• Ashok Kumar Singh
  • Viney Chawla
  • Shailendra K Saraf
  • Amit Kumar Keshari


Elevated levels of serum cholesterol leading to atherosclerosis can cause enhanced risk factors for coronary artery diseases (CAD). Reduction in serum cholesterol levels reduces the risk of CAD, substantially. Medicinal chemists all around the world have been designing, synthesizing, and evaluating a variety of new bioactive molecules for lowering lipid levels. Even so, some patients in the high risk category fail to achieve recommended cholesterol levels and to bring about regression of the already existing atherosclerotic lesions with currently available medications. Thereby, development of novel approaches to battle the world epidemics of hyperlipidemia remains relevant. In addition to existing treatments, some other recent chemical, biological and molecular approaches for the development of novel antihyperlipidemics are discussed herein. But none of these approaches are currently approved for use in humans. Several ongoing agents are in their different stages of clinical trials, in expectation of promising antihyperlipidemic drugs.

Keywords: Antihyperlipidemia, Atherosclerosis, Coronary heart diseases (CHD), Statins and Nonstatins.


1. Tiwari P, Puri A, Chander R, Bhatia G, Mishra AK. Synthesis and antihyperlipidemic activity of novel glycosyl fructose derivatives. Bioorg Med Chem Lett 2006;16:6028-33.
2. Kumar D, Parcha V, Maithani A, Dhuliya I. Effect and evaluation of antihyperlipidemic activity guided isolated fraction from total methanol extract of Bauhinia variegate (Linn.) in Triton WR-1339 induced hyperlipidemic rats. Asian Pac J Trop Dis 2012; S909-S13.
3. Mc Gill, H C Jr. Geographical Pathology of Athersclerosis, Williams and Wilkins Co: balimore; 1985.
4. http://www.americanheart.org/Statistics.(American Heart Assosiation; 2001 Heart and Stroke Statistical Update. Dallas Texas: American Heart Assosiation, 2000.
5. Alaa A, Adel S, Sabry M, Abdulrahman M, Mohamed A, Hussein I. Eur J Med Chem 2011;46:4324-9.
6. Expert Panel on Detection, Evaluation and Treatment of High blood cholesterol in Adult. Executive summary of the third report of the National Cholesterol Education Program (NCEP). Expert Panel on Detection, Evaluation and Treatment of High blood cholesterol in Adult (Adult treatment panel III). JAMA 2001;285:2486-97.
7. Yee L L, Wright EA. Pitavastatin calcium. Clin Ther 2011;33:1023-42.
8. http://www.hvif.com/angina.asp.(This home page belongs to the Heart and Vascular Institute of Florida. The various stages of progression of Atherosclerosis have been described in this section).
9. Endo A. A gift from nature: the birth of statins. Nat Med 2008;14:1050-2.
10. Huang LZ, Zhu HB. Novel LDL-oriented Pharmacological stretegies. Pharmacol Res 2012;65:402-10.
11. Paulsen PQ. Statins and Inflamation: an update. Curr Opin Cardiol 2010;25:399-405.
12. Kiortsis DN, Filippatos TD, Mikhailidis DP, Elisaf MS, Liberopoulos EN. Statin associated adverse effects beyond muscle and liver toxicity. Atheroscler Rep 2008;10:45-52.
13. Harper CR, Jacobson TA. The broad spectrum of statin myopathy: from myalgia to rhabdomyolysis. Curr Opin Lipidol 2007;18:401-8.
14. Rojman D, Monostory K. Perspective of the non-statin hypolipidemic agents. Pharmacol Therapeut 2010;127:19-40.
15. Pfefferkorn JA. Novel 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors: a patent review. Expert Opin Ther Pat 2011;21:187-203.
16. Pfefferkorn JA, Litchfield J, Hutchings R. Discovery of novel hepatoselective HMG-CoA reductase inhibitors for treating hypercholesterolemia: a bench-to-bedside case study on tissue selective drug distribution. Bioorg Med Chem Lett 2011;21:2725-31.
17. Tripathi KD. Essentials of Medical Pharmacology. 6th ed. Jaypee Brothers Medical Publishers (P) Ltd: New Delhi; 2003. p. 616.
18. Hernandez C, Molusky M, Li Y, Li S, Lin JD. Regulation of Hepatic ApoC3 Expression by PGC-1b Mediated Hypolipidemic Effect of Nicotinic acid. J Cmet 2010.09.001/DOI 10.1016.
19. Birjmohan RS, Hutten BA, Kastelein JJ, Stroes EA. Efficacy and safety of high density lipoprotein cholesterol-increasing compounds: a meta analysis of randomized controlled trials. J Am Coll Cardiol 2005;45:185-97.
20. Bays HE, Davidson MR, Abby SL. Effects of Colesevelam hydrochloride on low-density lipoprotein cholesterol and high sensitivity C-reactive protein when added to statins in patients with hypercholesterolemia. Am J Cardiol 2006;97:1198-205.
21. Steinmetz KL. Colesevelam hydrochloride. Am J Health-Syst Pharm 2002;59:932-9.
22. Schmitz G, Langmann T. Pharmacogenomics of cholesterol lowering therapy. Vasc Pharmacol 2006;44:75-89.
23. Knopp RH. Drug treatment of lipid desorders. N Engl J Med 1999;341:498-511.
24. Davidson MH, Robinson JG. Safety of aggressive lipid management. J Am Coll Cardiol 2007;49:1753-62.
25. Malik S, Kashyap M, L Niacin. Lipids and heart disease. Curr Cardiol Res 2003;5:470-6.
26. Zellner C, Pullinger CR, Aouizerat BE, Frost PH, Kwok PY, Malloy MJ, et al. Variations in human HM74 (GPR109B) and HM74A (GPR109A) niacin receptors. Hum Mutat 2005;25:18–21.
27. Karpe F, Frayn KN. The nicotinic acid receptor-A new mechanism for an old drug. Lancet 2004;363:1892-4.
28. Kamanna VS, Ganji SH, Kashyap ML. The mechanism and mitigation of niacin-induced flushibg. Int J Clin Pract 2009;63:1369-77.
29. Zetia [package insert]. North Wales, Pa: Merck/Schering Plough Pharmaceuticals; 2002.
30. Davis HR, Zhu LJ, Hoos LM, Tetzloff G, Maguire M, Liu JJ, et al. Niemann-pick c1 like 1 (npc1l1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 2004;279:33586–92.
31. Bays HE, Neff D, Tomassini JE, Tershakovec AM. Ezetimibe: cholesterol lowering and beyond. Expert Rev Cardiovasc Ther 2008;6(4):447−70.
32. Davis HR, Veltri EP. Zetia: Inhibition of Niemann–Pick C1 Like 1 (NPC1L1) to reduce intestinal cholesterol absorption and treat hyperlipidemia. J Atheroscler Thromb 2007;14(3):99−108.
33. Jeu LA, Cheng JWM. Pharmacology and therapeutics of ezetimibe (SCH 58235), a cholesterol absorption inhibitor. Clin Ther 2003;25:2352-87.
34. Harris WS. Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. J Lipid Res 1989;30:785–807.
35. Rustan AC, Nossen JO, Christiansen EN, Drevon CA. Eicosapentaenoic acid reduces hepatic synthesis and secretion of triacylglycerol by decreasing the activity of acyl-coenzyme A: 1,2-diacylglycerol acyltransferase. J Lipid Res 1988;29:1417–26.
36. Thibault A, Samid D, Tompkins AC, Figg WD, Cooper MR, Hohl RJ, et al. Phase I study of lovastatin, an inhibitor of the mevalonate pathway, in patients with cancer. Clin Cancer Res 1996;2:483–91.
37. Nishimoto T, Ishikawa E, Anayama H, Hamajyo H, Nagai H, Hirakata M, et al. Protective effects of a squalene synthase inhibitor, lapaquistat acetate (TAK-475), on statin-induced myotoxicity in guinea pigs. Toxicol Appl Pharmacol 2007;223:39–45.
38. Hensens OD, Dufresne C, Liesch JM, Zink DL, Reamer RA, Middlesworth FV. The zaragozic acids: structure elucidation of a new class of squalene synthase inhibitors. Tetrahedron Lett 1993;34(3):399-402.
39. Nishimoto T, Amano Y, Tozawa R, Ishikawa E, Imura Y, Yukimasa H, et al. Lipid-lowering properties of tak-475, a squalene synthase inhibitor, in vivo and in vitro. Br J Pharmacol 2003;139:911–8.
40. Tavridou A, Kaklamanis C, Megaritis G, Kourounakis AP. Pharmacological characterization in vitro of EP2306 and EP2302, potent inhibitors of squalene synthase and lipid biosynthesis. Eur J Pharmacol 2006;535:34–42.
41. Griebenow N, Buchmueller A, Kolkhof P, Schamberger J, Bischoff H. Identification of 4H,6H-[2]benzoxepino[4,5-c][1,2]oxazoles as novel squalene synthase inhibitors. Bioorg Med Chem Lett 2011;21:3648–53.
42. Ishihara T, Kakuta H, Moritani H, Ugawa T, Yanagisawa I. Synthesis and biological evaluation of novel propylamine derivatives as orally active squalene synthase inhibitors. Bioorg Med Chem 2004;12:5899–908.
43. Rowe AH, Argmann CA, Edwards JY, Sawyez CG, Morand OH, Hegele RA, et al. Enhanced synthesis of the oxysterol 24(S), 25-epoxycholesterol in macrophages by inhibitors of 2, 3-oxidosqualene: lanosterol cyclase: a novel mechanism for the attenuation of foam cell formation. Circ Res 2003; 93(8):717−25.
44. Huff MW, Telford DE. Lord of the rings—the mechanism for oxidosqualene: Lanosterol cyclase becomes crystal clear. Trends Pharmacol Sci 2005;26(7):335−40.
45. Stefanutti C, Julius U. Lipoprotein apheresis: State of the art and novelties. Ather Suppl 2013;14:19-27.
46. Samaha Frederick F, McKenney James, Bloedon LeAnne T, Sasiela William J, Rader Daniel J. Impact of the MTP-inhibitor, AEGR-733, as monotherapy and in combination with ezetimibe on lipid subfractions as measured by NMR spectroscopy. Circulation 2008;118(5):469.
47. Chandler CE, Wilder DE, Pettini JL, Savoy YE, Petras SF, Chang G, et al. CP-346086:an MTP inhibitor that lowers plasma cholesterol and triglycerides in experimental animals and in humans. J Lipid Res 2003;44(10):1887-901.
48. Hata T, Mera Y, Kawai T, Ishii Y, Kuroki Y, Kakimoto K, et al. Jtt-130, a novel intestine-specific inhibitor of microsomal triglyceride transfer protein, ameliorates impaired glucose and lipid metabolism in zucker diabetic fatty rats. Diabetes. Obes Metab 2011;13:629–38.
49. Kim E, Campbell S, Schueller O, Wong E, Cole B, Kuo J, et al. A small-molecule inhibitor of enterocytic microsomal triglyceride transfer protein, slx-4090: biochemical, pharmacodynamic, pharmacokinetic, and safety profile. J Pharmacol Exp Ther 2011;337:775–85.
50. Ueshima K, Akihisa-Umeno H, Nagayoshi A, Takakura S, Matsuo M, Mutoh S. Implitapide, a microsomal triglyceride transfer protein inhibitor, reduces progression of atherosclerosis in apolipoprotein E knockout mice fed a Western-type diet: involvement of the inhibition of postprandial triglyceride elevation. Biol Pharm Bull 2005;28(2):247-52.
51. Wren JA, King VL, Campbell SL, Hickman MA. Biologic activity of dirlotapide, a novel microsomal triglyceride transfer protein inhibitor, for weight loss in obese dogs. J Vet Pharmacol Ther 2007;30(1):33-42.
52. Lee K, Cho SH, Lee JH, Goo J, Lee SY, Boovanahalli SK, et al. Synthesis of a novel series of 2-alkylthio substituted naphthoquinones as potent acyl-CoA: Cholesterol acyltransferase (ACAT) inhibitors. Eur J Med Chem 2013;62:515-25.
53. Buhman KF, Accad M, Farese RV. Mammalian acyl-CoA: cholesterol acyltransferases. Biochem Biophys Acta 2000;1529:142–54.
54. Chang TY, Chang CC, Cheng D. Acyl-coenzyme a: cholesterol acyltransferase. Annu Rev Biochem 1997;66:613–38.
55. Kellner-Weibel G, Jerome WG, Small DM, Warner GJ, Stoltenborg JK, Kearney MA, et al. Effects of intracellular free cholesterol accumulation on macrophage viability: a model for foam cell death. Arterioscler Thromb Vasc Biol 1998;18(3):423-31.
56. Lada AT, Davis M, Kent C, Chapman J, Tomoda H, Omura S, et al. Identification of ACAT1-and ACAT2-specific inhibitors using a novel, cell-based fluorescence assay: individual ACAT uniqueness. J Lipid Res 2004;45(2):378-86.
57. Kitayama K, Koga T, Maeda N, Inaba T, Fujioka T. Pactimibe stabilizes atherosclerotic plaque through macrophage acyl-CoA: cholesterol acyltransferase inhibition in WHHL rabbits. Eur J Pharmacol 2006;6:5391-92.
58. Yoshinaka Y, Shibata H, Kobayashi H, Kuriyama H, Shibuya K, Tanabe S, et al. A selective acat-1 inhibitor, k-604, stimulates collagen production in cultured smooth muscle cells and alters plaque phenotype in apolipoprotein E-knockout mice. Atherosclerosis 2010;213:85–91.
59. Ohshiro T, Matsuda D, Sakai K, Degirolamo C, Yagyu H, Rudel L, et al. Pyripyropene a, an acyl-coenzyme a: cholesterol acyltransferase 2-selective inhibitor, attenuates hypercholesterolemia and atherosclerosis in murine models of hyperlipidemia. Arterioscler. Thromb Vasc Biol 2011;31:1108–15.
60. Kontush A, Guerin M, Chapman MJ. Spotlight on HDL-raising therapies: Insights from the torcetrapib trials. Nat Clin Pract Cardiovasc Med 2008;5(6):329−36.
61. Whayne TF Jr. High-density lipoprotein cholesterol: Current perspective for clinicians. Angiology 2009;60(5):644−9.
62. Nicholls SJ, Tuzcu EM, Brennan DM, Tardif JC, Nissen SE. Cholesteryl ester transfer protein inhibition, high-density lipoprotein raising, and progression of coronary atherosclerosis: Insights from ILLUSTRATE (Investigation of Lipid Level Management Using Coronary Ultrasound to Assess Reduction of Atherosclerosis by CETP Inhibition and HDL Elevation). Circulation 2008;118(24):2506−14.
63. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007;357(21):2109−22.
64. Huang Z, Inazu A, Nohara A, Higashikata T, Mabuchi H. Cholesteryl ester transfer protein inhibitor (JTT-705) and the development of atherosclerosis in rabbits with severe hypercholesterolaemia. Clin Sci (Lond) 2002;103(6):587−94.
65. Krishna R, Anderson MS, Bergman AJ, Jin B, Fallon M, Cote J, et al. Effect of the cholesteryl ester transfer protein inhibitor, anacetrapib, on lipoproteins in patients with dyslipidaemia and on 24-h ambulatory blood pressure in healthy individuals: Two double-blind, randomised placebo-controlled phase I studies. Lancet 2007;370(9603):1907−14.
66. Brautbar A, Ballantyne CM. Pharmacological strategies for lowering LDL cholesterol: statins and beyond. Nat Rev Cardiol 2011;8:253–65.
67. Yu R Z, Kim TW, Hong A, Watanabe TA, Gaus HJ, Geary RS. Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, isis 301012, targeting human apolipoprotein b-100. Drug Metab Dispos 2007;35:460–8.
68. Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 2010;20:998-1006.
69. PCSK9-Wikipedia, the free encyclopedia.
70. Marais DA, Blom DJ, Petrides F, Gouëffic Y, Lambert G. Proprotein convertase subtilisin/kexin type 9 inhibition. Curr Opin Lipidol 2012;23(6):511-7.
71. Zhang DW, Lagace TA, Garuti R, Zhao Z, McDonald M, Horton JD, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat a of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 2007;282:18602–12.
72. Ni YG, Marco S, Condra JH, Peterson LB, Wang W, Wang F, et al. A proprotein convertase subtilisin-like/kexin type 9 (pcsk9)-binding antibody that structurally mimics the egf (a) domain of LDL-receptor reduces free circulating pcsk9 and LDL-cholesterol. J Lipid Res 2010.
73. Gullberg H, Rudling M, Salto C, Forrest D, Angelin B, Vennstrom B. Requirement for thyroid hormone receptor beta in t3 regulation of cholesterol metabolism in mice. Mol Endocrinol 2002;16:1767–77.
74. Walton KW, Scott PJ, Dykes PW, Davies JW. The significance of alterations in serum lipids in thyroid dysfunction. II. Alterations of the metabolism and turnover of 131-I-low-density lipoproteins in hypothyroidism and thyrotoxicosis. Clin Sci 1965;29:217–38.
75. Kharlip J, Cooper DS. Recent developments in hyperthyroidism. Lancet 2009;373:1930–2.
76. Weiss RE, Murata Y, Cua K, Hayashi Y, Seo H, Refetoff S. Thyroid hormone action on liver, heart, and energy expenditure in thyroid hormone receptor beta-deficient mice. Endocrinology 1998;139:4945–52.
77. Gullberg H, Rudling M, Forrest D, Angelin B, Vennstrom B. Thyroid hormone receptor beta-deficient mice show complete loss of the normal cholesterol 7alpha-hydroxylase (cyp7a) response to thyroid hormone but display enhanced resistance to dietary cholesterol. Mol Endocrinol 2000;14:1739–49.
78. Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 2006;45(2):120−59.
79. Palmer CN, Hsu MH, Griffin KJ, Raucy JL, Johnson EF. Peroxisome proliferator activated receptor-alpha expression in human liver. Mol Pharmacol 1998;53(1):14−22.
80. Hihi AK, Michalik L, Wahli W. PPARs: transcriptional effectors of fatty acids and their derivatives. Cell Mol Life Sci 2002;59(5):790−8.
81. Jones PH. Expert perspective: reducing cardiovascular risk in metabolic syndrome and type 2 diabetes mellitus beyond low-density lipoprotein cholesterol lowering. Am J Cardiol 2008;102:41L−47L.
82. Neeli H, Gadi R, Rader DJ. Managing diabetic dyslipidemia: Beyond statin therapy. Curr Diab Rep 2009;9(1):11−7.
83. Boyle PJ, King AB, Olansky L, Marchetti A, Lau H, Magar R, et al. Effects of pioglitazone and rosiglitazone on blood lipid levels and glycemic control in patients with type 2 diabetes mellitus: a retrospective review of randomly selected medical records. Clin Ther 2002;24(3):378−96.
84. Olansky L, Marchetti A, Lau H. Multicenter retrospective assessment of thiazolidinedione monotherapy and combination therapy in patients with type 2 diabetes: Comparative subgroup analyses of glycemic control and blood lipid levels. Clin Ther 2003;25(Suppl B):B64−B80.
85. Winkler K, Konrad T, Fullert S, Friedrich I, Destani R, Baumstark MW, et al. Pioglitazone reduces atherogenic dense LDL particles in nondiabetic patients with arterial hypertension: a double-blind, placebo-controlled study. Diabetes Care 2003;26(9):2588−94.
86. Birari R, Javia V, Bhutani KK. Antiobesity and lipid lowering effects of Murraya koenigii (L.) Spreng leaves extracts and mahanimbine on high fat diet induced obese rats. Fitoterapia 2010;81:1129–33.
87. Lee JS, Bok SH, Jeon SM, Kim HJ, Do KM, Park YB, Choi MS. Antihyperlipidemic effects of buckwheat leaf and flower in rats fed a high-fat diet. Food Chem 2010;119:235–40.
88. Zhang ZL, Zhou ML, Tang Y, Li FL, Tang YX, Shao JR, Xue WT, et al. Bioactive compounds in functional buckwheat food. Food Res Int 2012;49:389–95.
89. Fatima SS, Rajasekhar MD, Kumar KV, Kumar MTS, Babu KR, Rao CA. Antidiabetic and antihyperlipidemic activity of ethyl acetate: Isopropanol (1:1) fraction of Vernonia anthelmintica seeds in Streptozotocin induced diabetic rats. Food Chem Toxicol 2010;48:495–501.
90. Hua L, Li Y, Wang F, Lu DF, Gao K. Biologically active steroids from the aerial parts of Vernonia anthelmintica Willd. Fitoterapia 2012;83:1036–41.
91. Toyang NJ, Verpoorte R. A review of the medicinal potentials of plants of the genus Vernonia (Asteraceae). J Ethnopharmacol 2013.
92. Qia H, Huangc L, Liud X, Liua D, Zhangb Q, Liua S. Antihyperlipidemic activity of high sulfate content derivative of polysaccharide extracted from Ulva pertusa (Chlorophyta). Carbohyd Polym 2012;87:1637– 40.
93. Qia H, Liuc X, Zhangb J, Duana Y, Wanga X, Zhangb Q. Synthesis and antihyperlipidemic activity of acetylated derivative of ulvan from Ulva pertusa. Int J Bio Med 2012;50:270–2.
94. Shahaboddin ME, Pouramir M, Moghadamnia AA, Parsian H, Lakzaei M, Mir H. Pyrus biossieriana Buhse leaf extract: an antioxidant, antihyperglycaemic and antihyperlipidemic agent. Food Chem 2011;126:1730–3.
95. Singha D, Singhb B, Goel RK. Traditional uses, phytochemistry and pharmacology of Ficus religiosa. J Ethnopharmacol 2011;134:565–83.
96. Vijayaraj P, Muthukumar K, Sabarirajan J, Nachiappan V. Antihyperlipidemic activity of Cassia auriculata flowers in triton WR 1339 induced hyperlipidemic rats. Exp Toxicol Pathol 2013;65:135–41.
97. Kumaran A, Karunakaran RJ. Antioxidant activity of Cassia auriculata flowers. Fitoterapia 2007;78:46–7.
98. Tripoli E, Guardia ML, Giammanco S, Majo DD, Giammanco M. Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chem 2007;104:466–79.
99. Singh NK, Singh VP. Phytochemistry and pharmacology of Ichnocarpus frutescens. Chin J Nat Med 2012;10(4):0241-0246.
100. Sridevi M, Kalaiarasi P, Pugalendi KV. Antihyperlipidemic activity of alcoholic leaf extract of Solanum surattense in streptozotocin-diabetic rats. Asian Pac J Trop Biomed 2011;S276-S80.
101. Qia XY, Chenb WJ, Zhangb LQ, Xieb BJ. Mogrosides extract from Siraitia grosvenori scavenges free radicals in vitro and lowers oxidative stress, serum glucose, and lipid levels in alloxan-induced diabetic mice. Nutr Res 2008;28:278–84.
102. Kaup SR, Arunkumar N, Bernhardt LK, Vasavi RG, Shetty SS, Pai SR, et al. Antihyperlipedemic activity of Cynodon dactylon extract in high-cholesterol diet fed Wistar rats. Genome Med Biomark Health Sci 2011;3:98-102.
756 Views | 4495 Downloads
How to Cite
Singh, A. K., Chawla, V., Saraf, S. K., & Keshari, A. K. (2014). DIFFERENT CHEMICAL, BIOLOGICAL AND MOLECULAR APPROACHES FOR ANTI-HYPERLIPIDEMIC THERAPY WITH SPECIAL EMPHASIS ON ANTI-HYPERLIPIDEMIC AGENTS OF NATURAL ORIGIN. Journal of Critical Reviews, 1(1), 1-9. Retrieved from https://innovareacademics.in/journals/index.php/jcr/article/view/1789
Pharmaceutical Sciences

Most read articles by the same author(s)