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ABSTRACT  

Objective: One-pot multicomponent reactions (MCRs) that convert more than two reactants directly into their products are of interest to chemists, 
owing to conserving atom economy and fostering the benign synthesis of organic compound like 2,4,5-trisubstituted Imidazoles derivatives. were 
efficiently synthesized by the reaction of benzyl/benzoin, ammonium acetate, and aromatic aldehydes in the presence of Silicotungstic acid as catalyst 
in ethanol. 

 Materials and Methods: 2,4,5-trisubstituted Imidazoles derivatives were efficiently synthesized by the reaction of benzyl/benzoin, ammonium 
acetate, and aromatic aldehydes in the presence of Silicotungstic acid as catalyst in ethanol under reflux. 

Result: The syntheses of 2,4,5-triarylimidazoles using various benzaldehyde, benzil, ammonium acetate in the presence of a catalytic amount of 
silicotungstic acid (7.5 % ) under reflux using ethanol as solvent. 

Conclusion: The attractive features of this process are mild reaction conditions, short reaction times, easy isolation of products, and excellent yields.  
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INTRODUCTION One-pot multicomponent reactions (MCRs) that 
convert more than two reactants directly into their products are of 
interest to chemists, owing to conserving atom economy and 
fostering the benign synthesis of organic compounds. MCRs are part 
of the latest advanced solutions for decreasing the discovery and 
development times for new drugs, and potentially reducing the 
development costs and complexity in the process. Thus, useful 
structural variations can be increased [1, 2].  

Substituted imidazoles have gained remarkable importance as 
pharmaceutical agents with antitumor [3], and antiinflammatory 
actions [4], antibacterial agents [5] herbicides [6], fungicides [7], 
inhibitors of P38 MAP kinase [8] as well as inhibitors of mammalian 
15-LOX [9]. In addition to this, imidazoles are substantially used in 
the synthesis of ionic liquids [10]. They are also used in photography 
as photosensitive compounds [11]. Hence, Due to their great 
importance, many synthetic strategies have been developed. In 1882, 
Radziszewski and Japp reported the first synthesis of the imidazole 
from 1,2-dicarbonyl compound, various aldehydes and ammonia, to 
obtain the 2,4,5-triphenylimidazoles [12].  

Recently, there are several methods reported in the literature for the 
synthesis of 2,4,5-triaryl-1H-imidazoles from benzyl/benzoin, 
aldehydes and ammonium acetate using different catalyst such as 
Keggintype heteropolyacid [13], Yb(OTf)3 [14], iodine [15], PEG-400 
[16], L-proline [17] Y(TFA)3 [18], poly(AMPS-co-AA) [19],Tannic acid 
[20], SbCl3[21],Rochelle Salt[22], nanoporous material (SBA-Pr-
SO3H) [23], NiCoFe2O4 [24], La0.5 Pb0.5MnO3 [25] and 4 Å molecular 
sieves with titanium(IV) [26]. In recent years, silicotungstic acid has 
been successfully used as a acid catalyst for various organic synthetic 
transformations such as bis(indolyl)methane synthesis [27], 
alkylation of benzene with olefins [28], production of acrolein from 
glycerol [29], indole Michael addition [30], 1,2-dihydroquinones 
[31]and synthesis of oxindole derivatives [32]. We wish now to 
report a new usage of silicotungstic acid as an impressive, 
inexpensive and easily handling acid catalyst for the synthesis of 
2,4,5-trisubstituted Imidazoles derivatives via the condensation 
reaction of benzyl/benzoin, ammonium acetate, and aromatic 
aldehydes at reflux temperature. 

 

 

 

MATERIALS AND METHODS 

Experimental 

All the melting points were determined in open capillaries in an 
paraffin bath and are uncorrected. IR spectra were recorded on a 
Perkin-Elmer FTIR using KBr discs. 1H NMR spectra were 
recorded on Mercury plus Varian in DMSO or CDCl3 at 500 MHz 
using TMS as an internal standard. Mass spectra were recorded 
on Micromass Quattro II using electrospray Ionization technique. 
The progress of the reactions was monitoredby TLC.General 
experimental procedure synthesis of 2,4,5-triaryl-1H-
imidazole (4a-l). A mixture of an aromatic aldehyde (1 mmol), 
benzyl/benzoin (1 mmol), ammonium acetate (2.5 mmol) and 
silicotungstic acid (7.5 mol %) in ethanol (15 ml) was stirred at 
reflux temperature for 3.5~7 hr. The progress of the reaction 
was monitored by TLC. After completion of reaction conversion, 
the reaction mixture was cooled to room temperature and 
poured on crushed ice. The obtained crude solid product was 
filtered, dried and crystallized from ethanol. 

RESULTS AND DISCUSSION 

In continuation of our research work on the development of 
novel synthetic methodologies, we would like to report a highly 
efficient route for the synthesis of 2,4,5-triaryl imidazoles 
catalyzed by an commercially available, inexpensive, mild 
catalyst silicotungstic acid. 

Here we wish to report a very simple and general method for the 
syntheses of 2,4,5-triarylimidazoles (4a-l) in the presence of a 
catalytic amount of silicotungstic acid under reflux using ethanol 
as solvent (Scheme 1) considered as a standard model reaction. 
As an example, we examined the reaction among 4- 
chlorobenzaldehyde, benzil, ammonium acetate, and 
silicotungstic acid (7.5mol %) using ethanol as solvent under 
reflux condation. 

To evaluate the effect of solvent, we have screened different 
solvents such as chloroform, acetonitrile, dichloromethane, 
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tetrahydrofuran, dioxane, methanol, ethanol, ethanol:water (1:1) 
at reflux temperature. Ethanol stand out as the solvent of choice 
among the solvents tested because of the rapid conversion and 
excellent yield (97%) of desired product, whereas the product  

formed in lower yields (25~80%) by using other solvents (Table 
1, Entry 1~8). In case of the protic solvents the yields are better 
than aprotic solvent. (Table 1, Entry 6~8). 

 

 

 

Scheme 1: Synthesis of 2,4,5-triarylimidazoles (4a-l) 

Table 1: Screening of solvents for the synthesis of 4a 

Entry Solvent Yield(%) 
1 Chloroform 45 
2 Acetonitrile 40 
3 Dichloromethane 47 
4 Tetrahydrofuran 42 
5 Dioxane 25 
6 Methanol 75 
7 Ethanol 94 
8 Ethanol:Water(1:1) 80 

 

To determine the optimum concentration of catalyst, we 
have investigated the model reaction at 2.5, 5, 7.5 and 10 
mol% of silicotungstic acid in ethanol at reflux temperature. 
The product was obtained in 63, 85, 94 and 94% yield, 
respectively. This indicates that the use of 7.5 mol% of 
silicotungstic acid is sufficient to promote the reaction 
forward (Table 2).  

Table 2: Effect of concentration of silicotungstic acid 

 

To study the generality of this process, variety of examples 
were illustrated for the synthesis of 2,4,5-triaryl imidazoles 
and results are summarized in Table 3. The reaction is 
compatible for various substituents such as electron 
donating and withdrawing. This method is also effective for 
the heteroaromatic aldehydes which form their 
corresponding 2,4,5-triarylimidazole derivatives in 82∼94% 
of yields. The formation of the desired products was 
confirmed by 1H-NMR, FT-IR and mass spectroscopic 
analysis techniques. 

Table 3: Silicotungstic acid catalyzed synthesis of 2,4, 5, triaryl substituted imidazoles 

Entry Entry Product Ar- 
Time (h) Yield (%) 

M.P. (°C) 
Benzil Benzoin Benzil Benzoin 

1   4a 4-ClC6H4 5.5 6.5 94 90 257-259 
2 4b C6H5 4.5 6 92 89 273-275 
3 4c 4-OCH3C6H4 4 5.5 89 85 228-229 
4 4d 4-NO2C6H4 6.5 7 85 82 233-234 
5 4e 4-CH3C6H4 4 5 87 85 230-232 
6 4f 2-ClC6H4 5 6.5 91 90 195-197 
7 4g 4(CH3)2NC6H4 4.5 6 92 89 257-259 
8 4h 4-OHC6H4 5.5 6.5 91 88 270-271 
9 4i 4-FC6H4 3.5 4.5 93 90 192-193 
10 4j 4-OH,3-OCH3C6H 5 6.5 90 88 220-222 
11 4k C4H3O 4.5 6 92 89 199-201 
12 4l C4H3S 5 6.5 91 88 259-261 
 

CONCLUSION 

In this report we have demonstrated the application of silicotungstic 
acid (STA) as a very effective, eco-friendly and inexpensive 
commercial-available catalyst in the synthesis of 2,4,5-triaryl-1H-
imidazole at reflux temperature. Simple experimental procedure 
associated with high yield, less reaction time makes this protocol 
interesting for organic chemists. 
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