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ABSTRACT

Objectives: The feasibility of the extended Kalman filter using range and bearing measurements is explored for underwater applications.

Methods: The input estimation technique, developed by Bar-Shalom and Fortmann for radar applications is implemented for sonar applications. Input 
estimation is used to estimate the target acceleration whenever the target makes a maneuver. The algorithm estimates target motion parameters and 
detects target maneuver using zero mean Chi-square distributed random sequence residual.

Results: On detection of target maneuver, this algorithm corrects the velocity and position components using acceleration components.

Conclusion: Finally, the performance of this algorithm is evaluated in Monte-Carlo simulations and results are shown for various typical geometries 
and found that this input estimation technique can be used for underwater applications.
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INTRODUCTION

In the ocean environment, two-dimensional target motion analysis is 
generally used. A sonar positioned on a ship observes noisy bearing and 
range measurements of the target in active mode. The observer is assumed 
to be moving in straight line, and the target is assumed to be moving mostly 
in straight line with maneuver occasionally. The observer processes the 
measurements and estimates the target motion parameters, viz., range, 
course, bearing, and speed of the target. As an illustration, the target motion 
problem with a single moving observer is shown in Fig. 1. Rich literature is 
available to track a target using range and bearing measurements [1-6]. In 
this paper, the authors try to apply Kalman filter for the sea scenario using 
the input estimation technique to take care of target maneuver.

The difference between the measurements and the estimated 
measurements is termed as innovations. It is observed that the innovation 
sequence follows Chi-square distribution. From the innovations of the 
Kalman filter based on the non-maneuvering model, the acceleration 
input is detected, estimated and the same is used to correct the state 
estimate. This process is done using a sliding window of the latest “s” (s is 
a design factor) measurements. During this window period, the input 
is assumed to be constant. This procedure is called input estimation 
and is given in detail in reference [7-15]. Input estimation developed 
by Bar-Shalom and Fortmann is used so far for radar applications, in 
which measurements are available continuously. Here, effort is made 
to utilize the technique for underwater sonar applications, in which the 
measurements are available at discrete intervals.

There are mainly two versions of Kalman filter – A linearized Kalman 
filter, in which polar measurements are converted into Cartesian 
coordinates and the well-known extended Kalman filter (EKF). Recently, 
Pork and Lee [8] presented a detailed theoretical comparative study 
of the above two methods and stated that both the methods perform 
well. Here, EKF is used throughout the paper. Section 2 describes the 
mathematical modeling of measurements.

MATHEMATICAL MODELLING

The target needs to be tracked using noise-corrupted range and bearing 
measurements. For the purpose of introducing concepts, target is 

assumed to be moving with constant velocity. The target state equation 
is given by:

Xs(k+1)=Φ(k+1/k)Xs(k)+b(k)+τ(k)ω(k)� (1)

XS(k) is the state vector with target velocity and range components and 
is given by:

 ( )  ( )  ( )   ( )   ( )
.

X k x k y k R k R kS
.

x y

T

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

� (2)

Φ(k+1/k) is the state transition matrix and is given by:
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Where, t is the sample time,
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Where x0 and y0 are observer position components, respectively. True 
North convention is followed for all angles to reduce mathematical 
complexity and easy implementation.
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ω(k) is plant noise with covariance Q(k),assumed to be Gaussian and 
uncorrelated with measurement noises. The measurement vector Z(k) 
is given by:
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Where Rm(k) and Bm(k) are range and bearing measurements and are 
given by:

Rm(k)=R(k)+ξR(k)� (7)

Bm(k)=B(k)+ξB(k)� (8)

Where, R(k) and B(k) are actual range and bearing. ξR and ξB are 

Gaussian noises with s = x2 2 [ ]R RE , s xB BE2 2 [= ]  and E R B [x x ]=0 .

The measurement matrix H(k) can be shown as:
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Since the true bearing and range are not available in practice, these are 
replaced by the estimated bearing and range. The five equations of the 
Kalman filter are given by:

Prediction:

State: X(k+1/k)=Φ(k+1/k)X(k/k)+b(k+1)� (10)

Covariance: P(k+1/k)=ΦT(k+1/k)P(k/k)Φ(k+1/k)+Q(k+1)� (11)

Kalman gain:
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Covariance: P k k I G k H k P k k( 1/ 1) ( 1) ( 1) ( 1/ )+ + = - + +éë ùû + � (14)

Where, Z k
^

( +1)  is estimated measurement. The target motion 
parameters - range, bearing, course, and speed (R, B, C, S) are calculated 
from the estimated state vector as follows.
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INPUT ESTIMATION FOR SONAR APPLICATIONS

Consider the system with state equation:

X(k+1)=Φ(k+1/k)X(k)+Fu(k)+τ(k)ω(k)� (19)

Where, u is an unknown input modeling the target maneuvers and the 

F matrix is given by F
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Here, the final equations are produced. Assume that the target starts 
maneuvering at time k. It’s unknown inputs during the time interval 
[k,….,k+s] are u[i], i=k,…,k+s−1. Detailed derivation is available in 
reference [3].

The innovations corresponding to the correct filter are given by:

v(k+1)=z(k+1)−HX(k+1/k)� (21)

And the innovations for the non-maneuvering model (now mismatched 
model) are:

v k z k H X k k*( 1) ( 1) *( 1/ )
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v*(k+1) can be written as:

v*(k+1)=Ψ(i+1)u+v(k+1), i=k,…k+s−1� (23)

Where,
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Where,

φ(i)=Φ[I−G(i)H]� (25)

Equation (25) shows that the innovation γ* of the non-maneuvering 
filter is a linear measurement of the input (maneuver). u is the presence 
of the additive “white noise,” γ. From Equation (24), it follows that 
the input can be estimated using the least square criterion and the 
estimation can be done in batch form as:

u S S y
^ T T= - - -( )1 1 1y y y � (26)

Where, S is a covariance matrix of γ(k) and it is given by S=diag [S(i)]
� (27)

The covariance matrix of u
^

 is given by:
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Fig. 1: Typical target observer encounter
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A maneuver is declared detected, only if it is statistically significant. The 
significance test for the vector estimate u

^  is:

d u u L u c
T
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Where, c is a threshold. As the estimate u
^

 is a normal random variable 
with mean zero and covariance L, then the statistic d is Chi-square 
distributed with n degrees of freedom and c is chosen such that the 
probability of false alarm is,
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If a maneuver is detected, then the state has to be corrected as follows.
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The covariance associated with the estimate is:

Pu (k+s+1/k+s)=P(k+s+s1/k+s)+MLMT� (33)

A maneuver is considered finished when the input estimate based 
on measurements from the sliding window of length s becomes 
insignificant. The length s is a design parameter.

SIMULATION AND RESULTS

The algorithm is realized using Matlab. For the implementation of the 
algorithm, the initial estimate of the target state vector is chosen as 
follows.

X R B R Bm m m m
T

(0/0) 10 15=éë ùûsin( ) cos( ) � (34)

Here, the velocity components are assumed to be 10 and 15 m/s, which 
are close to the realistic speed of the vehicles on seawater. The initial 
covariance matrix P (0/0) can be comfortably taken as unit diagonal 
matrix. The observer is assumed to be moving in straight line, at a constant 
speed of 18 m/s at a course of 60°. The underwater target is assumed to 
be moving at a speed of 6 m/s and at an initial range of 20,000 m with 
the initial bearing 60° relative to the observer. The noise in the bearing 
and Range are assumed to be 0.33° and 7 m r.m.s., respectively. The plant 
noise is chosen as 0.01. The time interval between the measurements is 
initially around 27  seconds. It reduces as subsequently the range gets 
decreased. Here, the transient matrix is not considered as a constant 
and it is updated along with the Kalman filter equations, whenever the 
measurements are obtained. The simulation is carried out for 30 minutes.

The number of scenarios is tested by changing the course of the target 
in steps of 10° in such a way that the angle between the target course 
and LOS is always <55°, as the closing targets are of interest to the 
observer. In general, the errors allowed in the estimated target motion 
parameters are 8% in the range, 0.2° in the bearing, 6° in the course, 
and 3 m/s in velocity estimates. The results of these scenarios in Monte-
Carlo simulations are noted and for the purpose of analysis a scenario 
at a target course equal to 140° as shown in Fig.  2 is considered. In 
subsequent Fig. 2a-d, the errors in the range, course, bearing and speed 
estimates are denoted by RngError, CrsError, BrgError and SpdError, 
respectively. The range, course, bearing and speed are converged 
at 4th  sample (105  seconds), 13th  sample (310  seconds), 4th  sample 
(105  seconds), and 6th  sample (154  seconds), respectively. From the 
results, it is observed that the total solution with the required accuracy 
is obtained from the 13th sample (310 seconds) onward.

In general, the window size of at least five samples is taken so that 
the reliability is increased in the highly noisy environment prevalent 
in underwater scenarios. The higher the window size the higher is 
the value of d(ξ). This window size is determined on the basis of the 
results of Monte-Carlo simulations against the number of geometries. 
If the window size is <5, it drastically reduces the reliability. Hence, a 
5-sample window is employed.

Fig. 2: Target motion analysis with single observation platform with straight run target, (a) Error in range estimates, (b) error is course 
estimates, (c) error in bearing estimates, (d) error in speed estimates

a

c

b

d



Innovare Journal of Science, Vol 5, Issue 1, 2017, 12-16
	 Jawahar and Chakravarthi	

15

The theoretical value of the Chi-square variable with 5 degrees 
of freedom at 90% confidence level is 9.24, and the same value is 
considered for maneuver detection. The scenario is run 100  times in 
Monte-Carlo Simulation and it is observed that the solution is obtained 
around 14th sample (330 seconds). Let us say that by 330 seconds, the 
process is stabilized. The statistic at this time is around 0.1. Thereafter, 
it never increased to more than 0.4.

The geometry shown in Fig.  3 is extended as follows. The target is 
assumed to do course maneuver at the time of 600 seconds from 140° 
to 45° with a turning rate of 3°/seconds as shown. The results after 100 
Monte-Carlo runs are shown in Fig. 3a-d.

The maneuver is given between 29th  sample (591  seconds) and 
30th sample (605 seconds). The maneuver is continued and completed 

Fig. 3: Target motion analysis with single observation platform with target maneuver, with target maneuver (a) Error in range estimates, 
(b) error in course estimates, (c) error in bearing estimates, (d) error in speed estimates
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c
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d

Fig. 4: Target motion analysis with single observation platform, (a) Error in course estimates, (b) error in speed estimates

a

b
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between 31st (620 seconds) and 32nd sample (635 seconds). The change 
in statistic at various timings is shown in Table 1.

The maneuver is detected first at the 31st  sample and continued to 
show up to 37th sample (704 seconds). Actually, the target maneuver is 
completed by 32nd sample but the statistic is reduced to below 9.4 after 
37th sample (704 seconds). Thereafter, the statistic is reduced to around 
0.4 and the process is stabilized.

The range estimate is not disturbed due to maneuver. The course and 
bearing speed are converged at 34th sample (662 seconds) and speed 

at 32nd sample (635 seconds). It is observed that the total solution with 
the required accuracy is obtained from the 34th sample (662 seconds) 
onwards.

More or less the practical requirement specifications are matching with 
that of theoretical threshold.

LIMITATIONS OF FILTER

The filter cannot provide good results when the measurements are 
corrupted with heavy noise. For the purpose of illustration, in the 
scenario Fig. 4, the noise in the range measurement is assumed to be 
100  m r.m.s instead of 7  m r.m.s. The results after 100 Monte-Carlo 
runs are evaluated, and the errors in course and speed are produced in 
Fig. 4a and b. It is clear from the figures that the filter is not able to its 
job when the noise in measurements is more.
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Table 1: Convergence time

Sample number Time Statistic
30 605 1.1
31 620 25.9
32 635 252
33 649 534
34 662 639
35 676 522
36 690 262
37 704 64


