr>
<td>3a</td>
<td>9.45±0.84**</td>
<td>65.47</td>
<td>3m</td>
<td>13.65±0.23**</td>
<td>50.12</td>
</tr>
<tr>
<td>3b</td>
<td>11.20±0.65**</td>
<td>59.07</td>
<td>3n</td>
<td>11.56±0.39**</td>
<td>57.76</td>
</tr>
<tr>
<td>3c</td>
<td>10.51±0.19**</td>
<td>61.60</td>
<td>3o</td>
<td>13.88±0.27**</td>
<td>49.28</td>
</tr>
<tr>
<td>3d</td>
<td>14.99±1.11**</td>
<td>45.23</td>
<td>3p</td>
<td>14.02±0.63**</td>
<td>48.77</td>
</tr>
<tr>
<td>3e</td>
<td>14.35±0.63**</td>
<td>47.57</td>
<td>3q</td>
<td>14.10±0.29**</td>
<td>48.48</td>
</tr>
<tr>
<td>3f</td>
<td>10.45±0.45**</td>
<td>61.81</td>
<td>3r</td>
<td>9.23±0.12**</td>
<td>66.27</td>
</tr>
<tr>
<td>3g</td>
<td>9.88±0.80**</td>
<td>63.90</td>
<td>3s</td>
<td>10.96±0.22**</td>
<td>59.95</td>
</tr>
<tr>
<td>3h</td>
<td>10.25±0.51**</td>
<td>62.55</td>
<td>3t</td>
<td>11.45±0.07**</td>
<td>58.16</td>
</tr>
<tr>
<td>3i</td>
<td>12.77±0.55**</td>
<td>53.34</td>
<td>3u</td>
<td>14.15±0.72**</td>
<td>48.30</td>
</tr>
<tr>
<td>3j</td>
<td>10.89±0.46**</td>
<td>60.21</td>
<td>3v</td>
<td>10.35±0.83**</td>
<td>62.18</td>
</tr>
</tbody>
</table>

Data analyzed by one way ANOVA followed by Dunnett’s ‘t’ test, (n = 6), **P<0.01 significant from control

Table 4: EC₅₀ values and nitric oxide-releasing properties of the compounds (3a–3v)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Compound Code</th>
<th>EC₅₀</th>
<th>% NO release</th>
<th>S. No.</th>
<th>Compound Code</th>
<th>EC₅₀</th>
<th>% NO release</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3a</td>
<td>39.59</td>
<td>0.55</td>
<td>12</td>
<td>3l</td>
<td>35.88</td>
<td>0.69</td>
</tr>
<tr>
<td>2</td>
<td>3b</td>
<td>42.85</td>
<td>0.28</td>
<td>13</td>
<td>3m</td>
<td>47.51</td>
<td>0.36</td>
</tr>
<tr>
<td>3</td>
<td>3c</td>
<td>42.75</td>
<td>0.73</td>
<td>14</td>
<td>3n</td>
<td>49.22</td>
<td>0.30</td>
</tr>
<tr>
<td>4</td>
<td>3d</td>
<td>36.56</td>
<td>0.29</td>
<td>15</td>
<td>3o</td>
<td>31.07</td>
<td>0.34</td>
</tr>
<tr>
<td>5</td>
<td>3f</td>
<td>58.22</td>
<td>0.38</td>
<td>16</td>
<td>3p</td>
<td>40.44</td>
<td>0.56</td>
</tr>
<tr>
<td>6</td>
<td>3g</td>
<td>49.87</td>
<td>0.66</td>
<td>17</td>
<td>3q</td>
<td>42.43</td>
<td>0.64</td>
</tr>
<tr>
<td>7</td>
<td>3h</td>
<td>29.65</td>
<td>0.59</td>
<td>18</td>
<td>3r</td>
<td>50.63</td>
<td>0.47</td>
</tr>
<tr>
<td>8</td>
<td>3i</td>
<td>33.54</td>
<td>0.37</td>
<td>19</td>
<td>3s</td>
<td>48.48</td>
<td>0.50</td>
</tr>
<tr>
<td>9</td>
<td>3j</td>
<td>41.21</td>
<td>0.44</td>
<td>20</td>
<td>3t</td>
<td>46.90</td>
<td>0.58</td>
</tr>
<tr>
<td>10</td>
<td>3k</td>
<td>39.57</td>
<td>0.51</td>
<td>21</td>
<td>3u</td>
<td>55.45</td>
<td>0.44</td>
</tr>
<tr>
<td>11</td>
<td>3l</td>
<td>51.23</td>
<td>0.70</td>
<td>22</td>
<td>3v</td>
<td>43.22</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Docking study

In all series, the docking poses of compounds showing higher docking score (G-score) were compared with that of standard celecoxib in the active site of the COX-2 enzyme. The docking study of oxazole derivatives showed that all compounds were successfully docked in the active site of the COX-2 enzyme and acquired the same binding poses (‘V’ shaped) as that by celecoxib (fig 1). Due to having diaryl ring attached to middle hetero ring in oxazole derivatives, they show desired binding pose in the binding pocket of the COX-2 enzyme. Fig. (fig 2 and fig 3) showed that diaryl rings are surrounded by hydrophobic amino acids Val 349, Leu 359, Met 113, Val 116, Leu 513, Ala 527, Trp 387, Leu 384, Met 522, Phe 518, Tyr 385, Phe 318, Leu 117, and Tyr 355 and thus help to stabilize the compounds in the active site of COX-2 enzyme. The long aliphatic side chain in between two diaryl ring at C₅ position made the hydrogen bond with Arg 513 and Tyr 355 and thus favors the stability of oxazole derivatives. The substitution patterns at Ar position is mainly responsible for variation in the G-score and binding poses of oxazole derivatives in the active site of the COX-2 enzyme and thus affect the binding affinity of each compound toward COX-2 enzyme. The compounds 3a, 3g, 3l and 3r containing F or CH₃ substituted phenyl ring at Ar position showed higher G-score and good binding pose.

The phenyl ring with F or CH₃ groups at Ar position helps the oxazole derivatives to form the hydrophobic contacts with surrounding hydrophobic amino acids. The phenyl ring with F or CH₃ groups also supports aliphatic side chain at C₅ position or forming an H-bond with surrounding amino acids. Thus, the replacement of these hydrophobic substituents by other aryl ring substituents and hetero ring showed the decreased binding affinity toward COX-2 enzyme and G-score (fig 4 and fig 5). Table 5 also clearly suggests that the replacement of hydrophobic substitution by hetero ring or phenyl ring with an electron withdrawing group at Ar position showed decrease in hydrophobic enclosure reward as well as lipophilic Vander Waal interaction and ultimately affect binding pose of compounds and reduces the G-score. These F or CH₃ substituted phenyl ring in an above compound is surrounded by common hydrophobic amino acids Val 523, Phe 381, Leu 352, Ala 527, Phe 518, Leu 384, Tyr 385 and Met 522.

Fig. 1: Docking pose of celecoxib in active site of COX-2 enzyme
Table 5: Docking score of compounds 3a-3v

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Compound</th>
<th>G-score</th>
<th>H Bond</th>
<th>Phob En</th>
<th>Lipophilic EvdW</th>
<th>S. No.</th>
<th>Compound</th>
<th>G-score</th>
<th>H Bond</th>
<th>Phob En</th>
<th>Lipophilic EvdW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Celecoxib</td>
<td>-10.5</td>
<td>-1.3</td>
<td>-6.1</td>
<td>-1.5</td>
<td>13</td>
<td>3l</td>
<td>-10.58</td>
<td>-1.32</td>
<td>-2.7</td>
<td>-6.38</td>
</tr>
<tr>
<td>2</td>
<td>3a</td>
<td>-10.36</td>
<td>-0.99</td>
<td>-2.7</td>
<td>-6.38</td>
<td>14</td>
<td>m</td>
<td>-9.68</td>
<td>-0.99</td>
<td>-2.64</td>
<td>-5.96</td>
</tr>
<tr>
<td>3</td>
<td>3b</td>
<td>-9.29</td>
<td>-0.99</td>
<td>-2.19</td>
<td>-6.02</td>
<td>15</td>
<td>3n</td>
<td>-7.91</td>
<td>-0.99</td>
<td>-1.51</td>
<td>-5.36</td>
</tr>
<tr>
<td>4</td>
<td>3c</td>
<td>-6.7</td>
<td>-1.31</td>
<td>-1.2</td>
<td>-5.25</td>
<td>16</td>
<td>3o</td>
<td>-5.66</td>
<td>-1.21</td>
<td>-1.21</td>
<td>-3.66</td>
</tr>
<tr>
<td>5</td>
<td>3d</td>
<td>-7.08</td>
<td>-0.66</td>
<td>-1.71</td>
<td>-5.94</td>
<td>17</td>
<td>3p</td>
<td>-5.29</td>
<td>0</td>
<td>-2.43</td>
<td>-6.71</td>
</tr>
<tr>
<td>6</td>
<td>3e</td>
<td>-7.26</td>
<td>-0.65</td>
<td>-0.74</td>
<td>-5.53</td>
<td>18</td>
<td>3q</td>
<td>-9.05</td>
<td>-1.24</td>
<td>-1.4</td>
<td>-5.72</td>
</tr>
<tr>
<td>7</td>
<td>3f</td>
<td>-8.78</td>
<td>-0.33</td>
<td>-2.24</td>
<td>-6.01</td>
<td>19</td>
<td>3r</td>
<td>-10.18</td>
<td>-1</td>
<td>-2.46</td>
<td>-6.61</td>
</tr>
<tr>
<td>8</td>
<td>3g</td>
<td>-10.28</td>
<td>-1.31</td>
<td>-2.61</td>
<td>-6.3</td>
<td>20</td>
<td>3s</td>
<td>-5.04</td>
<td>-1.58</td>
<td>-2</td>
<td>-5.62</td>
</tr>
<tr>
<td>9</td>
<td>3h</td>
<td>-4.13</td>
<td>-0.99</td>
<td>-1.93</td>
<td>-4.79</td>
<td>21</td>
<td>3t</td>
<td>-4.49</td>
<td>-1.58</td>
<td>-1.97</td>
<td>-4.55</td>
</tr>
<tr>
<td>10</td>
<td>3i</td>
<td>-2.53</td>
<td>0</td>
<td>-1.03</td>
<td>-4.85</td>
<td>22</td>
<td>3u</td>
<td>-2.93</td>
<td>0</td>
<td>-1.58</td>
<td>-4.88</td>
</tr>
<tr>
<td>11</td>
<td>3j</td>
<td>-2.75</td>
<td>0</td>
<td>-1.58</td>
<td>-4.61</td>
<td>23</td>
<td>3v</td>
<td>-2.38</td>
<td>0</td>
<td>-1.23</td>
<td>-4.76</td>
</tr>
<tr>
<td>12</td>
<td>3k</td>
<td>-2.74</td>
<td>0</td>
<td>-1.29</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSION

Twenty two compounds were synthesized and screened for anti-inflammatory with analgesic and nitric oxide-releasing activity. Docking study of these synthesized compounds was also performed. Most of the compounds exhibited significant anti-inflammatory with analgesic and nitric oxide releasing properties. Compounds 3a, 3c, 3g, 3l and 3r exhibited most prominent and constituent anti-inflammatory activity. Compounds 3a, 3g, 3l and 3r showed strong analgesic activity. From the detailed analysis of the results of pharmacological studies, we conclude that the synthesized compounds have not only retained but showed enhanced anti-inflammatory profile. Also, all the synthesized derivatives exhibited significant vaso relaxant activity. Therefore, it can be concluded that the rational, based on which these NCEs were designed, has been proven to be superior compared to the currently used NSAIDs.

ACKNOWLEDGEMENT

The authors are thankful to The Head, Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University,
Aurangabad 431 004 (MS), India, for providing the laboratory facility.

CONFLICT OF INTERESTS
Declared None

REFERENCES