• Parijat Pandey
  • Mandeep Dahiya Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India


For the past few years there has been a significant research in the area of nanotechnology using nanoparticles. In the field of modern material science, inorganic nanoparticles are emerging as novel drug delivery system due to their unique physical properties that mainly include size dependent optical, magnetic, electronic, and catalytic properties. These nanoparticles possess high stability, large surface area, tunable compositions, abundant physicochemical multifunctionalities and specific biological behaviors. Biocompatible inorganic material-based nanosystems provide a novel choice to effectively surmount the intrinsic drawbacks of traditional organic materials in biomedical applications, especially in overcoming the multidrug resistance. The aim of this article is to review the types, synthesis methods and characterization techniques related to inorganic nanoparticles. 


1. Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, et al. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 2015;73:137-50.

2. Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioall Sci 2010;2(4):282-9.

3. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005;19:311-30.

4. El-Sayed IH, Huangand X, El-Sayed AM. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006;2:129-35.

5. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Ã… resolution. Sci 2007;318:430-3.

6. Bhattacharya S, Srivastava A. Synthesis of gold nanoparticles stabilised by metal-chelator and the controlled formation of close-packed aggregates by them. Proc Indian acad Sci (Chem Sci) 2003;115:613-9.

7. Li L, Fan M, Brown R, Van LJ, Wang J, Wang W, et al. Synthesis, Properties and environmental applications of nanoscale iron-based materials; a review. Environ Sci Technol 2006;36:405-31.

8. Chithrani DB, Jelveh S, Jalali F, van Prooijen M, Allen C, Bristow RG, et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 2010;173(6):719-28.

9. Lan MY, Hsu YB, Hsu CH, Ho CY, Lin JC, Lee SW. Induction of apoptosis by high-dose gold nanoparticles in nasopharyngeal carcinoma cells. Auris Nasus Larynx 2013;40(6):563-8.

10. Khan AK, Rashid R, Murtaza G, Zahra A. Gold nanoparticles: synthesis and application in drug. Tropical J Pharm Res 2014;13(7):1169-77.

11. Han G, Martin CT, Rotello VM. Stability of gold nanoparticles bound DNA towards biological, chemical, physical agents. Chem Bio Drug Des 2006;67:78-82.

12. Malik MA, O’Brien P, Revaprasadu N. A simple route to the synthesis of core/shell nanoparticles of chalcogenides. Chem Mater 2002;14(5):2004-10.

13. Sriram MI, Kanth SBM, Kalishwaralal K, Gurunathan S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomed 2010;5(1):753-62.

14. Ankamwar B. Biosynthesis of gold nanoparticles (green gold) using leaf extract of Terminalia Cattapa. E J Chem 2010;7(4):1334-9.

15. Heidari Z, Sariri R, Salouti M. Gold nanorods-bombesin conjugate as a potential targeted imaging agent for detection of breast cancer. J Photochem Photobiol B: Biol 2014;130:40-6.

16. Madhusudan A, Reddy GB, Venkatesham M, Veerabhadram G, Kumar DA, Natarjan S, et al. Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Int J Mol Sci 2014;15:216-34.

17. Srivatsan A, Jenkins SV, Jeon M, Wu Z, Kim C, Chen J, et al. Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Theranostics 2014;54(2):163-74.

18. Zhou Z, Kong B, Yu C, Shi X, Wang M, Liu W, et al. Tungsten Oxide Nanorods: An efficient nanoplatform for tumor CT imaging and photothermal therapy. Sci Rep 2014;4:36-53.

19. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 2014;9(6):385-406.

20. Pulit J, Banach M, Szczygłowska R, Bryk M. Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor. Acta Biochimica Polonica 2013;60(4):795-8.

21. Abdalrahim A. Preparation and characterization of silver nanoparticles. Int J Chem Tech Res 2014;6(1):450-9.

22. Qu D, Sun W, Chen Y, Zhou J, Liu C. Synthesis and in vitro antineoplastic evaluation of silver nanoparticles mediated by Agrimoniae herba extract. Int J Nanomed 2014;9:1871-82.

23. Thakkar KN, Mhatre SS. Parikh RY. Biological synthesis of metallic nanoparticles. Nanomed 2010;6(2):257-62.

24. Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed 2008;3:311-21.

25. Elias A, Tsourkas A. Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hematology 2009;(1):720-6.

26. Basak S, Chen DR, Biswas P. Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: Modified scaling law. Chem Eng Sci 2007;62:1263-8.

27. Hildebrandt N, Hermsdorf D, Signorell R, Schmitz SA, Diederichsena U. Superparamagnetic iron oxide nanoparticles functionalized with peptides by electrostatic interactions. ARKIVOC 2007;5:79-90.

28. Qiu J, Yang R, Li M, Jiang N. Preparation and characterization of porous ultrafine Fe2O3 particles. Mater Res Bull 2005;40:1968-74.

29. Khalil MI. Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arabian J Chem 2015;8(2):279-84.

30. Montet X, Weissleder R, Josephson L. Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjugate Chem 2006;17:905-11.

31. Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: Synthesis, protection, functionalization and application. Angewandte Chemie 2007;46(8):1222-44.

32. Si S, Kotal A, Mandal TK, Giri S, Nakamura H, Kohara T. Size controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem Mater 2004;16(18):3489-96.

33. Laurant S, Forge D, Port M, Roch A, Robic C. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterization and biological applications. Chem Rev 2008;108(6):2064-110.

34. Burtea C, Laurant S, Roch A, Vander EL, Muller RN. C-MALISA (cellular magnetic-linked immunosorbant assay), a new application of cellular ELISA for MRI. J Inorg Biochem 2005;99(5):1135-44.

35. Dobson J. Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene Therap 2006;13(4):283-7.

36. Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G. Targeting cancer cells: Magnetic nanoparticles as drug carriers. Eur Biophys J Biophys Lett 2006;35(5):446-50.

37. Gu HW, Xu KM, Xu CJ, Xu B. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Comm 2006;9:941-9.

38. Chang YP, Pinaud F, Antelman J, Weiss S. Tracking bio-molecules in live cells using quantum dots. J Biophotonics 2008;1(4):287-98.

39. Kluson P, Drobek M, Bartkova H, Budil I. Welcome in the Nanoworld. Chem Listy 2007;101:262-72.

40. Kral V, Sotola J, Neuwirth P, Kejik Z, Zaruba K, Martasek P. Nanomedicine – Current status and perspectives: A big potential or just a catchword. Chem Listy 2006;100:4-9.

41. Ferancova A, Labuda J. DNA Biosensors based on nanostructured materials. In: Eftekhari A, editor. Nanostrucutred Materials in Electrochemistry. Weinheim, Germany: Wiley-VCH; 2008. p. 409-34.

42. Fujioka K, Hiruoka M, Sato K, Manabe N, Miyasaka R, Hanada S, et al. Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotech 2008;19:7-15.

43. Maiti A, Bhattacharyya S. Review: Quantum dots and application in medical science. Int J Chem Chem Eng 2013;3(2):37-42.

44. Tsutsui K, Hu EL, Wilkinson CDW. Reactive ion etched II-VI quantum dots–dependence of etched profile on pattern geometry. Japan J Appl Phys 1993;32:6233-6.

45. Bera D, Qian L, Tseng TK, Holloway PH. Quantum dots and their multimodel applications: A review. Mater 2010;3:2260-345.

46. Drbohlavova J, Vojtech A, Kizek R, Hubalek J. Quantum dots- characterization, preparation and usage in biological systems. Int J Mol Sci 2009;10:656-73.

47. Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int 2007;46:7548-58.

48. Slowing II, Vivero-Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 2008;60:1278-88.

49. Hergt R, Dutz S, Muller R, Zeisberger M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 2006;18:S2919-S34.

50. Barbe C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M, et al. Silica particles: A novel drug-delivery system. Adv Mater 2004;16:1959-66.

51. Wu J, Ye ZQ, Wang GL, Yuan JL. Multifunctional nanoparticles possessing magnetic, long-lived fluorescence and bio-affinity properties for time-resolved fluorescence cell imaging. Talanta 2007;72:1693-7.

52. Tang L, Cheng J. Nonporous silica nanoparticles for nanomedicine application. Nano Today 2013;8:290-312.

53. Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 2012;41:3679-98.

54. Yadav BC, Kumar R. Structure, properties and applications of fullerenes. Int J Nanotech App 2008;2(1):15-24.

55. Hummelen JC, Knight BW, Lepeq F, Wudl F, Yao J, Wilkins CL. Preparation and characterization of fullorid. J Org Chem 1995;60:532-8.

56. Bakry R, Vallant R, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, et al. Medicinal applications of fullerenes. Int J Nanomed 2007;2(4):639-49.

57. Morgan GJ. Historical Review: Viruses, Crystals and Geodesic Domes. Trends Bio Chem Sci 2003;28:86-90.

58. Shanbogh PP, Sundaram NG. Materials chemistry and applications of C60 molecules. Resonance 2015;20(2):123-35.

59. Wang N, Fung KK, Lu W, Yang S. Structural characterization of carbon nanotubes and nanoparticles by high-resolution electron microscopy. Chem Phy Lett 1994;229:587-92.

60. Zhang B, Chen Q, Tang H, Xie Q, Ma M, Tan L, et al. Characterization and biomolecule immobilization on the biocompatible multi-walled carbon nanotubes generated by functionalization with polyamidoamine dendrimers. Colloids Surf B Biointerfaces 2010;80:18-25.

61. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, et al. Tumor targetting with antibody-functionalized, radiolabeled carbon nanotubes. J Nuclear Med 2007;48(7):1180-9.

62. Liu Z, Tabakman SM, Chen Z, Dai H. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat protocols 2009;4:1372-82.

63. Liu Z, Sun X, Nakayama N, Dai H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007;1(1):50-6.

64. Dolatabadi JEN, Jamali AA, Hasanzadeh M, Omidi Y. Quercetin delivery into cancer cells with single walled carbon nanotubes. Int J Biosci Biochem Bioinf 2011;1(1):21-25.

65. Jin H, Heller DA, Strano MS. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett 2008;8(6):1577-85.

66. Feazell RP, Nakayama RN, Dai H, Lippard SJ. Soluble single walled carbon nanotubes as long boat delivery system for platinum (IV) anticancer drug design. J Am Chem Soc 2007;129:8438-9.

67. Rasmuseen AJ. Characteristics, properties and ethical issues of carbon nanotubes in biomedical applications. Nanoethics 2014;8:29-48.

68. Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochem Biophys Acta 2006;1758:404-12.

69. Danailov D, Keblinski P, Nayak S, Ajayan PM. Bending properties of carbon nanotubes encapsulating solid nanowires. J Nano Sci Nanotechnol 2002;2:503-7.

70. Xing D, Ou Z, Wu B, Zhou F, Wang H, Tang Y. Functional single-walled carbon nanotubes based on an integrin α β monoclonal antibody for higher efficient cancer cell targeting. Nanotech 2009;20(3):23-31.

71. Wang XJ, Liu Z. Carbon nanotubes in biology and medicine: An overview. Chin Sci Bull 2012;57(2-3):4066-79.

72. Zhang S, Yang K, Liu Z. Carbon nanotubes for in vivo cancer nanotechnology. Sci China 2010;53(11):2217-25.

73. Jan P, Jana D, Jana C, Hubalek J, Jasek O, Adam V, et al. Methods for carbon nanotubes synthesis. J Mater Chem 2011;21:15872-9.

74. Varshney K. Carbon nanotubes: A review on synthesis, properties and applications. Int J Eng Res Gen Sci 2014;2(4):660-77.

75. Shin US, Yoon IK, Lee GS, Jang WC, Knowles JC, Kim HW. Carbon nanotubes in nanocomposites and hybrids with hydroxyapatite for bone replacements. J Tissue Eng 2011;10:24-32.

76. Mcbride AA, Price DN, Lamourex LR, Elamaoued AA, Vargas JM, Adolphi NL, et al. Preparation and characterization of novel magnetic nano-in-microparticles for site-specific pulmonary drug delivery. Mol Pharm 2013;10(10):3574-81.

77. Chow TS. Size-dependent adhesion of nanoparticles on rough substrate. J Phys Condens Matter 2003;15(2):83-7.

78. Kelly L, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment. J Phys Chem B 2003;107:668-77.

79. Ranjit K, Baquee AA. Nanoparticle: An overview of preparation, characterization and application. Int Res J Pharm 2013;4(4):47-57.

80. DeAssis DN, Mosqueira VC, Vilela JM, Andrade MS, Cardoso VN. Release profiles and morphological characterization by atomic force microscopy and photon correlation spectroscopy of 99m Technetium – fluconazole nanocapsules. Int J Pharm 2008;349:152-60.

81. Muhlen AZ, Muhlen EZ, Niehus H, Mehnert W. Atomic force microscopy studies of solid lipid nanoparticles. Pharm Res 1996;3:1411-6.

82. Shi HG, Farber L, Michaels JN, Dickey A, Thompson KC, Shelukar SD, et al. Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques. Pharm Res 2003;20:479-84.

83. Muller RH, Wallis KH. Surface modification of i.v. injectable biodegradable nanoparticles with poloxamer polymers and poloxamine. Int J Pharm 1993;89:25-31.

84. Polakovic M, Gorner T, Gref R, Dellacherie E. Lidocaine loaded biodegradable nanospheres II. Modelling of drug release. J Controlled Release 1999;60:169-77.

85. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631-51.

86. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010;75(1):1-18.

87. Esenaliev RO. Radiation and nanoparticles for enhancement of drug delivery in solid tumors. PCT Int Appl. 2000; WO 2000 002 590.

88. Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C. Nanocapsule technology: A review. Ther Drug Carrier Syst 2002;19:99-134.

89. Elzoghby AO, Samy WM, Elgindy NA. Novel spray-dried genipin- crosslinked casein nanoparticles for prolonged release of alfuzosin hydrochloride. Pharm Res 2012;30:512-22.

90. Kreuter J. Physicochemical characterization of polyacrylic nanoparticles. Int J Pharm 1983;14:43-58.

91. Lademann J, Weigmann H, Rickmeyer MB, Levy MY, Benita S. A new in vitro technique for the evaluation of drug release profile from colloidal carriers ultrafiltration technique at low pressure. Int J Pharm 1993;94:115-23.
493 Views | 2241 Downloads
How to Cite
Pandey, P., & Dahiya, M. (2016). A BRIEF REVIEW ON INORGANIC NANOPARTICLES. Journal of Critical Reviews, 3(3), 18-26. Retrieved from https://innovareacademics.in/journals/index.php/jcr/article/view/11588
Pharmaceutical Sciences