• Mandar Karve Sardar Patel University
  • Jay J Patel Sardar Patel University
  • Nirmal K Patel Sardar Patel University


The availability of petroleum sources in the near future is limited, so nowadays search for renewable energy sources are maximized. Biodiesel is one of the most important substituted for this problem. During biodiesel production, excessive glycerol is generated asbyproducts which contains impurities such as methanol, free fatty acid and salt. Thedisposal of glycerol leads to environmental problems. Alternatively glycerol can be utilized to obtain various valuable products viz.1,3-propanediol (1,3-PDO), 1,2-propanediol (1,2-PDO), ethanol, 2,3-butanediol, dihydroxyacetone, succinic acid, propionic acid and citric acid. Utilization of crude glycerol by means of chemical synthesis requires expensive catalysts like Ir, Cr, Ag etc. Comparatively biological method for utilizing crude glycerol is best to avoid environmental problems. Bioconversion of glycerol is carried out at 30- 400C temperature and atmospheric pressure pressure which gives different products. Different microorganisms viz. Escherichia coli, Pseudomonas, Enterobacter aerogen, Klebsiella pneumoniae, Clostridium butaricum and Clostridium pasterium are reported to grow on glycerol to produce valuable chemicals. In this review article, bioconversion of glycerol to speciality chemicals such as ethanol, 1,3-PDO, 1,2-PDO, 2,3-butanediol, dihydroxyacetone, succinic acid, propionic acid and citric acid etc. Are discussed.

Keywords: Bioconversion, Glycerol, Biodiesel, Microorganisms, 1,3-propanediol.


1. Solomon BO, Zeng AP, Biebl H, Schlieker H, Posten C, Deckwer WD. Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol. J Biotechnol 1995;39(2):107-17.
2. Barbirato F, Bories A. Relationship between the physiology of Enterobacter agglomerans CNCM 1210 grown anaerobically on glycerol and the culture conditions. Res Microbiol 1997;148(6):475-84.
3. Barbirato F, Chedaille D, Bories A. Propionic acid fermentation from glycerol: comparison with conventional substrates. Appl Microbiol Biotechnol 1997;47(4):441-6.
4. Barbirato F, Himmi EH, Conte T, Bories A. 1,3-Propanediol production by fermentation: an interesting way to valorize glycerin from the ester and ethanol industries. Ind Crops Prod 1998;7(2):281-9.
5. Colin T, Bories A, Lavigne C, Moulin G. Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum. Curr Microbiol 2001;43(4):238-43.
6. Rittmann D, SN Lindner, VF Wendisch. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 2008;74(20):6216-22.
7. MF Milazzo, F Spina, A Vinci, C Espro, JCJ Bart. Brassica biodiesels: past, present and future. Renew Sustain Ener Rev 2013;18(C):350-89.
8. Zahira Yaakob, Masita Mohammada, Mohammad Alherbawi, Zahangir Alam, Kamaruzaman Sopian. Overview of the production of biodiesel from Waste cooking oil. Renew Sustain Ener Rev 2013;18(C):184-93.
9. Demirbas MF, Balat M. Recent advances on the production and utilization trends of biofuels: a global perspective. Ener Convers Mgmt 2006;47(15):2371-81.
10. Posada JA, Cardona CA, Rincón LE. Sustainable biodiesel production from palm
11. using in situ produced glycerol and biomass for raw bioethanol. En: Society for Industrial Microbiology. 32nd symposium on biotechnology for fuels and chemicals. Clearwater Beach, Florida; 2010. p. 19-22.
12. Berriosa M, Skelton RL. Comparison of purification methods for biodiesel. Chem Eng J 2008;144:459-65.
13. Campbell CJ, Laherrère JH. The end of cheap oil. Sci Am 1998;3(2):78-83.
14. Keerthi P Venkataramanan, Judy J Boatman, Yogi Kurniawan, Katherine A Taconi, Geoffrey D. Bothun and Carmen Scholz Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Appl Microbiol Biotechnol 2012;93(3):1325-35.
15. Muna Albanna. Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste. Management of Microbial Resources in the Environment: Spring. Netherlands; 2013. p. 313-40.
16. Hayirli. The role of exogenous insulin in the complex of hepatic lipidosis and ketosis associated with insulin resistance phenomenon in postpartum dairy cattle. Veterinary Res Communi 2006;30(7):749-74.
17. N Mezhevoi, VG Badelin. Thermochemical investigation of interaction of L-serin with glycerol, ethylene glycol, and 1,2-propylene glycol in aqueous solutions. Russi J Gen Chem 2010;80(1):27-30.
18. González-Pajuelo M, Andrade JC, Vasconcelos I. Production of 1,3-propanediol by Clostridium butyricum VPI 3266 in continuous cultures with high yield and productivity. J Ind Microbiol Biotech 2005;32(9):391-6.
19. Choi WJ, Hartono MR, Chan W H, Yeo SS. Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens. Appl Microbiol Biotechnol 2011;89(4):1255-64.
20. Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I. Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol 2002;92:737-44.
21. Scholten E, Dägele D. Succinic acid production by a newly isolated bacterium. Biotechnol Lett 2008;30(12):2143-46.
22. Malinowski J. Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol. Biot Tech 1999;13(2):127-30.
23. Cameron DC, Altaras NE, Hoffman ML, Shaw AJ. Metabolic engineering of propanediol pathways. Biotechnol Prog 1998;14(1):116-25.
24. Hao J, Xu F, Liu H, Liu D. Downstream processing of 1,3-propanediol fermentation broth. J Chem Technol Biotechnol 2006;81(1):102-08.
25. Yang G, Tian J, LI J. Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 2007;73(5):1017-24.
26. Lin R, Liu H, Hao J, Cheng K, Liu D. Enhancement of 1,3-propanediol production by Klebsiella pneumoniae with fumarate addition. Biotechnol Lett 2005;27(22):1755-59.
27. Raynaud C, Sarçabal P, Meynial-Salles I, Croux C, Soucaille P. Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum. Proc Natl Acad Sci 2003;100(9):5010-15.
28. González-Pajuelo M, Andrade JC, Vasconcelos I. Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotech 2004;31(9):442-6.
29. Németh A, Kupcsulik B, Sevella B. 1,3-Propanediol oxidoreductase production with Klebsiella pneumoniae DSM2026. World J Microbiol Biotechnol 2003;19(7):659-63.
30. Zhang X, Li Y, Zhuge B, Tang X, ShenW, Rao Z, et al. Construction of a novel recombinant Escherichia coli strain capable of producing 1,3-propanediol and optimization of fermentation parameters by statistical design. World J Microbiol Biotechnol 2006;22(9):945-52.
31. Daria Szymanowska-Powałowska, Agnieszka Drożdżyńska, Natalia Remszel. Isolation of new strains of bacteria able to synthesize 1,3-propanediol from glycerol. Adv Microbiol 2013;3(2):171-80.
32. Deckwer WD. Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiol Rev 1995;16(2):143-9.
33. Menzel K, Zeng AP, Deckwer WD. Enzymatic evidence for an involvement of pyruvate dehydrogenase in the anaerobic glycerol metabolism of Klebsiella pneumoniae. J Biotechnol 1997;56(2):135-42.
34. Mandar Karve, Jay J Patel, Nirmal K Patel. Bioconverison of glycerol to 1,3-propanediol and its application. Proceedings of the ICETCS 2013 Confer., Spring. (In press).
35. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 2005;100(3):260-5.
36. Mandar Karve, Jay J Patel, VK Sinha, Nirmal K Patel. A novel biological route for 1,3-propanediol synthesis through transesterification of cottonseed oil. Acc Biotechnol Res 2014. (In press)
37. Talarico TL, Axelsson LT, Novotny J, Fiuzat M, Dobrogosz WJ. Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1,3-propanediol: NAD+ oxidoreductase. Appl Env Microbiol 1990;56(4):943-8.
38. Talarico TL, Casas IA, Chung TC, Dobrogosz WJ. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother 1988;32(12):1854-8.
39. Mandar Karve, Jay J Patel, VK Sinha, Nirmal K Patel. Bioconverison of waste glycerol to 1,3-propanediol and its application. Acc Biotechnol Res 2014;1:(1). (In press)
40. Hao J, W Wang, J Tian, J Li, D Liu. Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01. J Ind Microbiol Biotechnol 2008;35(7):735-41.
41. Youngleson JS, Jones WA, Jones DT, Woods DR. Molecular analysis and nucleotide sequence of the adh1 gene encoding an NADPH-dependent butanol dehydrogenase gene in the Gram-positive anaerobe Clostridium acetobutylicum. Gene 1998;78(2):355-64.
42. Boenigk R, Bowien S, Gottschalk G. Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Appl Microbiol Biotechnol 1993;38(4):453-7.
43. Malinowski J. Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol. Biot Tech 1990;13(2):127-30.
44. Daniel R, Boenigk R, Gottschalk G. Purification of 1,3-Propanediol Dehydrogenase from citrobacter freundii and cloning sequencing and overexpression of the corresponding gene in escherichia coli. J Bacteriol 1995;177(8):2151-6.
45. Seifert C, S Bowien, G Gottschalk, R Daniel. Identification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B-12-dependent glycerol dehydratase of Citrobacter freundii. Eur J Biochem 2001;268(8):2369-78.
46. Dabrock B, Bahl H, Gottschalk G. Parameters affecting solvent production by Clostridium pasteurianum. Appl Environ Microbiol 1992;58(4):1233-9.
47. Macis L, Daniel R, Gottschalk G. Properties and sequence of the coenzyme B12-dependent glycerol dehydratase of Clostridium pasteurianum. FEMS Microbiol Lett 1998;164(1):21-8.
48. Luers F, Seyfried M, Daniel R, Gottschalk G. Glycerol conversion to 1,3-propanediol by Clostridium pasteurianum: Cloning and expression of the gene encoding 1,3-propanediol dehydrogenase. FEMS Microbiol Lett 1997;154(2):337-45.
49. Biebl H, Menzel K, Zeng AP, Deckwer WD. Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 1999;52(3):289-97.
50. Biebl H, Marten S, Hippe H, Deckwer WD. Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Appl Microbiol Biotechnol 1992;36(5):592-7.
51. Abbad-Andaloussi S, Manginot-Dürr C, Amine J, Petitdemange E, Petitdemange H. Isolation and characterization of Clostridium butyricum DSM 5431 mutants with increased resistance to 1,3-propanediol and altered production of acids. Appl Env Microbiol 1995;61(12):4413-7.
52. Tong IT, Cameron DC. Enhancement of 1,3-propanediol production by cofermentation in Escherichia coli expressing Klebsiella pneumoniae dha regulon genes. Appl Biochem Biotechnol 1992;34(1):149-59.
53. Biebl H, Zeng AP, Menzel K, Deckwer WD. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumonia. Appl Microbiol Biotechnol 1998;50(1):24-9.
54. Forage RG, Foster AM. Glycerol fermentation in Klebsiella pneumoniae: Functions of the coenzyme B12-dependent glycerol and diol dehydratases. J Bacteriol 1982;149(2):413-9.
55. Barbirato F, Bories A. Relationship between the physiology of Enterobacter agglomerans CNCM 1210 grown anaerobically on glycerol and the culture conditions. Res Microbiol 1997;148(6):475-84.
56. Zhu MM, Lawman PD, Cameron DC. Improving 1.3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate. Biotechnol Prog 2002;18(4):694-9.
57. Toraya T, Honda S, Kuno S, Fukui S. Distribution of coenzyme B12-dependent diol dehydratase and Glycerol dehydratase in selected genera of Enterobacteriaceae and Propionibacteriaceae. J Bacteriol 1980;141(3):1439-42.
58. Ahrens K, Menzel K, Zeng AP, Deckwer WD. Kinetic dynamic and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III Enzymes and fluxes of glycerol dissimilation and 13-propanediol formation. Biotechnol Bioeng 1998;59(5):544-52.
59. Forage RG, Lin CC. dha System mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 1982;151(2):591-9.
60. Saint-Amans S, Girbal L, Andrade J, Ahrens K, Soucaille P. Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. J Bacteriol 2001;183(5):1748-54.
61. González-Pajuelo M, Meynial-Salles I, Mendes F, Soucaille P, Vasconcelos I. Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266 and an engineered strain, Clostridium acetobutylicum DG1 (pSPD5). Appl Env Microbiol 2006;72(1):96-101.
62. Wang ZX, Zhuge J, Fang H, Prior BA. Glycerol production by microbial fermentation: a review. Biotechnol Adv 2001;19(3):201-23.
63. Ruch FE, Lengeler J, Lin CC. Regulation of glycerol catabolism in Klebsiella aerogenes. J Bacteriol 1974;119(1):50-6.
64. Dharmadi Y, Murarka A, Gonzalez R. Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 2006;94(5):821-9.
65. Nakas JP, Schaedle M, Parkinson CM, Coonley CE, Tanenbaum SW. System development of linked-fermentation production of solvents from algal biomass. Appl Environ Microbiol 1983;46(5):1017-23.
66. Jarvis GN, Moore ERB, Thiele JH. Formate and ethanol are the major products of glycerol fermentation produced by a Klebsiella planticola strain isolated from red deer. J Appl Microbiol 1997;83(2):166-74.
67. Zeng AP, Biebl H. Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Spring 2002;239-59.
68. Werkman CH, GF Gillen. Bacteria producing trimethylene glycol. J Bacteriol 1932;23(2):167-82.
69. Katrlík J, Vostiar I, Sefcovicová J, Tkác J, Mastihuba V, Valach M, Stefuca V, et al. A novel microbial biosensor based on cells of Gluconobacter oxydans for the selective determination of 1,3-propanediol in the presence of glycerol and its application to bioprocess monitoring. Analyt Bioanalyt Chem 2007;388(1):287-95.
70. Colin T, Bories A, Moulin G. Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl Microbiol Biotechnol 2000; 54:201-5.
71. Willke TH, Vorlop KD. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 2004; 66(2):131-42.
72. Kang T, Korber DR, Tanaka T. Bioconversion of glycerol to 1,3-propanediol in thin stillage-based media by engineered Lactobacillus panis PM1. J Ind Microbiol Biotechnol 2014;41(4):629-35.
73. Swati Khanna, Arun Goyala, Vijayanand S Moholkar. Effect of Fermentation parameters on Bio-alcohols production from glycerol using immobilized clostridium pasteurianum: an optimization study. Preparative Biochem Biotechnol 2013;43(8):828-47.
74. Anand Hiremath, Mithra Kannabiran, Vidhya Rangaswamy. 1,3-propanediol production from crude glycerol from jatropha biodiesel process. New Biotechnol 2011;28(1):19-23.
75. Cheng KK, Liu DH, Sun Y, Liu WB. 1,3-propanediol production by Klebsiella pneumoniae under different aeration strategies. Biotechnol Lett 2004;26(11):911-15.
76. Chotani G, Dodge T, Hsu A, Kumar M, LaDuca R, Trimbur D, et al. The commercial production of chemicals using pathway engineering. Biochim Biophys Acta 2000;1543(2):434-55.
77. Nakamura CE, Whited GM. Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 2003;14(5):454-9.
78. Homann T, C Tag, H Biebl, WD Deckwer, B Schink. Fermentation of glycerol to 1,3-propanediol by klebsiella and citrobacter strains. Appl Microbiol Biot 1990;33(2):121-6.
79. Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol biodiesel preparations. Biotechnol Lett 2006;28(21):1755-9.
80. Haynie Sharon L, Wagner Lorraine W. Process for making 1,3-propanediol from carbohydrates using mixed microbial cultures. US Patent 1997;5;599-689.
81. Cameron DC, Altaras NE, Hoffman ML, Shaw AJ. Metabolic engineering of propanediol pathways. Biotechnol Prog 1998;14(1):116-25.
82. Shelley S. A renewable route to propylene glycol. Chem Eng Prog 2007;103:6-9.
83. Hacking AJ, EC Lin. Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli. J Bacteriol 1976;126(3):1166-72.
84. Gonzalez R, A Murarka, Y Dharmadi, SS Yazdani. A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metab Eng 2008;10(5):234-45.
85. Turner KW, AM Roberton. Xylose, arabinose, and rhamnose fermentation by Bacteroides ruminicola. Appl Environ Microbiol 1979;38(1):7-12.
86. Cameron DC, CL Cooney. A novel fermentation-the production of r(-)-1,2-propanediol and acetol by clostridium thermosaccharolyticum. Bio-Technol 1986;4(1): 651-4.
87. Badia J, J Ros, J Aguilar. Fermentation mechanism of fucose and rhamnose in Salmonella typhimurium and Klebsiella pneumoniae. J Bacteriol 1985;161(1): 435-7.
88. Suzuki T, H Onishi. Aerobic dissimilation of l-rhamnose and production of lrhamnonic acid and 1,2-propanediol by yeasts. Agr Biol Chem 1968;32(7):888-93.
89. Altaras NE, DC Cameron. Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol Prog 2000;16(6):940-6.
90. Berrios-Rivera SJ, K. Y. San, GN Bennett. The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production in Escherichia coli. J Ind Microbiol Biotechnol 2003;30(1):34-40.
91. Clomburg JM, R Gonzalez. Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol Bioeng 2011;108(4): 867-79.
92. Lee W, NA Dasilva. Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metab Eng 2006;8(1):58-65.
93. Jung JY, ES Choi, MK Oh. Enhanced production of 1,2-propanediol by tpi1 deletion in Saccharomyces cerevisiae. J Microbiol Biotechnol 2008;18(11):1797-02.
94. S Afschar, CE Vaz Rossell, R Jonas, A Quesada Chanto, K Schaller. Microbial production and downstream processing of 2,3-butanediol. J Biotechnol 1996;27(3):317-29.
95. C Saha, RJ Bothast. Production of 2,3-butanediol by newly isolated Enterobacter cloacae. Appl Microbiol Biotechnol 1999;52(3):321-6.
96. Syu MJ. Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 2001;55(1):10-8.
97. Perego P, A Converti, M Del Borghi. Effects of temperature, inoculum size and starch hydrolyzate concentration on butanediol production by Bacillus licheniformis. Bioresour Technol 2003;89(2):125-31.
98. Grover BP, SK Garg, J Verma. Production of 2,3-Butanediol from Wood Hydrolysate by Klebsiella-Pneumoniae. World J Microb Biot 1990;6(3):328-32.
99. Perego P, A Converti, A Del Borghi, P Canepa. 2,3-butanediol production by Enterobacter aerogenes: selection of the optimal conditions and application to food industry residues. Bioprocess Eng 2000;23(6):613-20.
100. De Mas C, NB Jansen, GT Tsao. Production of optically active 2,3-butanediol by Bacillus polymyxa. Biotechnol Bioeng 1988;31(4):366-77.
101. Nilegaonkar SS, SB Bhosale, CN Dandage, AH Kapadi. Potential of Bacillus licheniformis for the production of 2,3-butanediol. J Ferment Bioeng 1996;82(4): 408-10.
102. Jansen NB, MC Flickinger, GT Tsao. Production of 2,3-butanediol from Dxylose by Klebsiella oxytoca ATCC 8724. Biotechnol Bioeng 1984;26(4):362-9.
103. Juni E. Mechanisms of formation of acetoin by bacteria. J Biolog Chem 1952;195(2):715-26.
104. Ji X J, H Huang, J G Zhu, L J Ren, Z K Nie, J Du, S Li. Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 2010;85(6):1751-8.
105. Petrov K, P Petrova. Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl Microbiol Biotechnol 2010;87(3):943-9.
106. Hekmat D, R Bauer, J Fricke. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst Eng 2003;26(2):109-16.
107. Bauer R, N Katsikis, S Varga, D Hekmat. Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process. Bioprocess Biosyst Eng 2005;28(1):37-43.
108. Nabe K, N Izuo, S Yamada, I Chibata. Conversion of glycerol to dihydroxyacetone by immobilized whole cells of acetobacter xylinum. Appl Environ Microbiol 1979;38(6):1056-60.
109. Wethmar M, WD Deckwer. Semisynthetic culture medium for growth and dihydroxyacetone production by Gluconobacter oxydans. Biotechnol Tech 1999;13(4):283-7.
110. Flickinger MC, D Perlman. Application of Oxygen-Enriched aeration in the conversion of glycerol to dihydroxyacetone by gluconobacter melanogenus ifo3293. Appl Environ Microbiol 1977;33(3):706-12.
111. Demirel S, Lehnert K, Lucas M, Claus, et al. Use of renewables for the production of chemicals: Glycerol oxidation over carbon supported gold catalysts. Applied Catalysis B: Environ 2007;70(1-4):637-43.
112. Zope B, Davis R. Influence of reactor configuration on the selective oxidation of glycerol over Au/TiO2. Topics Cataly 2009;52(3):269-77.
113. Bories A, C Claret, P Soucaille. Kinetic-Study and optimization of the production of dihydroxyacetone from glycerol using gluconobacter oxydans. Process Biochem 1991;26(1):243-8.
114. Claret C, JM Salmon, C Romieu, A Bories. Physiology of gluconabacter oxydans during dihydroxyacetone production from glycerol. Appl Microbiol Biot 1994;41(3):359-65.
115. Claret C, A Bories, P Soucaille. Glycerol inhibition of growth and dihydroxyacetone production by gluconobacter oxydans. Current Microbiol 1992;25(3):149-55.
116. Matsushita K, H Toyama, O Adachi. Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 1994;36(2):247-01.
117. Yoshinori Hara, Hiroko Inagaki. Method for producing 1,4-butanediol. US5077442; 1991.
118. Zeikus JG, Jain MK, Elankovan P. Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 1999;51(5):545-52.
119. Song H, Lee SY. Production of succinic acid by bacterial fermentation. Enzyme Microb Technol 2006;39(3):352-61.
120. Ranucci E, liu Y, Lindblad MS, Albertsson AC. New biodegradable polymers from renewable sources. High molecular weight poly(ester carbonate)s from succinic acid and 1,3-propanediol. Macromol Rapid Commun 2000;21(10):680-4.
121. Bechthold K, Bretz S, Kabasci R, Kopitzky, A Springer. Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chemi Engi Technol 2008;31(5):647-54.
122. Lee SY, Hong SH, Lee SH, Park SJ. Fermentative production of chemicals that can be used for polymer synthesis. Macromol Biosci 2004;4(3):157-64.
123. Zhou Y, Du J, Tsao GT. Comparison of fumaric acid production by Rhizopus oryzae using different neutralizing agents. Bioprocess Biosyst Eng 2002;25(3):179-81.
124. Himmi EH, Bories A, Boussaid A, Hassani L. Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. Appl Microbiol Biotechnol 2000;53(4):435-40.
125. Yang G, Tian J, LI J. Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 2007; 73(5):1017-24.
126. Dae-Eun Cheonga, Hae-In Leeb, Jae-Seong So. Optimization of electrotransformation conditions for Propionibacterium acnes. J Microbiol Methods 2008;72(1):38-41.
127. Wang ZX, Zhuge J, Fang H, Prior BA. Glycerol production by microbial fermentation: a review. Biotechnol Adv 2001;19(3):201-23.
128. Zhong Gu, Bonita A Glatz, Charles E Glatz. Effects of propionic acid on propionibacteria fermentation. Enzym Microb Technol 1998;22(1):13-8.
129. Soccol CR, Vandenberghe LPS, Rodrigues C, Pandey A. New perspectives for citric acid production and application. Food Technol Biotechnol 2006;44(2):141-9.
130. Gurpreet Singh Dhillon, Satinder Kaur Brar, Surinder Kau. Rheological studies during submerged citric acid fermentation by aspergillus niger in stirred fermentor using apple pomace ultrafiltration sludge 2013;6(5):1240-50.
131. Imandi SB, Bandaru VVR, Somalanka SR, Garapati HR. Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design. Enzyme Microb Technol 2007;40(5):1367-72.
132. Abdulrahman M, Al-Shehri, Yasser S, Mostafa. Citric acid production from date syrup using immobilized cells of aspergillus niger. Biotechnol 2006;5(4):461-5.
133. Ling-Fei Wang, Zhi-Peng Wang, Xiao-Yan Liu, Zhen-Ming Chi. Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid. Bioprocess Biosy Engi 2013;36(11):1759-66.
1113 Views | 1338 Downloads
How to Cite
Karve, M., Patel, J. J., & Patel, N. K. (2014). BIOCONVERSION OF GLYCEROL. Journal of Critical Reviews, 1(1), 29-35. Retrieved from
Applied Sciences