SYNTHESIS OF ORGANIC COMPOUNDS AND STUDY IT IS LIQUID CRYSTALLINE BEHAVIOR

SAJIDA.H.RIDHA AND DHIA.A.HANOUSH

Department of Chemistry, Faculty of Education for Women, Iraq. Email: dia-dnan2001@yahoo.com

Received: 20 June 2017, Revised and Accepted: 20 August 2017

INTRODUCTION

Liquid crystals are new phases of matter add to the three well-known phases (solid, liquid and gas)[1]. The differences between these three well-known states can be attributed to the temperature of the substance. Temperature is a measure of the randomness of the molecules and therefore the higher the temperature is the less order they exist. Increasing temperature will cause the transition from a solid to a liquid and then to a gas. However, Many materials exhibit more than a single transition when passing from solid to liquid, which proves the presence of one or more intermediate phases[2]. The new phases have mechanical, optical and structural properties between those of crystalline solid and the corresponding isotropic liquid. These phases are referred to as liquid crystalline phases[3,4].

Thermotropic liquid crystals is one of two types of liquid crystals (and the second is called lyotropic). Most thermotropic liquid crystals are rod-like molecules having a rigid core composed of two or more aromatic rings and one or more flexible terminal chains.

The liquid crystal mesogen must contain a side-chain to give a linear that required to the liquid crystalline behavior. Schiff base (also known as imine CH=N) is a linking group used to connect between core groups. It has been received overwhelming response in liquid crystals research ever since in 1970 where Kelker discovered the 4-methoxybenzylidene-4′-butylaniline (MBBA) which exhibit nematic phase at room temperature.

In this our studies, Schiff base and alkoxy terminal moieties are incorporated into a new series of homologous compounds with two different group in the other side of chain,

4-(alkoxybenzylideneamino)benzoic acid and 4-methoxy-N-(4-alkoxybenzylidene)aniline. This two chain where prepared and then make a study about it is liquid crystalline behavior. Transition temperatures and phase characterization were studied by differential scanning calorimetry (DSC) and polarizing optical microscope (POM) techniques.

Experimental

Preparation of N-(4-hydroxyphenyl)actamide

18.3 mL of concentration hydrochloric acid and (0.22mol, 23.98 gm) of para- amino phenol were introduced in a beaker containing 500ml of distilled water. The mixture was stirred until the amine completely passes in to solution.

To the resulting solution 25.6mL of acetic anhydride with (three drops of H$_2$SO$_4$ acid concentration) were added and stirred and then immediately was poured in a solution of (33gm, 0.402mol) of crystallized sodium acetate in 100mL of water. The solution was stirred vigorously and cooled in ice.

The N-(4-hydroxyphenyl) acetamide was filtered with suction washed with a little distilled water and dried upon filter paper in air melting point was (169-170) C°[5,6]

Preparation of N-Alkali bromides

In a round bottomed flask equipped with a separation funnel and a condenser set downward for distillation, (71ml) of HBr acid (49%) and (16.5ml) of concentration H$_2$SO$_4$ acid drop wise was added with stirring.

After cooling(0.5mol) of appropriate alcohol was added in portions (the end of the condenser was connected to an adapter dipping in to water contained in a 250ml flask, the later was surrounded by ice) then (2.5ml) of concentration H$_2$SO$_4$ acid was introduced gradually through the separation funnel and the mixture was distilled slowly until no more oily drops pass over.
the organic layer was separated ,washed successively with water, 10% Na2CO3 solution and then with water, dried over anhydrous calcium chloride. It is used without further purification. [6].

Preparation of N-(4-methoxyphenyl) actamide

(3.75gm, 0.025mol) of 4-actemido phenol were dissolved in 15mL of ethanol in a conical flask and with added potassium hydroxide solution (1.85gm, 0.033mol) in a least volume of (~1.5mL) by stirred magnetic stirrer.

A solution of appropriate methane bromide (0.025mol) in 12.5mL dissolved in added ethanol,

The mixture heated by using appropriate condenser for more than one hour then 6mL distilled water added and the product was washed recrystallize for ethanol, melting point (129°C). [7].

Preparation of 4-methoxy aniline

In conical flask 4-N-(actamide–methoxy phenyl) (0.025mol) is dissolved in (12.5mL) ethanol and heated

Add to the mixture (3.75mL) potassium hydroxide solution (20M). The mixture was heated for three hours,

The product was extract of benzene then dried by anhydrous magnesium sulfate.

The benzene was evaporated by rotary evaporator, the product has a melting point 58°C. [5.6].

Prepare of 4-alkyloxy banaaldehyde

(3.77gm) (0.025mol) of 4-hydroxy banaaldehyde dissolved in 15mL of ethanol in a conical flask to the stirred solution and slowly was added solution of (0.033 mol) for KOH (1.85gm dissolved in less volume of water a (~ 1.5mL)).

Then it was added of a solution of appropriate Alkyl bromide (0.025mol) in 12.5mL ethanol.

The mixture was heated with stirring continued stir for more than one hour. 6mL of water was added to mixture and then the product was washed distillated water and the solvent was evaporated, the pure product was liquid yellow color. [7].

Prepare of Schiff bases

We prepare two chain Schiff bases

The first chain 4-(4-alkoxybenzylideneamino)benzoic acid

Equal moles number of 4-amino benzoic acid and 4-alkyloxy banaaldehyde dissolved in absolute ethanol with three drops of glacial acetic acid

the mixture was heated reflux for three hours,

The mixture was cooled and washed with a small amount of ethanol and then dried the resulting.

The compound was purified by ethanol about three once.

The second chain 4-methoxy-N-(4-alkoxybenzylidene)aniline

equal moles number of 4-methoxy aniline and 4-alkyloxy banaaldehyde dissolved in absolute ethanol with three drops of glacial acetic acid

The mixture was heated reflux for less than hours,

The mixture was cooled and washed with a small amount of ethanol and then dried the resulting.

The compound was purified by ethanol about three once. [8]

RESULTS AND DISCUSSION

Identification of Prepared compound

CHN analysis: all data of analysis of compounds in this table (2

Table 2: physical properties of compounds & Elemental analysis

<table>
<thead>
<tr>
<th>Compound</th>
<th>Formula</th>
<th>Prepd. as</th>
<th>%</th>
<th>&%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4</td>
<td>C6H4NO2</td>
<td>269.34</td>
<td>75.81</td>
<td>78.85</td>
<td>7.11</td>
</tr>
<tr>
<td>M6</td>
<td>C6H4NO2</td>
<td>311.42</td>
<td>77.14</td>
<td>78.774</td>
<td>8.09</td>
</tr>
<tr>
<td>C5</td>
<td>C6H4NO2</td>
<td>311.37</td>
<td>75.29</td>
<td>72.920</td>
<td>8.0</td>
</tr>
<tr>
<td>C7</td>
<td>C6H4NO2</td>
<td>339.34</td>
<td>74.31</td>
<td>73.872</td>
<td>7.42</td>
</tr>
</tbody>
</table>
Table 1: Chemical structures and melting point, color and yield of the prepared compounds

FT-IR spectra: which gave good indicators about all data of functional groups in prepared compounds

Fig.4: Infrared spectrum of the compound C5
1. Absorption band at 1118 due to a group -O-CH₂-CH₂
2. Absorption band at 1618 due to imine group CH = N
3. Absorption band at 1737 due to the carbonyl of carboxylic group
4. Absorption band at 2918 due to aliphatic CH
5. Broadband absorption at 2574-3200 due to OH of Carbonyl group
6. Absorption band at 3034 due to aromatic CH

Fig.5: Infrared spectrum of the compound C7
From IR spectrum of a compound most important absorption bands represent functional groups are:

1. Absorption band at 1170 due to a group -O-CH₂-CH₂
2. Absorption band at 1630 belonged due to imine group CH = N
3. Absorption band at 1735 due to the carbonyl of carboxylic group
4. Absorption band at 2983 due to aliphatic CH
5. Broadband absorption at 2574-3200 due to OH of Carbonyl group
6. Absorption band at 3034 due to aromatic CH

FT-IR spectra: which gave good indicators about all data of functional groups in prepared compounds

Fig.6: Infrared spectrum of the compound M4
1. Absorption band at 1116 due to ether -O-CH₂-CH₂
2. Absorption band at 1154 due to ether -O-CH₃
3. Absorption band at 1624 due to imine group CH = N
4. Absorption band at 2968 due to aliphatic CH
5. Absorption band at 3043 due to aromatic CH

Fig.7: Infrared spectrum of the compound M6
1. Absorption band at 1168 due to ether -O-CH₂-CH₂
2. Absorption band at 1168 due to ether -O-CH₃
3. Absorption band at 1207 due to ether -O-CH₃
4. Absorption band at 2912 due to aliphatic CH
5. Absorption band at 3032 due to aromatic CH

HNMR spectra: all peaks appeared in figures

Fig.8: Nuclear magnetic resonance spectrum of the compound C5
1. peaks at (0.90-1.80) ppm due to alkyl groups \((\text{CH}_3\text{CH}_2\text{CH}_2)\)
2. peaks at (6.25) ppm solvent due to DMSO-d
3. peaks at (3.41) ppm solvent due to O-CH2
4. peaks at (6.62-7.84) ppm due to phenyl ring
5. peaks at (8.41) ppm due to \((\text{CH} = \text{N})\)
6. peaks at (12.98) ppm due to Carboxyl group

Fig. 9: HNMR spectrum of the compound C7

1. peaks at (0.90-1.50) ppm due to alkyl groups \((\text{CH}_3\text{CH}_2\text{CH}_2)\)
2. peaks at (2.5) ppm solvent due to DMSO-d
3. peaks at (3.5) ppm solvent due to O-CH2
4. peaks at (6.61-7.42) ppm due to phenyl ring
5. peaks at (8.11) ppm due to \((\text{CH} = \text{N})\)
6. peaks at (12.98) ppm due to Carboxyl group

Fig. 10: HNMR spectrum of the compound M4

1. peaks at (0.90-1.70) ppm due to alkyl groups \((\text{CH}_3\text{CH}_2\text{CH}_2)\)
2. peaks at (2.5) ppm due to solvent DMSO-d
3. peaks at (3.10) ppm due to O-CH2
4. peaks at (3.30-3.60) ppm due to OCH2CH2
5. peaks at (6.97-7.47) ppm due to phenyl ring
6. peaks at (8.55) ppm due to \((\text{CH} = \text{N})\)

Determination of the transition temperatures of the two series prepared compounds:

The transition temperatures for the compounds of the two series using a polarized optical microscope (POM) and differential scanning calorimeter with increasing the temperature transform from crystal phase to liquid crystal phase then to the liquid phase (Isotropic).

The compound C3 4-(4-propoxybenzylidene) amino benzoic acid

The melting point to this compound was (190-193°C).

In DSC it shown us below:

Form (1) curve differential scanning Calorimeter to compound C3

The amount of the sample used in the DSC has been very little 8.2mg, so there was interference between curves in the cooling and heating, in addition to the fact that the amount of heat absorbed in the transition (solid - liquid crystalline) more than (liquid crystal - isotropic). It showed that the compound is a monotropic liquid crystalline properties at (160-187°C), as it is clear in the curve.

Image (1) POM of the compound C3 at 169°C at heating

The compound C54-((4-pentyloxy)benzylidene)aminobenzoic acid

The melting point to this compound was (180-183°C).

In DSC it shown us below
Form (2) curve differential scanning Calorimeter to compound C5
We note also the properties of monotropic liquid crystalline phase at cooling between (161-149°C). In POM below we note a Nematic phase.

Image (2) POM of the compound C5 154°C at cooling

The compound C7 4-((4-heptyloxy) benzylidene)amino) benzoic acid
The melting point to this compound was (158-156°C).
In DSC it shown us below:

Form (3) curve differential scanning Calorimeter to compound C7
It gave the properties of liquid crystalline phases at heating and cooling (enantioptropic properties). It showed liquid crystalline phase at heating (130-154°C).

Image (3) POM of the compound C7 135°C at heating

Image (4) POM of the compound C7 131°C at cooling

Image (5) POM of the compound C7 (100°C) at cooling

The compound M4 N-(4-butoxybenzylidene)-4-methoxyaniline
The melting point to this compound was (112°C).
In DSC it shown us below:

Form (4) curve differential scanning Calorimeter compound M4
According to the DSC compound M4 gave monotropic properties at cooling only. gave the liquid crystalline phase between the (100-83°C).
The compound M6 N-(4-(hexyloxy)benzylidene)-4-methoxyaniline

The melting point to this compound was (103-104 °C).

In DSC it showed us below

Form (5) curve differential scanning Calorimeter compound M6

It showed a monotropic properties according to the DSC where we see liquid crystal phase between (80-93°C)

REFERENCES