INNOVARE JOURNAL OF SCIENCES

Vol 8, Special Issue 1, 2020

Full Proceeding Paper

SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL STUDIES OF M(II) COMPLEXES WITH2,3-BUTANEDIONE-3-MONOXIME

VAISHALI H. RAJURKAR

D. G. Ruparel college of Arts, Science and Commerce, Mahim, Mumbai University, Mumbai, India. Email: vaishali.rajurkar@ruparel.edu

Received: 25 January 2020, Revised and Accepted: 17 March 2020

ABSTRACT

Objective: Various Schiff bases and their metal complexes have wide applications in various fields such as pharmaceuticals, analytical, clinical, biological etc due to theirbiological activity such as antibacterial, antifungal, anticancer, antidiuretic, antioxidant etc.

Materials and Methods: Reaction between 2,3-Butanedione-3-monoxime, 3/4-hydroxyphenyl and some hydrated metal salts of Mn^{II} gives complexes of the type [MnL₂2(H₂O)]. The ligands and the complexes were characterized by elemental analysis, magnetic susceptibility measurements and spectral (I.R., U.V.-Vis., N.M.R.) analysis. Anti-bacterial and anti-fungal activity of the schiff base ligands and their metal complexes have been studied using the agar well diffusion method and ditch diffusion method.

Results: Spectroscopic study showsbidentate ligands and coordination occurs through oxime oxygen after deprotonation and nitrogen of azomethine group.Ligands and metal complexes shows activity against *S. aureus* (gm positive), *P. aeruginosa* (gm negative), *Aspergillusniger* and *Candidaalbicans*.

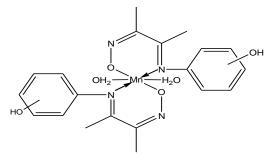
Conclusion: The spectral and magnetic study suggests octahedral geometry for metal complexes. Metal complexes as most promising antifungal and antibacterial against *Staphylococcus aureus* and *Pseudomonas aeruginosa* as compared to Schiff bases.

Keywords: Antifungal and antibacterial agents. Bidentate ligands

INTRODUCTION

Metal complexes with various donar groups had attracted by many workers[1-3] due to theirbiological, pharmacological, clinical and analytical importance. Thiophene derivatives exhibit an array of biological activity such as antibacterial and antifungal activity [4-6].Piperonylamine Schiff bases metal complexes are most potent antimicrobial agents as compared to its Schiff bases[7]. Macrocyclic Schiff base metal complexes derived from 1,4-dicarbonylphenyl dihydrazide and pentane-2,4-dione also acts as growth inhibiting agents against some bacteria and fungi.[8]. There is enormous interest presently in the field of coordination chemistry of '3d' transition metals with Schiff bases. They have also been used as biological models [9], oxygen carriers and antifertile agents on male albino rats[10].Some studies of metal complexes of diacetylmonoxime and their related ligands have been reported [11-12].We have already reported the antibacterial and antifungal properties of 2-nitroaniline 2,3-Butanedione 3-monoxime and 3nitroaniline 2,3-Butanedione 3-monoxime and their metal complexes[13].In this paper we reported the study of 3hydroxyphenyl 2,3-Butanedione 3-monoxime (L¹)and 4hydroxyphenyl 2,3-Butanedione 3-monoxime (L²) and their Mn^{II} complexes. The main interest in this ligand originates in its oxime group containing -N-O- donar atoms.

Materials and method


 L^1 and L^2 were prepared according to the literature method [12,14]. All the chemicals used for synthesis wereanalytical grade. 2,3-Butanedione 3-monoxime was obtained from Thomas Baker, 3-hydroxyphenyl and 4-hydroxyphenyl were obtained from Aldrich.

Synthesis of Ligand and metal complexes

2,3-Butanedione 3-monoxime and 3/4-hydroxyphenyl in 1:1 proportion were dissolved separately in absolute alcohol, mixed and refluxed for 4 hrs. inwater bath. After heating insoluble materials removed by filtration and cooled. A dark brown needle shaped L^1 and L^2 formed.

The prepared ligand and metal salts in 2:1 proportion were mixed and refluxed for 4 hrs. in water bath. After cooling insoluble materials removed by filtration, coloured crystalline metal complexes formed, recrystallized and dried over anhydrous CaCl₂. The physical and analytical data listed in table 1.

Structure of metal complex

Antibacterial activity and Antifungal activity

The synthesized ligands and complexes were screened for in vitro growth inhibitory activity against gram-positive bacteria *Staphylococcusaureus* and gram-negative bacteria*Pseudomonasaeruginosa* by well diffusion method and fungi against *Aspergillusniger* and *Candidaalbicans* by ditch diffusion method. [6, 15].

The lowest concentration of compounds, which completely inhibited visible microbial growth, was recorded as the Minimum inhibitory concentration (MIC, μ g/ml) [5, 8].Subsequent dilutions (80%, 60%, 40%, and 20%) made by using DMF. Under aseptic conditions, the diluted test solution with different concentrationwas pour to the disc and ditch placed on the numbered plates. Then the plates incubate at room temperature for 24 hr. During this period, the test solution diffused and the growth of the inoculated microorganisms affected.

Antibacterial activity indicated by the presence of clear inhibition zone around the well and antifungal activity indicated by the presence of inhibition zone nearer to the ditch. The zones of inhibition exhibited by the ligands and complexes matched with ciprofloxacin as an antibiotic and fluconazol as an antifungalat the same concentrations.

RESULTS AND DISCUSSION

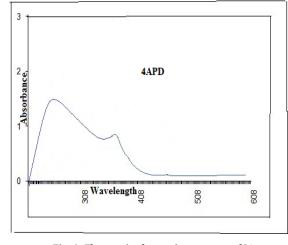

The complexes are stable in air but decomposed at high temperature. Easily soluble in dimethylformamide (DMF) and dimethylsulphoxide (DMSO).The physical and elemental analysis of ligands and metal complexeslisted in table 1.

Table 1: Physical and elemental analysis									
Name of the compounds	% Yield	Molecular formula(mol. Wt.)	Melting point	Elemental A					
				С%	Н%	N%	Mn%		
L1	90	$C_{10}H_{12}N_2O_2$	375K	51.898	3.6806	18.292	-		
(brown)		(192.1)		(54.319)	(4.974)	(19.0)			
Mn-L ¹ .2H ₂ O	70	$[MnC_{20}H_{27}N_2O_2]$	< 573K	50.74	5.51	11.80	11.61		
(dark red brown)				(50.74)	(5.53)	(11.83)	(11.60)		
L ²	90	$C_{10}H_{12}N_2O_2$	415K	51.898	3.6806	18.29	-		
(dark red brown)		(192.1)		(54.319)	(4.974)	(19.00)			
Mn-L ² .2H ₂ O	65	[MnC ₂₀ H ₂₇ N ₂ O ₂]	< 573K	50.71	5.50	11.84	11.58		
(dark red brown)				(50.74)	(5.53)	(11.83)	(11.60)		

Electronic Spectra and Magnetic moment

The electronic spectrum of ligands and complexes helps to indicate the geometry. The important electronic spectral bands recorded in table2. The spectraof the ligand shows strong absorption bands in the region 260 to 280nm but in complexes they are slightlyshifted to lower frequency[16] which are $\pi \rightarrow \pi^*$ charge transfer transitions. The bands in the region 360 to 430nm can be assigned to the $n\!\rightarrow\,\pi^*$ transitions of the azomethine group.In the spectra of bothmetal complexes in which the bands of the azomethine chromophore $n{\rightarrow}\pi^*$ transitions are shifted tolower frequencies indicating that the imine nitrogen atom is involved incoordination to the metal ion[17].Mn^{II} complexes shows low intensity absorption bands associated with d-d transition supports the coordinated geometry of the Mn-complexes [18] similarly spin allowed transition for Mn^{II} in octahedral field [6] are⁶A_{1g} \rightarrow ⁴T_{2g} (D) (500-515nm),⁶A_{1g} \rightarrow ${}^{4}T_{2g}$ (D) (600-625nm), ${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}$ (700-720nm) indicates octahedral geometry.

The room temperature magnetic moment values also help to indicate the geometry. The magnetic moment value of Mn^{II} in rang 5.7 to 6.0BM is close to theoretical spin only value (μ_{eff} =6.4 to 6.5BM) for Mn²⁺(d⁵ system)indicates octahedral geometry of the complexes[19].

Fig. 1: Electronic absorption spectra of L²

Table 2: Electronic spectral data and magnetic values of the metal complexes

Name of the compounds	μeff (BM)	$\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$ transitions and charge transitions(nm)	d-d transitions
L1	-	264, 425	-
Mn- L1.2H20	6.400	275, 378	506, 624, 710
L ²	-	265, 396	-
Mn- L ² .2H ₂ O	6.500	276, 380	506, 625, 714

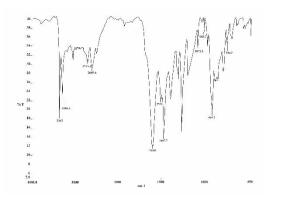


Fig. 2: IR Spectra of L¹

Infrared Spectra - The I.R. spectra (table3) shows, complexes behave as bidentate coordinating ligand via theazomethine nitrogen $(C=N^*)$ and oxygen of oxime (-NOH) group by replacement of

hydrogen ionformingsix-membered ring around metal ion[12].In the ligand azomethine (C=N*) group is at high wavenumber but in metal complexes it shifts tolower wavenumber, this indicates the imine nitrogen atom involved in coordination to the metal ion[16,20] while oxime (C=N) remain more or less at the same position. The N-O band in ligand observed at 998cm⁻¹ but in metal complexes it shifts to higher wavenumber, this indicates the oxygen atom by replacingoxime proton involved in coordination to the metal ion[12,18]. A bandobserved in the ligand at about 3296cm⁻¹ due to N-H group present in the imidazole ring which is rarelyobserved in metal complexes. Phenolic (O-H) in ligands and their metal complexes observed in rang 3360-2609cm-1means (0-H) of hydroxyphenyl does not involved in coordination or ligand formation. A broad band observed in all the complexes in rang ~3396cm⁻¹ due to (O-H) of the coordinated H₂O. This is supported by the appearance of an additional band in the rang 950-900cm⁻¹ for (0-H) rocking deformation and 800-750 cm⁻¹ for (O-H) wagging mode of coordination which isnot observed in the ligand spectrum[18]. Thus,H₂O is coordinated in metal complexes. New bands appearin the

450-420 and 400-360 cm⁻¹ assignable to the v(Mn-O) and v(Mn-N) resp. in metal complexesonly [21, 22].

¹H N.M.R. analysis-The proton nuclear magnetic resonances for ligands recorded in deuterated CDCl₃ as a solvent. The chemical shifts in term of δ ppm tabulated in Table4. In ligands a broad peak of-OH of oxime is not observed due to rapid exchange with the solvent CDCl₃[11,23].There are two signals in between 1.70 to 2.00 ppm are due to presence of methyl protons in all Schiff bases. A peak of phenyl -OH for L¹ and L² observed at 9.73 and 9.59ppm. Similarly, multiple signals in the region δ = 7.30-8.10 ppm are assignable to aromatic protons.

Antibacterial and Antifungal activity

The inhibitory zones are shown in table5&6.It has been observe that the metal complexes have moderate antibacterial and antifungal activity than the free ligands but less activity as compared to standard drugs. Only L²shows inhibitory zone up to 37mm for Staphylococcusaureusand moderate activity for

Pseudomonasaeruginosa at higher concentration. There is moderate activity for both the ligands and their complexes against Aspergillus niger and less activity against Candidaalbicans.

It has been suggest that the complexes having antimicrobial activity may act either by killing the microbes or by inhibiting multiplication of the microbes by blocking their active sites of enzymes [24]. This is also probably due to the greater lipophilic nature of the complexes. The lipid membrane that surrounds the cellfavors the passage of only lipid soluble material, which controls the microbial activity.

On chelation, the metal ion will be reducelargely due to the overlap of the ligand orbital and partial sharing of positive charge of the metal ion with donar groups. Further, it increases the delocalization of π electron over the completely chelate ring and enhances the lipophilicity of the complex [25]. This lipophilicity enhances the penetration of the complex into lipid membrane and blocks the metal binding sites on enzymes of microorganisms.

Table3: I.R. bands of ligands and metal complexes

Name of the compounds	υ(C=N*)	υ(C=N)	υ(N-0)	υ(M-0)	υ(M-N)	υ(O-H) phenolic
L1	1602	1531	998	-	-	3296
Mn- L1.2H20	1609	1494	1116	521	456	3198
L ²	1602	1532	998	-	-	3296
Mn- L ² .2H ₂ O	1610	1490	1101	520	450	3195

	Table 4: NMR signal in (δppm) of L ¹ and L ² .							
Sr. no.	Schiff base	NMR signals in(δppm)						
1	L^1	7.2-8.0 (4H, multiplate, Ar-H), 1.9(3H, S, -CH3)						
		2.20 (3H, S, -CH3), 10.00 (1H, S, -OH [Carboxylic])						
2	L^2	7.2-8.0 (4H, multiplate, Ar-H), 1.9(3H, S, -CH3)						
		2.20 (3H, S, -CH3),10.10(1H, S, -OH [Carboxylic])						

		Tal	ble 5: Anti	bacterial ac	ctivity				
Compound		Pseudomoi	nas aerugi %	inosa (mm)		S	taphyloco	ccus aureu. %	s (mm)
	20	40	60	80	100	20	40	60	80

		20	40	60	80	100	20	40	60	80	100
1	3APD	-	-	-	-	+(16)	-	-	-	-	-
2	$[Mn(3APD)_2(H_2O)_2]$	-	-	+(15)	+(20)	++(23)	-	-	+(16)	+(20)	++(23)
3	4APD	-	+(20)	+(20)	++(22)	+++(37)	+(20)	++(22)	++(2.3)	++(24)	++(24)
4	[Mn(4APD) ₂ (H ₂ O) ₂]	-	-	+(17)	+(18)	+(20)	-	-	+(17)	+(20)	++(22)
	Standard	+++	+++	+++	++++	++++	+++	+++	+++	++++	++++

- less activity + 0 to 15mm ++ 15 to 30mm +++ 30 to 45mm++++ above 45mm

Table 6: Antifungal activity

Name of compounds		A	spergellus ı	niger		Candida albicans					
_	20%	40%	60%	80%	100%	20%	40%	60%	80%	100%	
L ¹	-	+	+	++	++	-	-	-	-	+	
$Mn-L_{2}^{1}2H_{2}O$	-	+	+	++	++	-	-	+	+	++	
L ²	-	+	+	++	++	-	-	-	-	+	
$Mn-L^{2}_{2}2H_{2}O$	-	+	+	++	++	-	+	+	+	++	
Fluconazole	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	

+ less activity, ++ moderate activity, +++ higher activity

CONCLUSION

S.NO.

The ligands 3-hydroxyphenyl 2,3-Butanedione 3-monoxime (L1) and 4-hydroxyphenyl 2,3-Butanedione 3-monoxime (L2) and their MnII complexes had been synthesized and characterized. Both the complexes exhibit octahedral geometry by involment of azomethine nitrogen and oxime oxygen. Metal complexes as compared to Schiff bases exhibited most potent antifungal activity and antibacterial against Staphylococcus aureus and Pseudomonas aeruginosa.

REFERENCES

- Marie F. Renehan, Hans Jorg S.chanz, Eoghan M, McGarrigle, 1. Adrian M. Daly, Declan G. Gilheany. Unsymmetrical chiral salen Schiff base ligands synthesis and use in metal based asymmetric epoxidation reactions. J of Mole. Catalysis A: Chemical 2005; 231; 205-208.
- Shrivastava HY, Devaraj SN, Nain BU. A schiff base complex of 2. chromium(III) : an efficient inhibitor for pathogenic and invasive potential of shingella dysenteriar . J.Inorg Biochem, 2004;98(2);387-392.

Innovare Journal of science, Vol 8, Special Issue 1, 2020,

- El-TabiAS, AlyF A, Moh. ME Shkdofa, Adel ME Shakdofa.Synthesis, characterization and biological activity of metal complexes of azohydrazone ligand. J.. of Coord. Chem.2010;63(4);700-712.
- DevaniMB, ShishooCJ, PathakUS, ParikhSH, ShahGF, PandyaAC. Synthesis of 3-substituted thieno[2,3-d]pyrimidin-4(3H)-one-2-mercaptoacetic acids and their ethyl esters for pharmacological screening; J. of Pharm.sci., 1976;65(5).
- ChambhareRV, BobadeAS,KhadseBG, Synthesis of novel 3-N-[(substituted aryl/ heteroaryl)-methylene]-imino-2-methyl-5thienyl-thieno[2,3-d]pyrimidin-4-3H-ones as possible antimicrobial agents. Indian J. of Heteroc chem; 2002;12(1);67-68.
- MannaP, Rameswar Singh, NarangK, MannaSK.Synthesis antifungal, antitumor and antiinflammatory activities of some new 5-substitutedarylimino-2-N-p-tolylsulphonyl-3-oxo-1,2,4thiadiazolidine; Ind J Hetero chem.,2004; 13(3);249-252.
- DeviJ, YadavM, KumarA.Synthesis , characterization, biological activity and QSAR studies of transition metal complexes derived from pieronylamine Schiff base. chem. Pap.72, 2018;2479-2502.
- GullP, HashmiAA. Biological activity studies on metal complexes of macrocyclic Schiff base ligand: synthesis and spectroscopic characterization. JBraz. chem. Soc, 2015;https://doi.org/10.5935?0103-5053.20150099.
- Reddy, MohanPR, Raju SK, EttaiahRM, Pappula. Zinc complexes for hydrolytic cleavage of DNA.; Indi J of chem. Sec-A, 45, 2006;2381-2391.
- [10] Biyala, M.K. Fahmi, N. Singh. Antifertility and antimicrobial activities of palladium and platinum complexes of 6 nitro 3-(indolin-2-one) hydrazine carbothioamide and 6-nitro-3-(indolin-2-one) hydrazinecarboxamide. Indi. J of chem.sec-A; 2006;45A(09);1999-2004.
- 11. Gaber M., Abu.El-Reash, Kamal M. Ibrahim, BekheitMM. Ligational behaviour of biacetylmonoxime nicotinoyl hydrazine e(H2BMNH)towards transition metal ions. Tran. Mett. Chem. 1990;15;148-151.
- 12. SmekalZ, BrezinaF, NadvornikM. Binuclear iron(III)complexes with the tetradentate Schiff base N,N'-bis(salicylidene) ethylenediamine and dicarboxylic acids or dithiooxamide as bridging ligands. Tran. Mett. Chem. ;1996;21;49-51.
- ManiksheteAH, KambleVN, Sarsamkar SK, DoedwareS. Synthesis, spectral and biological studies of Cr(III), Mn(II) and Fe(II) complexes with diacetylmonoxime. Orint. J. of chem.2010;26;573-575.
- 14. Emad Yousif, AbdullahB. Metal complexes of Schiff base: preparation, characterization and antibacterial activity. Arabian J. of Chem; 2017;10(2);S1639-S1644.

- 15. Raman N, Dhaveethu RajaJ, SakthivelA. Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies. J. of chem. Sci. 2007;119(4);303-310.
- 16. Kamal M. Ibrahim, Ahmed A.El-Asmy, MostafaMM.Ligational behaviour of biacetylmonoxime-oaminobenzoylhydrazone(H2BMAB) towards some di positive metal ions. Tran. Mett. Chem, 1985;10;175-178.
- SonmezM. Erciyes universitesi Fen Bilimleri Enstitusu Dergisi, Binuclear Cu(II) complexes of ono tridentate heterocyclic schiff base derived from N-aminopyrimidine with substitutes salicylaldehyde or 2-hydroxynaphthaldehyde, 2008;24(1-2);308-314.
- NassarAM, HassanAM, El kmashAN.Synthesis characterization and anticorrosion studies of new homobimetallic Co(II), Ni(II), Cu(II), and Zn(II) Schiff base complexes. J. of Bio- and Tribo Corrosion, 2015;19.
- SawantVA, GotpagarSN, YamgarBA, SawantSK, KankariyaRD, ChavanSS. Characterization and electrochemical studies of Mn(II), Co(II), Ni(II) and Cu(II) complexes with 2-mercapto-3substituted-quinazolin-4-one and 1,10-phenanthroline or ethylenediamine as ligands. Spectrochimica Acta part A:Molecular & Biomolecular Spectroscopy,2009; 72(3);663-669.
- 20. J.D.Lee, Concise Inorganic Chemistry, 5th edition, London, (669671), 1996.
- BagihalliGB, AvajiPG, BadamiPS, PatilSA. Synthesis spectral characterization, electrochemical and biological studies of Co(II), Ni(II) and Cu(II) complexes with thiocarbohydrazone. J. of co-ord. Chem.2008;61(),17;2793-2806.
- MangamambaT, GanorkarMC, Swarnabala G.Characterization of complexes synthesizes using Schiff base ligands and their screening for toxicity two fungal and one bacterial species on rice pathogens. Intern. J. of Inor. chem.: https://doi.org?10.1155/2014/736538.
- 23. ZayedEM, MohamedGG, HindyAM, Transition metal complexes of novel Schiff base,: synthesis spectroscopic characterization in vitro antimicrobial activity of complexes. J of Thermal Ana. and colorimetry, 2015; 120;893-903.
- 24. MohamedGG, OmarMM, HindyAMM. Synthesis, characterization and biological activity of some transition metals with Schiff base derived from 2-thiophene carboxaldehydw and aminobenzoic acid. Spectrochimica Acta-A, 2005;62;1140-1150.
- 25. El-BaradieKY. Preparation and characterization of sulfadiazine Schiff base complexes of Co(II), Ni(II), Cu(II) and Mn(II). 2005;136;1139-1155.