• Satyavani Kaliamurthi Centre of Advanced Study in Marine Biology, Faculty of Marine Science, Annamalai University, Parangipettai 608502, Tamil Nadu, India
  • Gurudeeban Selvaraj


Solid lipid nanoparticles (SLNp) are a new class of alternative colloidal carriers developed at the beginning of the 1990s with the particle size ranging from 50 to 1000 nm. The SLNp consists of the drug molecule, surfactants, and solid lipid core suitable for incorporation of lipophilic, hydrophilic, and poorly water-soluble molecules. Diabetes mellitus (DM), is a prototype multifactorial complex diseases that regarded as one as one of the leading causes of morbidity and mortality in the world. DM caused by inadequate secretion of insulin or by the damaged cells of Islet of Langerhans of the pancreas. The present review provides information about the suitable choice of lipid, amount of surfactants was used for SLNp preparation, characterization, and various route of administration to increase the relative oral bioavailability in diabetic animals. Moreover, limitations associated with nanocarrier system for insulin delivery have also been discussed. Solid lipid Nanoparticulate system might be efficiently overcome peripheral hyper insulinemia, lipo-hyper-atrophy and improves the life quality of diabetic patients in the near future.

Keywords: Diabetes mellitus, Palmitic acid, Nanocarrier system, Microscopy


1. Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Delivery Rev 2001;47:165-96.
2. Padois K, Cantiéni C, Bertholle V, Bardel C, Pirot F, Falson F. Solid lipid nanoparticles suspension versus commercial solutions for the dermal delivery of minoxidil. Int J Pharm 2011;416:300-4.
3. Vyas SP, Khar RK. Targeted and controlled delivery: Novel carrier systems. New Delhi (IND): CBS publishers and distributors; 2002. p. 331-69.
4. Brocks DR, Betageri GV. Enhanced oral absorption of halofantrine enantiomers after encapsulation in a pro liposomal formulation. J Pharm Pharmacol 2002;54:1049–53.
5. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B 2010;75:1–18.
6. Jenning V, Mäder K, Gohla SH. Solid lipid nanoparticles (SLN™) based on binary mixtures of liquid and solid lipids: a 1 H-NMR study. Int J Pharm 2000;205:15-21.
7. Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of the drug. Int J Pharm 2002;242:121-8.
8. Rupenagunta A, Somasundaram I, Ravichandiram V, Kausalya J, Senthilnathan B. Solid lipid nanoparticles A versatile carrier system. J Pharm Res 2011;4:2069-75.
9. Uner M, Wissing SA, Yener G, Muller RH. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for application of ascorbyl palmitate. Arch Pharm 2005;60:577-82.
10. Priyanka K, Hasan SAA. Preparation and evaluation of montelukast sodium loaded solid lipid nanoparticles. J Young Pharm 2012;4:129-37.
11. Ebrahimi HA, Javadzadeh Y, Hamidi M, Jalali MB. Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. DARU J Pharm Sci 2015;23:1.
12. Mumper RJ, Jay M. Microemulsions as precursors to solid nanoparticles. US Patent Pub. No. US 2006/0292183 A1; 2006. p. 1-41.
13. Souto EB, Wissing SA, Barbosa CM, Muller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm 2004;278:71-7.
14. Ansari MJ, Anwer MK, Jamil S, Al-Shdefat R, Ali BE, Ahmad MM, et al. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats. Drug Delivery 2015;2:1-8.
15. Liu J, Gong T, Wang C, Zhong Z, Zhang Z. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Int J Pharm 2007;340:153-62.
16. Sarmento B, Martins S, Ferreira D, Souto EB. Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomed 2007;2:743–9.
17. Yang X, Liu Y, Liu C, Zhang N. Biodegradable solid lipid nanoparticle flocculates for pulmonary delivery of insulin. J Biomed Nanotechnol 2012;8:834-42.
18. Satyavani K. Nanoencapsulation, Characterization and ointment formulation of rutin from excoecaria agallocha L. on control of Type II diabetes mellitus and diabetic foot ulcer using wistar albino rats. Thesis, Annamalai University (IND); 2013. p. 1-284.
19. Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian T. Influence of rutoside loaded solid lipid Nanoparticles to enhance oral bioavailability: characterization, pharmacokinetic, and pharmacodynamic studies. Adv Sci Eng Med 2016;8:350-9.
20. Xue M, Yang MX, Zhang W, Li XM, Gao DH, Ou ZM, et al. Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. Int J Nanomed 2013;8:4677-87.
21. Ifeanyi TN, Chukwuma OA, Vitalis CO, Vincent CO. Development, Characterization and in vivo evaluation of metformin lipid nanoparticles based on stearic acid. Am J PharmTech Res 2015;5:346-57.
22. Vijayan V, Jayachandran E, Anburaj J, Srinivasa Rao D, Jayaraj Kumar K. Transdermal delivery of Repaglinide from solid lipid nanoparticles in diabetic rats: In vitro and in vivo studies. J Pharm Sci Res 2011;3:1077-81.
23. Sharma N, Rana S, Shivkumar HG, Sharma RK. Solid lipid nanoparticles as a carrier of metformin for transdermal delivery. Int J Drug Delivery 2013;5:137.
24. Küchler S, Wolf NB, Heilmann S, Weindl G, Helfmann J, Yahya MM, et al. 3D-wound healing model: influence of morphine and solid lipid nanoparticles. J Biotechnol 2010;148:24-30.
25. Sandri G, Bonferoni MC, DAutilia F, Rossi S, Ferrari F, Grisoli P, et al. Wound dressings based on silver sulfadiazine solid lipid nanoparticles for tissue repairing. Eur J Pharm Biopharm 2013;84:84-90.
26. Bindu RH, Lakshmi SM, Himaja N, Nirosha K, Pooja M. Formulation, characterization and anti-diabetic evaluation of talinum portulaca folium (forssk.) Loaded solid lipid nanoparticles in streptozotocin & high-fat diet induced diabetic rats. J Global Trends Pharm Sci 2014;5:2108–14.
27. He J, Hou S, Lu W, Zhu L, Feng J. Preparation, pharmacokinetics and body distribution of silymarin-loaded solid lipid nanoparticles after oral administration. J Biomed Nanotechnol 2007;3:195-02.
28. Bose S, Du Y, Takhistov P, Michniak-Kohn B. Formulation optimization and topical delivery of quercetin from solid lipid-based nanosystems. Int J Pharm 2013;441:56-66.
29. Tan Q, Liu W, Guo C, Zhai G. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int J Nanomed 2011;6:1621-30.
30. Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Controlled Release 2009;133:238-44.
31. Lacatusu I, Badea N, Murariu A, Oprea O, Bojin D, Meghea A. Antioxidant activity of solid lipid nanoparticles loaded with umbelliferone. Soft Mater 2013;11:75-84.
32. Xie S, Zhu L, Dong Z, Wang X, Wang Y, Li X, et al. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: influences of fatty acids. Colloids Surf B 2011;83:382-7.
33. Jenning V, Gohla SH. Encapsulation of retinoids in solid lipid nanoparticles (SLN). J Microencapsulation 2001;18:149-58.
34. Pizzol CD, Filippin-Monteiro FB, Restrepo JAS, Pittella F, Silva AH, Alves de Souza P, et al. Influence of surfactant and lipid type on the physicochemical properties and biocompatibility of solid lipid nanoparticles. Int J Environ Res Public Health 2014;11:8581-96.
35. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MR. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 2009;37:223-30.
36. Fathi M, Varshosaz J, Mohebbi M, Shahidi F. Hesperetin-loaded solid lipid nanoparticles and nanostructured lipid carriers for food fortification: preparation, characterization, and modeling. Food Bioprocess Technol 2013;6:1464-75.
37. Doijad RC, Manvi FV, Godhwani DM, Joseph R, Deshmukh NV. Formulation and targeting efficiency of cisplatin engineered solid lipid nanoparticles. Indian J Pharm Sci 2008;70:203.
38. Göppert TM, Müller RH. Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 2005;13:179-87.
39. Yang S, Zhu J, Lu Y, Liang B, Yang C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res 1999;16:751-7.
40. Satyavani K, Ramanathan T, Gurudeeban S, Balasubramanian T. Drug for the treatment of diabetes and diabetic foot ulcer using rutin loaded solid lipid nanoparticles. Official J Patent 2013;34:326.
41. Chattopadhyay P, Shekunov BY, Yim D, Cipolla D, Boyd B, Farr S. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Delivery Rev 2007;59:444-53.
42. Jores K, Mehnert W, Drechsler M, Bunjes H, Johann C, Mäder K. Investigations on the structure of solid lipid nanoparticles (SLN) and oil loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation, and transmission electron microscopy. J Controlled Release 2004;95:217-27.
43. Shuyu X, Luyan Z, Zhao D. Preparation and evaluation of ofloxacin-loaded palmitic acid solid lipid nanoparticles. Int J Nanomed 2011;6:547–55.
44. Levy MY, Benita S. Drug release from submicron sized o/w emulsion: a new in vitro kinetic evaluation model. Int J Pharm 1990;66:29-37.
45. Graf E. Vitamin E; Eigenschaften, Wirkungsweise und therapeutische Bedeutung. Von I. Elmadfa und W. Bosse, Wissenschaftl. Verlagsgesellschaft mbH. Stuttgart, 1985. 250 S., 20 Abb., 43 Tab. (Paperback WVG). Kst. flex. DM 48. Pharm Unserer Zeit 1986;15:124.
46. Das S, Ng WK, Kanaujia P, Kim S, Tan RB. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids Surf B 2011;88:483-9.
47. Cavalli R, Caputo O, Marengo E, Pattarino F, Gasco MR. The effects of components of microemulsions on both size and crystalline structure of solid lipid nanoparticles (SLN) containing a series of model molecules. Pharmazie 1998;53:392-6.
48. Greenberg HL, Shwayder TA, Bieszk N, Fivenson DP. Clotrimazole/betamethasone dipropionate: a review of costs and complications in the treatment of common cutaneous fungal infections. Pediatr Dermatol 2002;19:78-81.
49. Vivek RS, Saurabh S, Honey G, Vinay J. Solid lipid nanoparticles (SLN)–trends and implications in drug targeting. Int J Adv Pharm Sci 2010;1:212-38.
50. Almeida AJ, Runge S, Muller RH. Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters. Int J Pharm 1997;149:255–65.
51. Seghrouchni JE, Drai J, Bannier P, Riviere I, Calmard J, Garcia I, et al. Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus: Insulin treatment efficiency. Clin Chim Acta 2002;32:189-96.
52. Worthley LIG. The Australian short course on intensive care medicine, Handbook, Gillingham printers, South Australia: 2003. p. 31-55.
53. Sowka JW, Gurwood AS, Kabat AG. Handbook of ocular disease management diabetes mellitus. Opt J Rev Optom; 2009. p. 63.
54. Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, et al. Diabetes in asia: epidemiology, risk factors, and pathophysiology. J Am Med Assoc 2009;301:2129-40.
55. Ismail K, Winkley K, Stahl D, Chalder T, Edmonds M. A cohort study of people with diabetes and their first foot ulcer: the role of depression on mortality. Diabetes Care 2007;30:1473–9.
56. Pendsey S. Reducing diabetic foot problems and limb amputation: an experience from India, Global Perspective on Diabetic Foot Ulcerations; 2011. p. 978-53.
57. Higgins T. Oral Hypoglycemic Drugs, boulder medical center; 2010. Available from: articles/oral_hypoglycemic_drugs.htm. [Last accessed on 05 Jan 2016].
58. Gowthamarajan K, Kulkarni GT. Oral insulin—fact or fiction? Resonance 2003;8:38–46.
59. Lin YH, Chen CT, Liang HF, Kulkarni AR, Lee PW, Chen CH, et al. Novel nanoparticles for oral insulin delivery via the paracellular pathway. Nanotechnol 2007;18:1–10.
60. Gundogdu E, Yurdasiper A. Drug transport mechanism of oral antidiabetic nanomedicines. Int J Endocrinol Metab. 2014;12. Doi:10.5812/ijem.8984. [Article in Press]
61. Chono S, Fukuchi R, Seki T, Morimoto K. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary insulin delivery. J Controlled Release 2009;137:104-9.
62. Spangler RS. Insulin administration via liposomes. Diabetes Care 1990;13;911-22.
63. Ubaidulla U, Khar RK, Ahmed FJ, Panda AK. Development and in vivo evaluation of insulin-loaded chitosan phthalate microspheres for oral delivery. J Pharm Pharmacol 2007;59:1345–51.
64. Han Y, Tian H, He P, Chen X, Jing X. Insulin nanoparticle preparation and encapsulation into poly (lactic-co-glycolic acid) microspheres by using an anhydrous system. Int J Pharm 2009;378:159-66.
65. Djordjevic L, Primorac M, Stupar M, Krajisnik D. Characterization of caprylocaproyl macrogol glycerides based microemulsion drug delivery vehicles for an amphiphilic drug. Int J Pharm 2004;271:11-9.
66. Graf A, Rades T, Hook SM. Oral insulin delivery using nanoparticles based on microemulsions with different structure types: Optimization and in vivo evaluation. Eur J Pharm Sci 2009;37:53-61.
67. Liu J, Zhang SM, Chen PP, Cheng L, Zhou W, et al. Controlled release of insulin from PLGA nanoparticles embedded within PVA hydrogels. J Mater Sci Mater Med 2007;18:2205–10.
68. Sun S, Liang N, Piao H, Yamamoto H, Kawashima Y, Cui F. Insulin-SO (sodium oleate) complex-loaded PLGA nanoparticles: formulation, characterization and in vivo evaluation. J Microencapsulation 2010;27:471-8.
69. Cui F, Shi K, Zhang L, Tao A, Kawashima Y. Biodegradable nanoparticles loaded with the insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Controlled Release 2006;114:242–50.
70. Morishita M, Takayama K, Machida Y, Nagai T. Enteral insulin delivery by microspheres in three different formulations using Eudragit L-100 and S-100. Int J Pharm 1993;91:29–37.
71. Zhao Y, Trewyn BG, Slowing II, Lin VS. Mesoporous silica nanoparticle based double drug delivery system for glucose-responsive controlled the release of insulin and cyclic AMP. J Am Chem Soc 2009;131:8398–400.
72. Fonte P, Nogueira T, Gehm C, Ferreira D, Sarmento B. Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Delivery Transl Res 2011;1:299–308.
73. Lander R, Manger W, Couloudis SM, Ku A, Davis C, Lee A. Homogenization: a mechanistic study. Biotechnol Prog 2000;16:80-5.
74. Zhang Z, Lv H, Zhou J. Novel solid lipid nanoparticles as carriers for oral administration of insulin. Die Pharmazie-An. Int J Pharm Sci 2009;64:574-8.
597 Views | 288 Downloads
How to Cite
Kaliamurthi, S., & Selvaraj, G. (2016). INSIGHT ON SOLID LIPID NANOPARTICLES: CHARACTERIZATION AND APPLICATION IN DIABETES MELLITUS. Journal of Critical Reviews, 3(4), 11-16. Retrieved from
Pharmaceutical Sciences