• Harikesh Maurya Siddhartha Institution of Pharmacy, IT Park, Sahastradhara Road, Dehradun (India)
  • Susheel Kumar Dubey
  • Poonam Bisht
  • Monika Semwal
  • Sanjay Gandhi


Acquired immune deficiency syndrome, chronic obstructive pulmonary disease (COPD), cancer and immune suppressive agent initiate sepsis, following chronic situation change in to septic shock. Sepsis is responsible for nearly 30% of the total neonatal deaths each year in developing countries. About 96% of infants had survived up to their first year of life, and 56% infant deaths took place within the first month after birth. Firstly, symptoms observed as abnormal body temperature, bradycardia, tachypnoea which needs common treatments for survival. Apoptosis, decreased anti insulin hormone, abnormalities in coagulation, fibrinolysis and immune suppressant are responsible for the generation of inflammation which induces sepsis and leads to dysfunction of vital organs such as; GIT, brain, kidney, liver, cardiac and other organs dysfunction. Treatment in sepsis include antibiotics to suppress the infection, fluids and medicines through i.v. to maintain the blood pressure and stabilize blood circulation, while oxygen, plasma or blood products which correct any clotting problems. The fluid therapy in severe sepsis, corticosteroids, nutrition, vasopressors, ionotropic therapy, selenium, bicarbonate therapy, deep vein thrombosis prophylaxis, stress ulcer prophylaxis, administration of immunoglobulins and renal replacement therapy are mandatory in chronic conditions.


1. Li-bing J, Zhang M, Shou-yin J, Yue-feng MA. Early goal-directed resuscitation for patients with severe sepsis and septic shock: a meta-analysis and trial sequential analysis. Scand J Trauma Resusc Emerg Med 2016;24:23.
2. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003;348:1546–54.
3. Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, et al. Immuno-suppression in patients who die of sepsis and multiple organ failure. JAMA 2011;306:2594–605.
4. Hillier SL, Martius J, Krohn M, Kiviat N, Holmes KK, Eschenbach DA. A case-control study of chorioamnionic infection and histologic chorioamnionitis in prematurity. N Engl J Med 1988;319:972–8.
5. Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol 2008;8(10):776–87.
6. Schouten M, Wiersinga WJ, Levi M. Inflammation, endothelium, and coagulation in sepsis. Journal of Leukocyte Biology 2008;83(3):536–45.
7. Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. J Exp Med 2012; 209(6):1057–68.
8. Weldearegawi B, Melaku YA, Abera SF, Ashebir Y, Haile F, Mulugeta A, et al. Infant mortality and causes of infant deaths in rural Ethiopia: a population-based cohort of 3684 births. BMC Public Health 2015;15:770.
9. Reinhart K, Daniels R, Machado FR. The burden of sepsis: a call to action in support of World Sepsis Day 2013. Rev Bras Ter Intensiva 2013;25(1):3–5.
10. EpiCast Report: Methicillin-Resistant Staphylococcus Aureus (MRSA) - Epidemiology Forecast to 2024. New York, Dec. 29, 2015; Available at
11. Starr ME, Saito H. Sepsis in old age: review of human and animal studies. Aging Dis 2014;5(2):126–36.
12. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001;29(7):1303–10.
13. Greg S Martin. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther 2012;10(6):701–6.
14. Neviere R, Daniel JS, Daniel J, Pugin J. Recognition of bacteria and bacterial products by host immune cells in sepsis. Am J Respir Crit Care Med 2013;187:509.
15. László I, Trásy D, Molnár Z, Fazakas J. Sepsis: From Pathophysiology to Individualized Patient Care. Journal of Immunology Research 2015, Article ID 510436, 13 pages Available from
16. Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med 2013;41(5):1167–74.
17. King EG, Bauzá GJ, Mella JR, Remick DG. Pathophysiologic mechanisms in septic shock. Lab Invest 2014;94(1):4–12.
18. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 201623;315(8):801–10.
19. Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet 2005;365:63–78.
20. Ochoa JB, Makarenkova V. T lymphocytes. Crit Care Med 2005;33:S510–3.
21. Scanzano A, Cosentino M. Adrenergic regulation of innate immunity: a review. Front Pharmacol 2015;6:171.
22. Kruger P, Saffarzadeh M, Weber NRA, Rieber N, Radsak M, Bernuth HV. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury. PLoS Pathog. 2015;11(3): e1004651.
23. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012;122:787–95.
24. Opal SM. Endotoxins and other sepsis triggers. Contrib Nephrol 2010;167:14-24.
25. Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care 2010;14:R15.
26. Hotchkiss RS, Osmon SB, Chang KC, Wagner TH, Coopersmith CM, Karl IE. Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. J Immunol 2005;174:5110–8.
27. Merza M, Hartman H, Rahman M, Hwaiz R, Zhang E, Renström E. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology 2015;149(7):1920-1931.e8.
28. Walley KR, Lukacs NW, Standiford TJ, Strieter RM, Kunkel SL. Elevated levels of macrophage inflammatory protein 2 in severe murine peritonitis increase neutrophil recruitment and mortality. Infect Immun 1997;65:3847–51.
29. Ness TL, Hogaboam CM, Strieter RM, Kunkel SL. Immunomodulatory role of CXCR2 during experimental septic peritonitis. J Immunol 2003;171:3775–84.
30. Cho JS, Guo Y, Ramos RI, Hebroni F, Plaisier SB, Xuan C, et al. Neutrophil-derived IL-1beta is sufficient for abscess formation in immunity against Staphylococcus aureus in mice. PLoS Pathog 2012;8:e1003047.
31. Boomer JS, Green JM, Hotchkiss RS. The changing immune system in sepsis. Virulence 2014;5(1):45–56.
32. Abraham E. Coagulation abnormalities in acute lung injury and sepsis. Am J Respir Cell Mol Biol 2000;22:401–4.
33. Russell JA. Management of Sepsis. N Engl J Med 2006;355:1699–713.
34. Granger DN, Senchenkova E. Inflammation and the Microcirculation. San Rafael (CA): Morgan & claypool life sciences; 2010. Chapter 7, Leukocyte–endothelial cell adhesion. Available from:
35. Remick DG. Pathophysiology of sepsis. Am J Pathol 2007;170:1435–44.
36. Weyrich AS, Zimmerman GA. Platelets in Lung Biology. Annu Rev Physiol 2013;75:569–91.
37. Victor WM, Hinsbergh V. Endothelium-role in regulation of coagulation and inflammation. Semin Immunopathol 2012;34(1):93–106.
38. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009;78(6):539–52.
39. Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE Jr, Hui JJ, Chang KC, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4þ T lymphocytes in humans. J Immunol 2001;166:6952–63.
40. Oberholzer C, Oberholzer A, Clare-Salzler M, Moldawer LL. Apoptosis in sepsis: a new target for therapeutic exploration. FASEB Journal 2001;15(6):879–92.
41. Hotchkiss RS, Dunne WM, Swanson PE, Davis CG, Tinsley KW, Chang KC, et al. Role of apoptosis in Pseudomonas aeruginosa pneumonia. Science 2001;294:1783.
42. Wesche DE, Lomas-Neira JL, Perl M, Chung CS, Ayala A. Leukocyte apoptosis and its significance in sepsis and shock. J LeukocBiol 2005;78:325–37.
43. Yamana H, Horiguchi H, Fushimi K, Yasunaga H. Comparison of procedure-based and diagnosis-based identifications of severe sepsis and disseminated intravascular coagulation in administrative data. J Epidemiol 2016 Apr 9. [Epub ahead of print] PMID: 27064132.
44. Okamoto K, Tamura T, Sawatsubashi Y. Sepsis and disseminated intravascular coagulation. J Intensive Care 2016;4:23.
45. Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 2014;5(1):66–72.
46. Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T. Host innate immune responses to sepsis. Virulence 2014;5(1):36–44.
47. Iskander KN, Osuchowski MF, Stearns-Kurosawa DJ, Kurosawa S, Stepien D, Valentine C, et al. Sepsis: Multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol Rev 2013;93(3):1247–88.
48. Petaja J. Inflammation and coagulation. An overview. Thromb Res 2011;127(2):S34–7.
49. Tang H, Ivanciu L, Popescu N, Peer G, Hack E, Lupu C, et al. Sepsis-induced coagulation in the baboon lung is associated with decreased tissue factor pathway inhibitor. Am J Pathol 2007;171(3):1066–77.
50. Okamoto T, Tanigami H, Suzuki K, Shimaoka M. Thrombomodulin: A bifunctional modulator of inflammation and coagulation in sepsis. Critical care research and practice 2012, Article ID 614545, 10 pages, Available at
51. Oikonomopoulou K, Ricklin D, Ward PA, Lambris JD. Interactions between coagulation and complement-their role in inflammation. Semin Immunopathol 2012;34(1):151–65.
52. Ruf W. New players in the sepsis-protective activated protein C pathway. J Clin Invest 2010;120:3084–7.
53. Tsao C-M, Ho ST, Wu CC. Coagulation abnormalities in sepsis. Acta anaesthesiologica taiwanica 2015;53:16–22.
54. Esmon CT. The interactions between inflammation and coagulation. Br J Haematol 2005; 131:417–30.
55. Fourrier F. Severe sepsis, coagulation, and fibrinolysis: dead end or one way? Crit Care Med 2012;40:2704–08.
56. Zeerleder S, Hack CE, Wuillemin WA. Disseminated intravascular coagulation in sepsis. Chest 2005;128:2864–75.
57. Binette TM, Taylor FB Jr, Peer G, Bajzar L. Thrombin-thrombomodulin connects coagulation and fibrinolysis: more than an in vitro phenomenon. Blood 2007;110:3168–75.
58. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013;41(2):580–637.
59. Levi M, Van der Poll T, Schultz M. New insights into pathways that determine the link between infection and thrombosis. Neth J Med 2012;70:114–20.
60. Semeraro N, Ammollo CT, Semeraro F, Colucci M. Sepsis-associated disseminated intravascular coagulation and thromboembolic disease. Mediterr J Hematol Infect Dis 2010;2(3):e2010024.
61. Van der Poll T, Opal SM. Host-pathogen interactions in sepsis. Lancet Infect Dis 2008; 8:32–43.
62. Cuenca AG, Delano MJ, Kelly-Scumpia KM, Moreno C, Scumpia PO, Laface DM, et al. A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol Med 2011;17:281–92.
63. Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 2011;334:98–101.
64. Andersson U, Tracey KJ. Reflex principles of immunological homeostasis in animal models of sepsis. Annu Rev Immunol 2012;30:313–35.
65. Ward NS, Casserly B, Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med 2008;29(4):617–viii.
66. Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bulger EM, Neff MJ, et al. Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA 2008;300:413–22.
67. Groenveld ABJ. Pathogenesis of ARF during sepsis. Nephrol Dial Transplant 1998;9(l): 47–51.
68. Takasu O, Gaut JP, Watanabe E, To K, Fagley RE, Sato B, et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med 2013;187:509–17.
69. Cepinskas G, Wilson JX. Inflammatory response in microvascular endothelium in sepsis: role of oxidants. J Clin Biochem Nutr 2008;42(3):175–84.
70. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Cirulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010;464:104–7.
71. Sonneville R, Verdonk F, Rauturier C, Klein IF, Wolff M, Annane D, et al. Understanding brain dysfunction in sepsis. Ann Intensive Care 2013;3:15.
72. Lull ME, Block ML. Microglial activation & chronic neurodegeneration. Neurotherapeutics 2010;7(4):354–65.
73. Sonneville R, Verdonk F, Ravtenier C, Klein IF. Understanding brain dysfuctioning in sepsis. Annal’s of intensive care 2015;3:15.
74. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell Biology of Ischemia/Reperfusion Injury. Int Rev Cell Mol Biol 2012;298:229–317.
75. Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta 2013;1830:4117–29.
76. Chaudhry N, Duggal AK. Sepsis associated encephalopathy. Advances in Medicine 2014; (2014), Article ID 762320, 16 pages Available at
77. Vaishnavi C. Translocation of gut flora and its role in sepsis. Indian J Med Microbiol 2013;31:334–42.
78. Gustot T. Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr Opin Crit Care 2011;17(2):153–9.
79. Ruggiero MS. Effects of Vasopressin in Septic Shock. AACN Advanced Critical Care 2008;19(3):281–7.
80. Thijs A, Thijs LG. Pathogenesis of renal failure in sepsis. Kidney Int 1998;53(66):S34–7.
81. Nesseler N, Launey Y, Aninat C, Morel F, Mallédant Y, Seguin P. Clinical review: The liver in sepsis. Crit Care 2012;16(5):235.
82. Kato R, Pinsky MR. Personalizing blood pressure management in septic shock. Ann Intensive Care 2015;5:41.
83. Vary TC, Kimball SR. Regulation of hepatic protein synthesis in chronic inflammation and sepsis. Am J Physiol 1992;262:C445–52.
84. Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med 2006;34:1996–2003.
85. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. New Engl J Med 1999;340:448–54.
86. Casteleijn E, Kuiper J, Van Rooij HC, Kamps JA, Koster JF, VanBerkel TJ. Endotoxin stimulates glycogenolysis in the liver by means of intercellular communication. J BiolChem 1988;263:6953–5.
87. Meinz H, Lacy DB, Ejiofor J, McGuinness OP. Alterations in hepatic gluconeogenic amino acid uptake and glucon. Shock 1998;9(4):296–303.
88. Braga M, Gianotti L, Gentilini O, Parisi V, Salis C, Di Carlo V. Early postoperative enteral nutrition improves gut oxygenation and reduces costs compared with total parenteral nutrition. Crit Care Med 2001;29:242–8.
89. Hu Q, Zheng Q. The influence of Enteral Nutrition in postoperative patients with poor liver function. World J Gastroenterol 2003;9:843–6.
90. Prin M, Bakker J, Wagener G. Hepatosplanchnic circulation in cirrhosis and sepsis. World J Gastroenterol 2015;21(9):2582–92.
91. Titó L, Rimola A, Ginès P, Llach J, Arroyo V, Rodés J. Recurrence of spontaneous bacterial peritonitis in cirrhosis: frequency and predictive factors. Hepatology 2001;8:27–31.
92. Evans LT, Kim WR, Poterucha JJ, Kamath PS. Spontaneous bacterial peritonitis in asymptomatic outpatients with cirrhotic ascites. Hepatology 2003;37:897–901.
93. Castellote J, Girbau A, Maisterra S, Charhi N, Ballester R, Xiol X. Spontaneous bacterial peritonitis and bacterascites prevalence in asymptomatic cirrhotic outpatients undergoing large-volume paracentesis. J Gastroenterol Hepatol 2008;23:256–9.
94. Goulis J, Patch D, Burroughs AK. Bacterial infection in the pathogenesis of variceal bleeding. Lancet 1999;353:139–42.
95. Khanna A, Rossman JE, Fung HL, Caty MG. Intestinal and hemodynamic impairment following mesenteric ischemia/reperfusion. J Surg Res 2001;99:114–9.
96. Pardo A, Bartolí R, Lorenzo-Zúñiga V, Planas R, Viñado B, Riba J, et al. Effect of cisapride on intestinal bacterial overgrowth and bacterial translocation in cirrhosis. Hepatology 2000;31:858–63.
97. Zhang SC, Wang W, Ren WY, He BM, Zhou K, Zhu WN. Effect of cisapride on intestinal bacterial and endotoxin translocation in cirrhosis. World J Gastroenterol 2003;9:534–8.
98. Such J, Guardiola JV, de Juan J, Casellas JA, Pascual S, Aparicio JR, et al. Ultrastructural characteristics of distal duodenum mucosa in patients with cirrhosis. Eur J Gastroenterol Hepatol 2002;14:371–6.
99. Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 2007;35(6):1599–608.
100. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. New Engl J Med 2001;345(19):1368–77.
101. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013;39(2):165–228.
102. Overgaard CB, Dzavik V. Inotropes and Vasopressors: Review of Physiology and Clinical Use in Cardiovascular Disease. Circulation 2008;118(10):1047–56.
103. Considine J. The reliability of clinical indicators of oxygenation: a literature review. Contemp Nurs 2005;18:258–67.
104. Kern JW, Shoemaker WC. Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 2002;30:1686–92.
105. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008;36(1):296–327.
352 Views | 7110 Downloads
How to Cite
Maurya, H., Dubey, S. K., Bisht, P., Semwal, M., & Gandhi, S. (2016). AN UPDATES ON THE SEPSIS CAUSING MULTIPLE ORGAN DYSFUNCTIONS. Journal of Critical Reviews, 3(3), 31-40. Retrieved from
Pharmaceutical Sciences