• Niyas Ahamed Centre for Nanobiotechnology, VIT University, Vellore 632014, Tamil Nadu, India


Nanotechnology is based on the idea that, by engineering the size and shape of materials at the scale of atoms, i. e. nanometers (nm), distinct optical, electronic, or magnetic properties can be tuned to produce novel properties of commercial value. However, there is an obvious concern that such novel properties may also lead to novel behavior when interacting with biological organisms, and thus to potentially novel toxic effects. Nano zero-valent iron particle has been used for site remediation by creating permeable reactive barriers (PRBs) by filling trenches with ZVI designed to allow groundwater to pass through while “filtering†out the contaminants. Research indicates that using the nanoscale ZVI in place of the macroscale ZVI will accomplish the same remedial work more efficiently and with less cost. The full acceptance of NZVIs as a remediation agent depends on several issues. One of the most important factors relates to the fate, impact and toxicity of these nanomaterials on the ecosystems to which they are applied.

Keywords: Nanotechnology, Nano zero-valent iron, Ecotoxicity.


1. Batley GE, Kirby JK, McLaughlin MJ. Fate and risks of nanomaterials in aquatic and terrestrial environments. Accounts Chem Res 2013;46(3):854-62.
2. Sanchez A, recillas S, Font X, Casals E, gonzalez E, Puntes V. Ecotoxicity of, and remediation with, engineered inorganic nanoparticles in the environment. Trac-trends Anal Chem 2011;30(3):507-16.
3. Farre M, Sanchis J, Barcelo D. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trac-trends Anal Chem 2011;30(3):517-27.
4. Peralta-Videa JR, Zhao LJ, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL. Nanomaterials and the environment: a review for the biennium 2008-2010. J Hazard Mater 2011;186(1):1-15.
5. Zhang X-W, Elliott DW. Applications of iron nanoparticles for groundwater remediation. Remediation J 2006;16(2):7-21.
6. ITRC. Interstate Technology and Regulatory Council. Permeable Reactive Barriers: Lessons Learned/New Directions. PRB-4. Available at: www.itrcweb. org; 2005.
7. U S EPA. Office of Solid Waste and Emergency Response. Nanotechnology for Site Remediation Fact Sheet. Report number: EPA 542-F-08-009. Available at: tio/ download/remed/542-f-08-009.pdf; 2008c.
8. Zhang W-X. Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res. 2003;5:323-32.
9. You Y, Han J, Chiu PC, Jin Y. Removal and inactivation of waterborne viruses using zerovalent iron. Environ Sci Technol 2005;39:9263-9.
10. Phenrat T, Long TC, Lowry GV, Veronesi B. Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 2009c;43:195-200.
11. Doherty RE. A History of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1, 1, 1-trichloroethane in the United States: Part 1 – historical background; carbon tetrachloride and tetrachloroethylene. Environ Forensics 2000a;1(2):69-81.
12. Doherty RE. A History of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1, 1, 1-trichloroethane in the United States: Part 2 – n trichloroethylene and 1,1,1-trichloroethane. Environ Forensics 2000b;1(2):83-93.
13. Jose TA, Hendrikus PAN, Cristina MDM. Ecotoxicity of nanoscale zero-valent iron particles – a review. Vigilancia Sanitaria em Debate 2013;1(4):38-42.
14. Wang C-B, Zhang W-X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 1997;31(7):2154-6.
15. Zhang X-W, Elliott DW. Applications of iron nanoparticles for groundwater remediation. Remediation J 2006;16(2):7-21.
16. Mace C, Desrocher S, Gheorghiu F, Kane A, Pupeza M, Cernik M, et al. Nanotechnology and groundwater remediation: a step forward in technology understanding. Remediation J 2006;6(2):23-33.
17. Zhu HJ, Jia YF, Wu X, Wang H. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 2009;172(2-3):1591-6.
18. Wang Q, Jeong SW, Choi H. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: Direct observation and quantification. J Hazard Mater 2012;213:299-310.
19. Petersen EJ, Pinto RA, Shi XY, Huang QG. Impact of size and sorption on degradation of trichloroethylene and polychlorinated biphenyls by nano-scale zerovalent iron. J Hazard Mater 2012;243:73-9.
20. Machado S, Stawinski W, Slonina P, Pinto AR, Grosso JP, Nouws HPA, Albergaria JT, et al. Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Sci Total Environment 2013;461-462:323-9.
21. Kirschling TL, Gregory KB, Minkley EG, Lowry GV, Tilton RD. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 2010;44(9):3474-80.
22. Fang ZQ, Qiu XQ, Huang RX, Qiu XH, Li MY. Removal of chromium in electroplating wastewater by nanoscale zero-valent metal with synergistic effect of reduction and immobilization. Desalination 2011;280(1-3):224-31.
23. Cao J, Zhang W. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. J Hazard Mater 2006;132:213–9.
24. Chrysochoou M, Johnston CP, Dahal G. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron. J Hazard Mater 2012;201:33–42.
25. Du J, Lu J, Wu Q, Jing C. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron. J Hazard Mater 2012;215:152–8.
26. Franco DV, Da Silva LM, Jardim WF. Reduction of hexavalent chromium in soil and ground water using zero-valent iron under batch and semi-batch conditions. Water Air Soil Pollut 2009;197:49–60.
27. Watlington K. Emerging Nanotechnologies for Site Remediation and Wastewater Treatment. Available at:; 2005.
28. Li H, Zhou Q, Wu Y, F J, Wang T, Jiang G. Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol Environ Saf 2009;72(3):684-92.
29. Kirschling TL, Gregory KB, Minkley EG, Lowry GV, Tilton RD. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 2010;44(9):3474-80.
30. Fajardo C, Ortiz LT, Rodriguez-Membibre ML, Nande M, Lobo MC, Martin M. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 2012;86(8):802-8.
31. Auffan M, Achouak W, Rose J, Roncato MA, Chaneac C, Waite DT, et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 2008;42(17):6730-5.
32. Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 2008;42(13):4927-33.
33. Barnes RJ, Riba O, Gardner MN, Singer AC, Jackman SA, thompson IP. Inhibition of biological tCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere 2010;80(5):554-62.
34. Baun A, Hartmann NB, grieger K, Kusk Ko. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 2008;17(5):387-95.
35. la Farre M, Perez S, Kantiani L, Barcelo D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trac-Trends Anal Chem 2008;27(11):991-1007.
36. Zhu XS, Zhu L, Chen YS, Tian SY. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanopart Res 2009;11(1):67-75.
37. Marsalek B, Jancula D, Marsalkova E, Mashlan M, Safarova K, tucek J, Zboril r. Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria. Environ Sci Technol 2012;46(4):2316-23.
38. Keller AA, Garner K, Miller RJ, Lenihan HS. Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS One 2012;7(8):e43983.
39. Spurgeon DJ, Weeks JM, Van Gestel CAM. A summary of eleven years progress in earthworm ecotoxicology. Pedobiologia 2003;47(5-6):588-606.
40. Ma WCW. Critical body residues (CBrs) for ecotoxicological soil quality assessment: copper in earthworms. Soil Biol Biochem 2005;37(3):561-8.
41. Coleman JG, Johnson DR, Stanley JK, Bednar AJ, Weiss CA Jr, Boyd rE, Steevens JA. Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, eisenia fetida. Environ Toxicol Chem 2010;29(7):1575-80.
42. Lapied E, Moudilou E, Exbrayat JM, Oughton DH, Joner EJ. Silver nanoparticle exposure causes apoptotic response in the earthworm Lumbricus terrestris (Oligochaeta). Nanomedicine 2010;5(6):975-84.
43. Lapied E, Nahmani JY, Moudilou E, Chaurand P, Labille J, Rose J, et al. Ecotoxicological effects of an aged tio2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil. Environ Int 2011;37(6):1105-10.
44. El-temsah YS, Joner EJ. Ecotoxicological effects on earthworms of fresh and aged nano sized zero-valent iron (NZVI) in soil. Chemosphere 2012;89(1):76-82.
45. Banks MK, Schultz KE. Comparison of plants for germination toxicity tests in petroleum-contaminated soils. Water Air Soil Pollut 2005;167(1-4):211-9.
46. Martí E, Sierra J, Cáliz J, Montserrat g, Vila X, garau MA, et al. Ecotoxicity of Cr, Cd, and Pb on two mediterranean soils. Arch Environ Contam Toxicol 2013;64(3):377-87.
47. Masakorala K, Yao J, guo H, Chandankere r, Wang J, Cai M, et al. Phytotoxicity of long-term total petroleum hydrocarbon-contaminated soil-A comparative and Ccombined approach. Water Air Soil Pollut 2013;224(5):1553.
48. Hillis DG, Fletcher J, Solomon KR, Sibley PK. Effects of ten Antibiotics on Seed germination and root Elongation in three Plant Species. Arch Environ Contam Toxicol 2011;60(2):220-32.
49. Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 2009;75(7):850-7.
50. Ravindran A, Prathna TC, Verma VK, Chandrasekaran N, Mukherjee A. Bovine serum albumin mediated decrease in silver nanoparticle phytotoxicity: root elongation and seed germination assay. Toxicol Environ Chem 2012;94(1):91-8.
51. El-temsah YS, Joner EJ. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 2012;27(1):42-9.
52. Jiamjitrpanich W, Parkpian P, Polprasert C, Laurent F, Kosanlavit R. The tolerance efficiency of Panicum maximum and Helianthus annuus in TNT-contaminated soil and NZVI-contaminated soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 2012;47(11):1506-13.
749 Views | 1321 Downloads
How to Cite
Ahamed, N. (2014). ECOTOXICITY CONCERT OF NANO ZERO-VALENT IRON PARTICLES- A REVIEW. Journal of Critical Reviews, 1(1), 36-39. Retrieved from
Applied Sciences